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SUMMARY

Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate 

lymphocytes with important immune and homeostatic functions at multiple tissue sites, 

especially the lung. These cells expand locally after birth and during postnatal lung 

maturation and are resident in the lung and other peripheral organs. They are modified 

by a variety of processes and mediate inflammatory responses to respiratory pathogens, 

inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in 

pulmonary homeostasis and discuss recent and surprising advances in our understanding 

of how circadian rhythms, hormones, age, neurotransmitters, environmental challenges, 

and infection influence ILC2s. We also review how these responses may underpin the 

development, progression and severity of pulmonary inflammation and chronic lung 

diseases and highlight some of the remaining challenges for ILC2 biology.

INTRODUCTION

Innate lymphoid cells (ILCs) are a heterogeneous family of cells that include group 1 ILCs 

(ILC1) characterized by their production of interferon- (IFN-), ILC2s that predominantly 

express IL-5 and IL-13, and ILC3s that secrete IL-22 and/or IL-17 1-3. ILCs are important in 

maintaining tissue homeostasis by regulating lymphoid tissue development (ILC3 4), tissue 

repair (ILC2 5 and (ILC3 6, 7) fat metabolism (ILC2 8). Collectively, they protect the body 

against a multitude of organisms including intracellular pathogens (ILC1), bacteria (ILC1 and 

ILC3) 9, 10 11, parasitic worms (ILC2) and fungi (ILC3) 12. Nevertheless, when dysregulated 

they can drive chronic inflammation such as occurs in chronic obstructive pulmonary disease 

(COPD) (ILC1 and ILC3), allergy and asthma (ILC2), and cancer (ILC3) as well as 

autoimmune diseases including inflammatory bowel disease (ILC1, ILC2, ILC3), atopic 

dermatitis (ILC2), multiple sclerosis (ILC2 and ILC3) and psoriasis (ILC3) 13-16. Here, we 
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review recent advances in our understanding of the contribution of ILC2s in inflammation and 

immunity, with a particular focus on the lung, and the challenges in understanding their key 

roles in maintaining immune homeostasis and the implications for respiratory diseases and 

therapeutic intervention. We place this in the context of recent and surprising findings that have 

been enabled by the development of a wide range of molecular tools (Table 1) and ILC 

modulators (Table 2) and highlight some of the remaining challenges in ILC2 biology.

 

Transcriptional Blueprint Regulating ILC2 Development

ILC2s are not a uniform population and there are inconsistencies in the markers they express. 

Nevertheless, ILC2s are delineated into at least two subsets: natural ILC2 (nILC2) that respond 

mainly to IL-33, and; inflammatory ILC2 (iILC2) that are highly responsive to IL-25 17 and 

have the capacity to migrate between mucosal sites during inflammation in response to 

chemotactic signals 18. nILC2s are generally recognized by their expression of the IL-33 

receptor (IL-33R, also known as ST2). iILC2s express the activation marker KLRG1 and the 

IL-25R but strikingly, do not express ST2 which raises questions about the universal use of 

this receptor to mark ILC2s 19. It is proposed that iILC2s are highly responsive precursors that 

are mobilized by inflammatory stimuli but ultimately adopt an nILC2-like, or ILC3-like 

phenotype 17.

ILC2s are characterized by their expression of Gata binding protein-3 (Gata3) and their 

production of cytokines including IL-4, IL-5, IL-9 and IL-13. They arise from the common 

lymphoid progenitor (CLP) in the bone marrow which give rise to the more restricted ILC2 

lineage-specific progenitor, ILC2p. The development of this progenitor relies on Gata3 20, 21 

and the transcription factor retinoic acid receptor-related orphan nuclear receptor- (ROR 

encoded by Rora gene) 22. A tight transcriptional network involving factors such as inhibitor 

of DNA binding-2 (Id2), Notch 23, nuclear factor interleukin-3 (Nfil3) 24, 25, promyelocytic 
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leukemia zinc finger protein (PLZF, encoded by Btb16), T-cell factor-1 (TCF-1) 26, 27, and zinc 

finger protein growth factor independent-1 (Gfi1)  28 are essential for the sequential 

specification and commitment of the ILC2 lineage. Indeed, TCF-1 acts through both Gata3-

dependent and -independent pathways to promote the generation of ILC2s 27 but precisely how 

these two factors orchestrate the ILC2 programming is incompletely understood.

In adults, mature ILC2s are thought to originate from bone marrow progenitors and IL-

33 promotes their egress 29-31. However, under certain circumstances, ILCs may also arise in 

the thymus where the levels of expression of transcription factors dictate the fate outcome of 

early T-cell progenitors to become either adaptive or innate immune cells 29, 32. At least part of 

this program may be regulated by the transcriptional enhancer E-box proteins (E proteins) and 

Id proteins which modulate ILC2 levels. Indeed, overexpression of Id1 or the dual deletion of 

E2A and HEB results in hyper-inflammatory ILC2 responses following allergen challenge with 

papain and enhanced capacity to eliminate N. brasiliensis 29. Id1 itself is not generally 

expressed by immune cells but overexpression of Id proteins, or removal of their E protein 

binding partner, enhances Id activity and drives the development of cells that depend on it. 

ILC2 production can be generated in the thymus by culture with IL-7 and IL-33 22, 23 suggesting 

that modulating the balance of transcription factors may determine an ILC fate outcome in vivo 

29, 32.

Single Cell ILC-omics Uncovers the Identity of the ILC2p

ILCs exhibit considerable heterogeneity in terms of cell surface antigen and gene expression. 

This reflects differential responses that occur to continuous encounters with fluctuating stimuli 

at mucosal surfaces such as the lung and specializations in individual tissues. The capacity to 

trace ILC fate has been limited by the relative rarity of these cells, however, significant 
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advances in genomics have enabled the detailed temporal mapping of the dynamic and 

quantitative contributions of transcriptional regulators in defining cellular trajectory.

Defining the earliest ILC progenitors has been elusive in both mouse models and 

humans. However, recent studies of small cell numbers and single cell analyses have uncovered 

new markers of early checkpoints in ILC development. Analysis of the common innate 

lymphoid progenitor (CILP) revealed that the dedicated ILC2 progenitor unexpectedly 

expressed the surface receptor programmed cell death protein 1 (PD-1), which in combination 

with IL-25R serves as a hallmark for this progenitor 33, 34. Notably, the ablation of PD-1 in 

progenitors did not impact the development of ILC2p or ILC2s 33. PD-1 is a major target in 

immunotherapy and is an important negative regulator of effector gut KLRG1+ ILC2s (also 

known as iILC2) 17, 35. The emergence of KLRG1+ ILC2s in the lung also appears to rely on 

PD-1. We speculate that differential regulation in distinct tissues could account for the higher 

abundance of KLRG1+ ILC2s in the lung that are associated with inflammation and asthma 35. 

ILC2s also dynamically express the ligand PD-L1 during immune responses in the lung, and 

its ligation with PD-1 on Th2 cells acts as innate regulatory checkpoint for the adaptive 

response leading to Gata3 and IL-13 upregulation by T-cells 36. Inhibiting PD-L1 or IL-13 

during early-life bacterial infection of the respiratory system prevents more severe allergic 

airway inflammation in later-life 37, 38. However, blockade of PD-L1 during the first two weeks 

postpartum in the absence of pathogenic infection maintained exaggerated responsiveness to 

HDM challenge of mice in early life 39. The expression of these two key checkpoint factors on 

ILC2s warrants a deeper dissection of the consequences of therapy as although this may 

augment anti-tumor immunity, autoimmune sequelae are potential unexpected outcomes of 

treatment.

Genome-wide probing of ILCs using RNA-seq, ChIP-seq and ATAC-seq combined 

with mass cytometry enables multivariate mapping of transcriptional and epigenetic identity of 
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thousands of gene profiles and regulatory elements in single cells with functional outputs such 

as cytokine expression and metabolic regulation. This has allowed the detailed exploration of 

regulatory circuits in mammalian cells 40-46. This type of detail challenged the simplified 

schema for ILCs previously proposed 3 and suggests that there may be as many 15 different 

subcategories reflecting differences in tissue localization and the influence of various stimuli, 

including commensal bacteria, in shaping the epigenetic landscape of ILCs. Some subsets, 

however, exhibit characteristics typically associated with other or multiple subtypes. ILC2s are 

typified by their expression of Gata3, Hes1, Areg, Il5 and Il13 transcripts, a subclass of ILC2, 

ILC1/2, also express Gzma, Hopx and Epas1 normally associated with ILC1, while ILC2/3 

produce Cxcl2, Cxcl3 and Arg1 characteristic of ILC3 40. In all, four different subclasses of 

ILC2s were reportedly delineated. While these subsets all exhibited the signature gene Gata3, 

segregation into subsets was based on their graded expression of Gata3 and also Klf4, Llrg1, 

Ly6a and Il2ra. The ILC2d subclass exhibited the highest levels of these genes as well as Il5 

and Csf2 and was distinguished from other subsets by their expression of Areg. These 

subclasses may result from heterogeneity introduced as a consequence of cues from their 

environment. This pattern was similar to that observed for T-bet suggesting that ILC subsets 

are not static, but their phenotypes reflect the dynamic equilibrium that occurs in implementing 

immune responses and maintaining homeostasis. The existence of these subclasses that do not 

neatly fit into the original proposed schema 3 and imply that the plasticity reported by other 

groups in in vitro analyses are insights into such changes that can be induced in ILCs. Whilst 

this structure should be maintained it is a simplification of the numbers of subclasses that are 

encountered at different locations and during homeostasis or challenge 47. A detailed 

understanding of this plasticity in vivo is warranted.

A comprehensive model describing how human ILCs develop, similar to that already 

undertaken in mice, has until recently been lacking, mainly as a result of technical limitations 
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in probing rare immune populations. Recent advances in genomics and mass cytometry have, 

however, enabled the elucidation of these developmental steps in man 45, 48, 49. A striking initial 

finding identified that the transcriptional regulator RORt (encoded by RORC2 in man) is not 

limited to ILC3s as found in mice but is broadly expressed in human ILC progenitors including 

those of ILC2 50. Lin-CD34+CD45RA+CD117+IL-1R1+ID2+RORt+ progenitors were found in 

secondary lymphoid tissues and gave rise to all ILC subsets, but not other cell lineages 50. This 

raised the concept that differentiation could differ between the two species and that RORt may 

play a potential role in humans distinct from that in mice. Aligned with this finding, although 

signature factors such as GATA3 were strongly associated with and most highly expressed in 

human ILC2s, this transcription factor was also expressed by other subsets such as ILC1s and 

ILC3s 49. Consequently, it appears that the G protein-coupled receptor CRTH2 (also known as 

DP2) is the most reliable marker for separating human ILC2s from ILC3s. This is also the case 

in the mouse where ILC1s and 3s are intermediate for Gata3 and ILC2s have high expression.

Emerging Anti-inflammatory Role for ILC2s

ILC2s are well known inducers of type-2 inflammatory responses, but recent evidence 

indicates that they are also involved in the resolution of inflammation and prevention of cell 

death through IL-9 51, 52. ILC2s are the dominant source of IL-9 during the resolution of arthritis 

and IL-9+ ILC2s were located in close proximity to regulatory T (Treg) cells in inflamed 

synovium 51. In the absence of IL-9, ILC2-induced proliferation and activation of Tregs was 

impaired leading to chronic arthritis. In contrast, treatment with rIL-9 promoted ILC2-

dependent Treg activation and effectively resolved inflammation 51. A more recent study 

demonstrated that artificially increasing ILC2s significantly attenuated experimental arthritis 
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in an IL-4/13-dependent manner 53. Clinical relevance was demonstrated in remitting 

rheumatoid arthritis patients who had high numbers of ILC2s and IL-9+ ILC2s in their joints 

and circulation that inversely correlated with disease severity 51, 53. In a mouse cecal and 

ligation puncture model, sepsis induced IL-33 release and subsequent expansion of IL-9-

secreting ILC2 in the lung, which prevented lung endothelial cell pyroptosis by attenuating 

caspase-1 activation 52. Collectively, these data indicate a pivotal role for ILC2s in resolving 

chronic inflammation, and the potential for their therapeutic manipulation 51. Further 

exploration of their anti-inflammatory capacity in other tissues and diseases is required.

Bidirectional Relationships between ILC2s and Tregs

A complex bidirectional relationship exists between pulmonary ILC2s and Tregs. Transient 

depletion of Tregs induced IL-2– and CD25-dependent proliferation of ILC2s, suggesting that 

ILC2s can directly access IL-2 in the lung and that Tregs restrain the IL-2–dependent expansion 

of these tissue-resident ILCs 54. Human and murine ILC2s express both ICOS and ICOS-ligand 

(ICOS-L) and ICOS:ICOS-L interactions on these cells promotes type-2 cytokine production 

and ILC2 survival through STAT5 signaling 55, 56. A lack of ICOS on murine ILC2s reduced 

airway hyperresponsiveness (AHR) and lung inflammation, and blocking ICOS:ICOS-L 

interactions in human ILC2s suppressed their pro-inflammatory effects 55. Induced Tregs 

(iTreg) but not natural Tregs, inhibited the production of ILC2-drived IL-5 and IL-13 in vitro 

and in vivo 57. iTreg mediated suppression of ILC2s required ICOS-ICOS-L-dependent cell-to-

cell contact in addition to the suppressive cytokines TGF- and IL-10 57. Human iTreg can 

suppress human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 

mouse model 57. Furthermore, human ILC2s express IL-10RA and TGFBR2 receptors and the 

addition of rIL-10 or TGF- to ex vivo ILC2 cultures suppressed type-2 cytokine production 

Page 8 of 48

Nature Publishing Group

Mucosal Immunology



For Peer Review

9

58. In contrast, TGF- is also a chemoattrant for ILC2s that express TGFBR2 that contributes 

to pulmonary responses to allergen. 

Other cytokines such as IFN- can suppress IL-33-induced ILC2 activation and control 

Treg numbers and type-2 responses 56. ILC2s express the IFN- receptor 42 and IFN- directly 

represses ILC2 activation, cytokine production and proliferation in vitro 56. In vivo IL-33-

induced lung ILC2 proliferation and accumulation was blocked by co-administration of IFN- 

and mice that overexpress IFN- had fewer ILC2s. Listeria monocytogenes infection, which 

elicits potent IFN- responses, also suppressed ILC2 function in an IFN--dependent fashion 

56. OX40L expression by ILC2s is also required for IL-33-driven Treg and Th2 cell expansion 

59.  Collectively, these studies highlight a multifaceted interplay between ILC2s and Tregs and 

the factors that regulate their function.

New Influencers of ILC2 Function

The immune system is subject to both environmental and intrinsic influences. Recent 

advances highlight the importance of circadian rhythm, sex hormones, age and 

neurotransmitters in regulating ILC2 function, especially in the lung.

Circadian Rhythm

The circadian clock has emerged as an important factor influencing the efficiency of 

immune response generation 60. Its daily oscillations are mediated principally via the 

suprachiasmatic nucleus which entrains peripheral body clocks 61, 62. In mammals, this 
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clock depends on highly conserved transcriptional regulators such as CLOCK, BMAL1 

and REV-ERB nuclear proteins that bind to E-box sequences. The circadian clock 

involves many other genes such as Id2 and the repressor nuclear factor interleukin-3 

(NFIL3, also known as E4BP4), which are also associated with the immune system and 

influence the core and secondary feedback loops involving Rev-ERB. Ror, a critical 

transcription factor for ILC2 development 22, is an activator of Bmal1 transcription 

within the suprachiasmatic nucleus 63. It is required for normal BMAL1 expression and 

consolidation of daily locomotor activity and is regulated by the core clock in the 

suprachiasmatic nucleus. This suggests that opposing activities of Ror and REV-ERB, 

are important in the maintenance of circadian clock function 63. NFIL3 is required for 

the development of the ILC progenitor 24, 25, which may be independent of the cellular 

clock, however, it also regulates Th17 cells by linking their development to the 

circadian network though REV-ERB 64. REV-ERB represses proinflammatory cytokine 

production and controls the amplitude of pulmonary inflammation to inhaled 

endotoxin 65, 66. Similarly, BMAL1 regulates the diurnal rhythms of inflammatory 

monocytes facilitating their mobilization in immune defense 67. This effect is at least 

partially mediated through inhibiting NF-B activation and the induction of miR-155 

68. miR-155 deletion ablates the circadian rhythmicity of cytokine production and leads 

to increased susceptibility to lipopolysaccharide-induced sepsis. miRNAs are key 

regulators of ILC2-induced allergic inflammation and miR-155 is increased in ILC2s in 

response to stimulation with IL-33. Moreover miR-155-/- mice have reduced IL-33-

induced ILC2 proliferation and cytokine production 69, 70. Tissue ILC2s regulate 
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eosinophilopoiesis and accumulation in tissues through constitutive cytokine 

production, particularly IL-5. They also express the vasoactive intestinal peptide 

receptor type-2 (VPAC2) which responds cyclically and potentially provides a 

mechanism by which ILC2 are directly linked to circadian and metabolic rhythms and 

maintain eosinophil homeostasis 71, 72. Collectively, multiple facets of the immune 

system are influenced by the circadian clock and factors critical for the development 

and maintenance of ILCs are implicated in secondary regulation of circadian 

oscillations. Further experimental confirmation of these observations is warranted. 

Sex Hormones

The prevalence of certain diseases may differ in incidence and severity between males 

and females. Men are more susceptible than women to developing severe asthma in 

childhood, however, following puberty, this trend reverses with females having the 

highest incidence of allergies in adulthood 73, 74, which correlate with higher circulating 

ILC2 numbers 75. The mechanisms underlying these differing susceptibilities has been 

elusive but the patterns of pathogenesis implicate sex hormones. Several immune cell 

lineages, including myeloid cells and lymphocytes express receptors for estrogen, 

progesterone and androgens (testosterone, dihydrotestosterone and 

androstenedione) and are hormone regulated and influence both innate and adaptive 

immune responses 76. In macrophages, estrogen receptor signaling inhibits the 

production of NF-B-regulated proinflammatory genes such as IL-6 while the 

activation of ER46 impairs leukocyte migration by inhibiting CCL2 expression 77, 78. 
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Similarly, in dendritic cells (DCs), estrogen-dependent activation of ER regulates the 

development and/or functional responses of particular subsets 79, 80. Progesterone also 

has both stimulatory and suppressive roles in immunity. Progesterone receptors are 

expressed principally by T-cells, including Tregs and NK cells, in addition to DCs and 

mesenchymal stem cells 81-83. In NK cells, progesterone downregulates the secretion 

of IFN-, dampening down uterine NK cell function 84. The active metabolite of 

testosterone is dihydrotestosterone which irreversibly binds to the androgen receptor 

(AR) 85. The AR is expressed at various levels by a variety of leukocytes such as 

neutrophils and macrophages 86. Most recently, the AR was identified on ILC2s and 

signaling through this receptor reduced the susceptibility to IL-33- and alternia 

extract-driven lung inflammation in part by reducing the expansion and reactivity of 

ILC2 75, 87. Signalling through the AR pathway provides support for the protective role 

of androgens in allergic asthma and the dimorphic switch that occurs after puberty. 

The lungs of female mice harbor significantly greater numbers of ILC2s during homeostasis, 

mostly due to the presence of KLRG1- ILC2s that are largely absent in male lungs 88. These 

KLRG1- ILC2s are capable of producing type-2 cytokines and increased with age and sexual 

maturity, suggesting the existence of a unique functional ILC2 subset in females. The 

frequency of PLZF+ ILC precursors were higher in males and further increased by androgens, 

suggesting that male sex hormones inhibit the conversion of ILC precursors to ILC2s. 

However, these sex dependent effects appear to be specific for tissue location and 

disease context. In contrast to the lung, adult male mice have increased ILC2 numbers 

driven by mast cell-derived IL-33 in the central nervous system (CNS), which is an 

immune-protective mechanism and may contribute to the sexual dimorphism 
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observed in the demyelinating disease multiple sclerosis to which females are more 

susceptible 89, 90. IL-33 responsive ILC2 are also present in the uterus and regulated by 

estrogen, however, lung ILC2s were not altered by estrogen administration or in 

ovariectomized mice 91.

Age

The first breath and resulting inflation of the lung triggers IL-33 production by type II alveolar 

epithelial cells and induces the expansion of ST2+ ILC2s in newborn mice 92, 93. Consequently, 

few ST2+ ILC2s are present in the lungs embryonically and in newborn mice, but numbers are 

markedly increased by postnatal week 1, peak during postnatal week 2 to levels three times 

that of adult mice and then decrease and stabilize by week 6 72, 93-95. However, the mechanisms 

responsible for ILC2 contraction are incompletely understood 94. Interestingly, neonatal mice 

had fewer ILC2s in their liver and small intestine compared to adults, suggesting that the 

functional relevance of increased ILC2s in early-life is likely limited to the lung 93. Importantly, 

a significant proportion of neonatal lung and draining mediastinal lymph node ILC2s co-

expressed intracellular IL-5 and IL-13 and had increased proliferative capacity compared to 

adult ILC2s in vitro 93. This is in contrast to adult lung ILC2s that appear to be only constitutive 

IL-5 producers, with these IL-5+ ILC2s found embedded in collagen-rich regions near the 

confluence of medium-sized blood vessels and airways but absent from the alveolar structures 

2, 72. However, the precise location of ILC2s in the developing neonatal lung is unknown, and 

they may reside in the alveolar compartment. Furthermore, neonatal lung ILC2s have different 

cell surface antigen expression with less CD90.2 and CD25 than adult lung ILC2s, but more 

ST2 and comparable intracellular GATA3 levels 95. Collectively, these data indicate 

phenotypic and functional differences between neonatal and adult ILC2s in the lung, 

suggesting that their impact in lung development is not just related to ILC2s numbers.
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Early-life Th2-associated immune skewing and susceptibility to allergy are often 

considered remnants of feto-maternal symbiosis 94. Indeed, neonates are prone to sensitization 

by allergens and Th2 cell-driven allergic disease as their immune system is Th2-biased 96, 97. 

The IL-33-dependent expansion of ILC2s during the neonatal period may be important in the 

reportedly exaggerated HDM-induced AHR in newborns 39. During the alveolarization phase 

of postnatal lung development, HDM exposure further increased IL-33, which increased 

cytokine production by ILC2s and activation of CD11b+ DCs driving greater Th2 skewing 94. 

These data indicate that the alveolarization period has type-2 dominant immunity with 

exaggerated innate immune responses to allergens. This may promote Th2-skewed immune 

responses that may explain increased asthma prevalence in childhood.

The structural features of postnatal lung development which consists mainly of the 

formation and remodeling of alveoli are similar between humans and mice, despite obvious 

timeframe differences. The most active phase of alveolar development occurs during the 

second postnatal week in mice and between years 2-3 in humans. The discovery of substantially 

increased IL-33 production and accumulation of ILC2s during the alveolarization phase of lung 

development raises the question of why a spontaneous IL-33-dependent type-2 immune cell 

microenvironment evolved in mammalian lungs. It is tempting to speculate that type-2 

immunity controls lung development or remodeling of the lung postnatally. Indeed, IL-33 is 

known to activate alternatively activated M2 macrophages that control tissue remodeling and 

postnatal branching morphogenesis of the lung 92, 98, 99. However, despite this no gross 

abnormalities in lung alveolarization were observed in IL-33-deficient mice 92, 94. It has been 

suggested that ILC2s may also be involved in lung regeneration and may be a potential 

immunomodulatory target to stimulate alveologenesis in adult mice 100. ILC2s and lung 

macrophages modulate the regenerative microenvironment to support alveolar epithelial stem 

cell proliferation and differentiation 100. IL-5+ ILC2s were found near small airways and in 
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alveolar spaces post pneumonectomy, however, no direct studies were performed indicating 

the requirement for ILC2s in lung regeneration or alveolarization 100. T- and B-cell deficient 

mice had normal lung mass indicating that adaptive immunity is unlikely to play a role in lung 

regeneration, highlighting the importance of innate immunity and possibly ILC2s 100. Indeed, 

ILC2s have also been shown to promote lung tissue homeostasis after infection as well as 

disrupting bronchial epithelial barrier integrity in asthmatic patients 5, 101, 102. Thus, the role of 

ILC2s in lung development, repair and homeostasis is complex and remains to be fully 

elucidated.

Neurotransmitters

Initial evidence that neurotransmitters may modulate immune responses was that their release 

from nervous tissue could lead to signaling through lymphocyte cell surface receptors 103. 

Leukocytes express receptors for the main brain neurotransmitters such as glutamate, dopamine 

and serotonin 103, and release neurotransmitters that act as autocrine or paracrine modulators 

104. Neuromedin U (NMU) is a neuropeptide expressed by the CNS, but also various peripheral 

organs including the lung and gastrointestinal tract, where ILC2s are abundant. Very recently, 

ILC2s have been identified in the mouse CNS 89, 105. NMU interacts with two G protein-coupled 

receptors, NMU-R1 and NMU-R2. NMU-R2 is expressed in a specific region of the brain and 

NMU-R1 is expressed in various peripheral tissues, including immune and hematopoietic cells 

106. Early work demonstrated that NMU is involved in type-2 immune responses including mast 

cell-mediated inflammation, activation of murine and human eosinophils and allergen-induced 

lung eosinophilia 107, 108. However, the underlying mechanisms remain elusive. A recent triad 

of work demonstrate a clear role for NMU in activating mucosal ILC2 and type-2 inflammation 

109-111. Profiling of lung resident ILCs from mice at baseline and after stimulation with IL-25 

or IL-33 using parallel droplet-based ScRNA-seq, identified the neuropeptide receptor Nmur1 
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as a novel ILC2-specfic gene that was selectively expressed by mature ILC2 and ILC2p, but 

not other hematopoietic cells at baseline or after IL-25 stimulation 109-111. ILC2s also co-

localized with cholinergic neurons that express NMU 109. NMU activated ILC2s in vitro, and 

administration of NMU alone induced lung inflammation 109 and when co-administered with 

IL-25, substantially increased allergic airway inflammation by expanding iILC2s 109, 110. 

Furthermore, administration of NMU in vivo induced potent type-2 cytokine responses that 

resulted in accelerated expulsion of N. brasiliensis 109. This was supported by autonomous 

ablation of Nmur1 in ILC2 that resulted in poor worm control 111. Loss of NMU-NMUR1 

signaling reduced ILC2 frequency and effector function and altered transcriptional programs 

after HDM challenge in vivo 110. Interestingly, NMU expression in asthmatic bronchial 

brushings correlates with disease severity 112, which could be related to NMU-mediated ILC2 

activation. These studies raise the question of whether NMU potentiates airway inflammation 

when high levels of innate type-2 cytokines like IL-25 are present after virus-induced asthma 

exacerbations 113. These data indicate that NMU-NMRU1 signaling provides a selective 

mechanism that integrates the enteric nervous system and innate immune system to induce 

rapid type-2 immune responses at mucosal sites 109.

Another mechanism of neuronal-associated ILC2 activation involving a rare airway 

epithelial cell population known as pulmonary neuroendocrine cells (PNECs) has been recently 

shown to act through calcitonin gene-related peptide to stimulate ILC2s 114. PNECs also act 

through the neurotransmitter gamma-aminobutyric acid (GABA) to induce mucus secreting-

cell hyperplasia in the airways, and the lungs of human asthmatics had increased PNECs. 

PNECs reside in close proximity to ILC2s and can stimulate ILC2 cytokine production and 

likely form neuro-immune modules at airway branches to amplify allergic asthma 114. 

Moreover, certain neuronal cues suppress ILC2 function. Murine ILC2s express the 

 adrenergic receptor (2AR) and colocalize with adrenergic neurons in the intestine 115. 2AR 
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deficiency resulted in exaggerated ILC2 responses and type-2 inflammation in the intestine and 

lung. Conversely, 2AR agonist treatment impaired ILC2 responses and reduced inflammation 

in vivo. Mechanistically, the 2AR pathway is a cell-intrinsic negative regulator of ILC2 

responses through inhibition of cell proliferation and effector function. This study provides the 

first evidence of a neuronal derived regulatory circuit that limits ILC2-dependent type-2 

inflammation 115. Given the importance of ILC2s in driving type-2 immune responses it appears 

that 2AR may function as a molecular rheostat to fine-tune ILC2 responses and prevent 

pathologic type-2 inflammatory responses. These studies also highlight the contrasting 

functions of adrenergic and cholinergic neurons in regulating ILC2 function. These opposing 

functions appear to have evolved in the mammalian nervous system as a dual mechanism to 

rapidly repress or activate ILC2s to protect the host against diverse inflammatory stimuli 115.

ILC2s – Innate Gatekeepers of Respiratory Immunity and Homeostasis in Chronic Lung 

Diseases and Infection

Emerging evidence strongly implicate ILCs in the pathogenesis of chronic respiratory 

inflammation and diseases including asthma, COPD, pulmonary fibrosis and cystic fibrosis. 

ILCs also regulate immune responses and restoration of lung homeostasis following respiratory 

infections, and are involved in the infectious induction, exacerbation and onset of severe 

phenotypes of chronic respiratory diseases. Defining the roles of ILC2s in respiratory disease 

will clarify their use as diagnostic markers and their manipulation will highlight their potential 

for therapeutic targeting in disease prevention (Table 2). There have been few studies of human 

ILCs and additional studies are clearly warranted.

ILC2s are Critical Mediators of Allergic Airway Inflammation and Asthma
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The airway epithelium is a crucial barrier enabling transport of gases and molecules whilst 

protecting from environmental challenges, inhaled particles and pathogens. In the healthy state 

ILCs are present in low numbers in the submucosa and maintain tissue homeostasis, but they 

are early immune responders and mediate tissue repair in response to challenge, and can also 

drive airway inflammation and chronic respiratory diseases 116. ILC stimulation depends on 

their microenvironment and activation by cytokines, lipids, microbes and their metabolites and 

contact with other cells in the respiratory tract 117.

Allergic asthma is an archetypal type-2 immune-mediated airway disease that typically 

develops in childhood, often consequent to bronchiolitis or wheezing induced by respiratory 

viral (respiratory syncytial virus [RSV], rhinovirus [RV]) or bacterial (Chlamydia, 

Mycoplasma) infections 118-120. It is also exacerbated by these and influenza A virus (IAV) 

infections, which may drive more severe type-1/-17 associated disease 121-123. Polymorphisms 

in IL-33, ST2, ROR and IL-13 are associated with type-2 high asthma and are critical for 

ILC2 development and activation 124. IL-33 and ILC2s are elevated in the airways and blood 

of asthma patients 125, 126, and along with the levels of IL-5 and IL-13, increase with asthma 

severity 126-128. 

The mechanisms of induction of ILC2 responses that drive asthma are beginning to be 

unraveled and involve innate type-2 cytokines and metabolic changes (Figure 1A). ILC2s 

respond to eicosanoids, prostaglandin D2 and leukotrienes produced by mast cells, 

macrophages and eosinophils. Important to asthma pathogenesis, with or without co-

stimulation with IL-25 or IL-33, ILC2s produce IL-4 and IL-13, activate and mobilize DCs and 

their release of Th2-cell recruiting CCL17, present antigen through MHC-II, and drive Th2 

responses including IL-4, IL-5 and IL-13 production that is independent of antigen 129, 130. 

Conversely the pro-resolving mediator lipoxin A4 and E-cadherin (ligand for KLRG1) from 

neutrophils, epithelial cells or M2 macrophages reduce cytokine production by ILC2s 129, 130. 
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Recent studies showed that the expression of the intracellular metabolic factor arginase-1 (Arg-

1) increased in mouse and human ILC2s during acute and chronic lung inflammation 131. This 

occurred through the inhibition of Arg-1 enzyme activity that disrupted numerous ILC2 

metabolic processes including altered arginine catabolism and reduced polyamine biosynthesis 

and aerobic glycolysis 131. Collectively these data show that type-2 immune factors drive ILC2 

development and metabolic factors regulate ILC2 activity that may promote asthma 

development. Furthermore, the roles in other phenotypes of asthma, including severe steroid 

resistant forms, which are often associated with respiratory infections, remain to be resolved 

and could be elucidated using mouse models that recapitulate the hallmark features of the 

human disease as well as human tissues and cells 122, 123, 132. These murine studies are being 

translated into human therapies. To date, treatment with antibodies against IL-33 and TSLP 

suppressed airway inflammation and AHR after allergen challenge, and anti-prostaglandin D2 

(PGD2) receptor (anti-CRTH2 antagonist) improved asthma control and lung function 133, 134 

(Table 2).

ILC2s in Other Chronic Respiratory Diseases

There is a paucity of information on the roles of ILCs in the pathogenesis of other chronic 

respiratory diseases. ILC2 numbers are lower in the lung tissue of severe COPD patients 

compared to mild COPD or healthy controls but the numbers of total CD45+ lymphocytes were 

not altered 13. An important study by Kearley et al., in COPD patients indicated that increased 

IL-33 levels occur that correlated with reduced lung function (FEV1), and its production was 

induced by viral but not Alternaria infection of human bronchoepthelial cells (BECs) 135 

(Figure 1B). In mice, acute or chronic cigarette smoke exposure increased pulmonary IL-33 

expression, viral infection with IAV or RSV but not fungal infection with Alternaria induced 

its release, and administration of rIL-33 exacerbated virus-induced inflammation. These 
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studies also showed that acute smoke exposure reduced IL-5 and -13 responses to rIL-33 as 

well as the numbers of IL-13-expressing ILCs and their production of IL-5 and -13 in response 

to IL-33. Smoke also suppressed ST2 expression on ILC2s whilst increasing expression on 

macrophages and NK cells, and reduced cytokine production by ILC2 and NK cells. The 

absence of IL-33, in IL-33 or ST2-deficient mice or treatment with an ST2 inhibitor, suppressed 

IAV-induced exacerbation of acute cigarette smoke-driven inflammation. Mechanistically they 

showed that IL-33 enhances macrophage and NK responses to IAV following acute smoke 

exposure in wild-type but not ST2-deficient mice, which were supported by ex vivo mouse 

studies. Thus, smoke exposure increases IL-33 expression and infection induces its release 

amplifying type-1 inflammatory responses by promoting macrophage and NK cell function. 

More generally, smoke alters lung immunity to facilitate IL-33 exaggeration of pro-

inflammatory responses to infection that exacerbates the underlying disease 14. The roles of 

ILC2s in the pathogenesis of COPD and infection rather than in acute smoke exposure remain 

to be defined. These roles could be elucidated using mouse models that recapitulate the 

hallmark features of the human disease as well as human tissues and cells 136-138.

In support of the generalizability of these observations to chronic respiratory diseases, 

IPF patients have increased IL-25 expression and ILC2s in their BALF, and IL-33 is 

constitutively or inducibly expressed in lung BECs and macrophages, respectively, in 

bleomycin-induced experimental pulmonary fibrosis 139. Experimentally, Schistosoma 

mansonii-induced granulomas and fibrosis were dependent on IL-25 and -17, and IL-25-

induced fibrosis required ILC2s in wild-type compared to ILC2-deficient (Rorasg/sg) mice 140. 

They extended these findings by showing that ILC2s regulate fibrosis in anti-CD90.2 treated 

T- and B-cell-deficient mice, and that IL-13+ ILC2s regulate collagen deposition in adoptive 

transfer studies in Il13-/- mice. Others showed that combined targeting of TSLP, IL-25 and -33 

suppressed type-2-driven inflammatory and IL-13 producing ILC2 responses, airway 
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remodeling and fibrosis during S. mansonii infection and HDM-induced allergic lung 

inflammation 141. Inhibition of IL-33 activity or depletion of alveolar macrophages decreased, 

whereas treatment with rIL-33 or adoptive transfer of ILC2s increased, inflammation and 

fibrosis. Indeed, IL-33 induced M2 macrophage polarization and expansion of ILC2s with pro-

inflammatory and -fibrotic responses in vitro and in vivo. Thus, IL-33 is pro-inflammatory and 

-fibrotic and initiates and progresses pulmonary fibrosis involving macrophages and ILC2s. 

Other recent studies found elevated levels of IL-9 in airways of cystic fibrosis patients, 

and in mice that IL-9 induces IL-2 production by mast cells that promotes IL-25+ ILC2 and 

Th9 cell proliferation 142. Blocking IL-9 or c-Kit (CD117) prevented these effects. Thus, 

targeting IL-9 may reduce Th9 and ILC2-associated lung inflammation in fibrotic lung 

diseases.

ILC2s in Respiratory Infections

ILC2s have been implicated in both protection against and pathogenesis of parasitic, viral and 

bacterial infections and their exacerbations of chronic respiratory diseases (Figure 1). Their 

involvement in parasitic infections has been extensively reviewed elsewhere 143. Therefore, we 

focus on role of ILC2s in respiratory viral infections.

Rhinovirus

Recent studies have made substantial advances in understanding the role of ILC2s in RV 

infections in early life, which induce mucus hypersecretion and AHR 144. Profiling of responses 

of neonatal (6 day-old) or adult (8 week-old) mice to RV infection over 28 days showed that 

neonatal mice had increased IL-13 production from ILC2s, but reduced IFN- IL-12 and TNF-

 expression compared to adults 144. IL-25 attenuated increases in ILC2s, mucus 

hypersecretion and AHR. They then showed that intranasal administration of recombinant 
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(r)IFN- protein or Ror inhibitors reduced these RV-induced IL-13 and ILC2 responses and 

mucus hypersecretion 145, 146. Treatment of lung ILC2s ex vivo with rIFN- reduced IL-5, IL-

13, IL-17RB, ST2 and GATA3 expression, or with Ror inhibitor blocked the expansion of 

IL-25- or IL-33-induced ILC2s and IL-13 release 146, 147. Infected Rorasg/sg mice had reduced 

expansion of ILC2s, and sorted ILC2s induced an asthma-like phenotype in naïve young or 

adult mice 146. Most recently IL-33 and TSLP were shown to be induced in airway epithelial 

cells by neonatal infection and were required for maximal IL-25 expression, ILC2 

development, mucus hypersecretion and AHR 147. Thus, early-life RV infection induces an 

interplay of IL-25, IL-33 and TSLP-driven type-2 and ILC2 responses that require Ror and 

contribute to mucus hypersecretion, AHR and potentially asthma. In contrast, IFN- inhibits 

ILC2 expansion, IL-13 expression and mucus hypersecretion.

Translational studies have been performed in experimental RV-induced asthma 

exacerbations in human adults 148. Infection increased IL-4, IL-5, IL-13 and IL-33 in asthmatic 

airways that correlated with disease severity compared to healthy controls. IL-33 levels also 

correlated with IL-5 and IL-13 levels. In vitro RV infection of BECs induced IL-33 and culture 

of pBECs, peripheral T-cells or ILC2s with supernatants from RV-infected BECs induced IL-

33-dependent Th2 cytokine release without affecting IL-25, IL-33 or TSLP. This shows that 

RV-induced asthma exacerbations in adults involve the induction of type-2 cytokines including 

IL-33, and that T-cells and ILC2s are mechanistic links. Thus, IL-33 may be a therapeutic 

target in asthma exacerbations.

Respiratory Syncytial Virus

Similar observations have been made with RSV strengthening generalizability. IL-33-induced 

increases in ILC2s play critical roles in the pathogenesis of RSV infection only in early life. 

Increased levels of IL-33 and -13 were detected in nasal secretions of hospitalized infants with 
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RSV that subsided during recovery 95. In mice RSV infection in neonates but not adults induced 

rapid increases in IL-33 expression and ILC2s in the lungs. Suppression of IL-33 responses 

inhibited RSV-induced Th2 inflammation airway eosinophilia, mucus hypersecretion and 

AHR with opposite effects induced by rIL-33 administration. Others investigated the 

mechanisms involved and showed that RSV infection in wild-type mice increased IL-13, IL-

33 and TSLP levels and the numbers of IL-13 producing ILC2s 149. Deletion of TSLP reduced 

IL-13 levels, IL-13-producing ILC2s, mucus hypersecretion, AHR and weight loss without 

affecting viral load. They also showed that RSV-induced STAT1 responses were required for 

the control of immunopathologic IL-5+ and -13+ ILC2s. Both intrinsic and extrinsic factors 

caused this dysfunction with extrinsic IL-33 promoting ILC2s. These studies show that IL-33 

and TSLP are required to induce IL-13+ ILC2s and Th2-associated disease during neonatal 

RSV infection, and that STAT1 opposes these effects. Thus, again IL-33 and TSLP may be 

therapeutic targets.

Influenza A Virus

IAV infection of mice leads to the accumulation of ILC2s in the lungs, and their depletion 

during infection caused the loss of epithelial integrity and impaired lung function and airway 

remodeling 5. These events could be reversed by ILC2-derived amphiregulin. Respiratory viral 

infections typically induce type-1 pro-inflammatory responses though type-2 responses also 

arise in a tissue protective role and may lead to asthma exacerbations. Infection with pandemic 

strains of IAV induces IFN- responses that restricts protective ILC2 function. A recent study 

showed that genetic IFN- deficiency or anti-IFN- treatment during IAV infection did not 

increase ILC2s but enhanced their activity and release of IL-5 and amphiregulin and improved 

tissue protection without affecting viral load or clearance 150. These effects were dependent on 

IL-5 and were not observed in ILC2-deficient mice.
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Asthma and COPD patients are more susceptible to IAV infections that exacerbate the 

underlying disease and ILC2s may be involved. However, the mechanisms involved are poorly 

understood. IAV infection induced AHR independently of T- and B-cells in Rag2-/- mice but 

did require ST2 151. Infection lead to IL-33 production in alveolar macrophages and increased 

the numbers of ILCs, which did not occur in Il13-/- or Rag2-/- mice or with anti-CD90.2 

treatment. Others showed that IAV infections in mice also induced robust but transient IL-5 

production from infiltrating c-kit+ ST2+ ILC2s and concomitant eosinophil influx into the 

airways, particularly during recovery 152. The effects were abrogated with anti-CD90.2 

treatment. In these studies, NKT cells and alveolar macrophages were the sources of IL-33. A 

follow up study found increased ILC1s in COPD patients that were associated with disease 

severity and exacerbation susceptibility 14. Experimentally they showed that ILC2s can also be 

plastic and during IAV infection. They developed ILC1 characteristics with reduced GATA-3 

expression and produced IFN- IL-12 and -18. These ILC1s reinforced T-bet dependent virus-

induced inflammation. Translating their findings, they showed that IL-12 converted human 

ILC2s into ILC1s.

Thus, ILC2s are crucial in restoring the airway epithelium after IAV infection, but IFN-

 restricts their function promoting pathogenesis. Consequently, increasing ILC2 activity is a 

potential therapeutic strategy. In exacerbations of chronic respiratory diseases IAV-induces 

AHR through an IL-13/-33/ILC2 axis, and interactions between ILC2s and IL-33 producing 

NKT cells and alveolar macrophages leads to high levels of IL-5 production by ILC2s and 

eosinophilopoiesis during recovery from IAV infection that may exacerbate asthma. In 

contrast, ILC2 plasticity toward ILC1s exacerbates virus-induced inflammation that may have 

adverse consequences in COPD. Thus, early IL-13 or -33 and/or later anti-IL-5 treatment may 

be beneficial in asthma but maintaining ILC2 function may be protective in COPD.
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CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Despite the recent explosion of studies, particularly using ‘omics technologies, investigating 

the biology of ILC2s in multiple contexts, namely in the respiratory tract, there are still many 

unanswered questions. These include, a consensus for consistency in identifying and reporting 

of ILC2s to limit issues with reproducibility in the identification and isolation of ILC2s in both 

mice and humans, clarifying their roles in different disease states, and defining the potential 

strategies for therapeutic manipulation. There are emerging anti-inflammatory roles for ILC2s 

that interact with Tregs that need to be defined. Numerous influencers of ILC2 function are 

being identified including novel roles for circadian rhythm, sex hormones, age, and 

neurotransmitters. ILC2s have important roles in chronic lung diseases such as asthma, COPD 

and infection that are only just beginning to be unraveled. They may promote the development 

of asthma and be involved in pulmonary fibrosis, but their numbers and function are reduced 

in COPD. ILC2s may also have pathogenic roles in RV and RSV infections, particularly in 

early life, but may be critical for tissue restoration after IAV infection. Their profiles and roles 

in disease states may be further defined using single cell sequencing. ILC2s may both modulate 

and be modulated by microbiota in the lung and gut and have local and systemic effects that 

differentially affect chronic respiratory diseases and infections. This may be dependent on host 

genetics and consequently susceptibility to infection. Fully elucidating the roles of ILC2s in 

development and disease and the generation of new ways to specifically modulate them has 

the potential to substantially impact the ways that these issues are prevented and treated. 
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Figure 1. ILCs in respiratory diseases

A. In asthma ILC2 development and activity is driven by eicosanoids, prostaglandin D2 

(PGD2) and leukotrienes from mast cells, macrophages and eosinophils, as well as innate type-

2 cytokines IL-33, -25, TSLP and neuromedin U (NMU). This is accompanied by increases in 

ILC2 markers such as Arginagse-1 and the neuropeptide receptor Nmur1. Activated ILC2s 

release IL-5 and -13 that activate DCs and Th2 cells to reinforce type-2 immunity and asthma 

pathogenesis by inducing eosinophilic airway inflammation, mucus hypersecretion, airway 

remodeling and airway hyperresponsiveness (AHR, wheezing). These responses are opposed 

by lipoxin A4 and E-cadherin actions released from neutrophils, epithelial cells and 

macrophages, and by increases in type I IFNs, IFN- and IL-27 that are induced by typical viral 

infections. B. In COPD cigarette smoke and likely air pollution induce the increased expression 

of IL-33 that is released upon viral infection and exacerbates the underlying disease. However, 

acute smoke exposure reduces IL-5 and -13 responses and ST2 expression on ILC2s. ST2 

inhibition suppresses virus-induced exacerbation of acute cigarette smoke-driven 

inflammation, IL-33 enhances macrophage and NK cell killing of virus, and ILC2s and IL-33 

promote airway fibrosis. C. Helminth infections induce granulomas and fibrosis that are 

dependent on IL-33, -25, TSLP, IL-17 and IL-13+ ILC2s. Combined targeting of IL-33, -25 

and TSLP suppressed type-2 driven inflammation, IL-13+ ILC2s, airway remodelling and 

fibrosis. IL-5+ and IL13+ ILC2s induce macrophage, eosinophil and mucus activity that 

destroy and clear helmniths but eosinophils promote fibrosis and allergy. D. In early life, 

rhinovirus (RV) and respiratory syncytial virus (RSV) induce IL-33, -25, TSLP and IL-13+ 

ILC2s, airway eosinophilia, mucus hypersecretion and AHR and predispose to the 

development of asthma. IFN-  suppresses ILC2s, but infection reduces IFN-, IL-12 and TNF 

expression. E. Asthma and COPD patients are more susceptible to bacterial and viral infections 

such as with influenza A virus (IAV), which induce the accumulation of ILC2s in the lung that 
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are tissue protective. They also typically induce type-1 responses that restrict ILC2s but also 

type-2 responses that are responsible for tissue protection but IL-13 and -33 contribute to 

asthma exacerbations. IAV infection induces AHR independently of Th2 cells in an IL-13/-

33/ST2/ILC2-mediated axis. IAV infection induces IL-33 production from alveolar 

macrophages and NKT cells that increase ILC2s, and causes transient IL-5 production, and the 

influx of c-kit+ ST2+ ILC2s and associated eosinophils that exacerbate asthma. In COPD 

ILC2s are plastic and upon IAV infection acquire an ILC1 phenotype, with reduced GATA-3 

expression and produce IFN-, IL-12 and -18. These cells reinforce virus-induced 

inflammation and exacerbations.
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Table 1: Tools to explore ILC2 function

Location Cell surface 

markers

Stimuli Gene expression or 

reporter

Lung and 

gut, skin, 

lymph 

nodes, bone 

marrow

Lin-, CD25, 

CD69, CD90 

(Thy1), CD127, 

T1/ST2 (IL-

33R), ICOS, 

KLRG1, Sca-1, 

IL-17BR (IL-

25R)

CD117 (c-Kit)

IL-2

IL-7

IL-25

IL-33

TSLP

Rora, Gata3, 

Il-4 reporter

Il-5 reporter

Il-9 reporter

Il-13 reporter

Engineered mice targeting ILC2

Mouse line Deleted cells References

Rorasg/fl 

Il7RCre

ILC2 153

Rorasg/sg Stagger mouse, 

deficient in 

Rora 

Rora 

required for 

ILC2 

development

2

inducible 

ICOS-

diphtheria 

toxin 

Temporal 

deletion of 

ILC2 with 

diphtheria 

toxoid

153
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receptor 

(iCOS-T) 

RAG-

deficient 

R5/R5 

deleter

IL-5 reporter 

allele 

(tdTomato) for 

identification of 

ILC2s in adult 

mice

72 154

RAG-

deficient

Deletion of T 

and B 

lymphocytes

CD90.2 

antibody 

mediate 

deletion of 

ILCs

5

Tcf7-/- Deletion of Tcf7 

in entire 

hemaotopoietic 

compartment

Tcf7 

required for 

ILC2 

generation

27

26

Bcl11b-/- 

and 

Bcl11bfl/fl 

ERT2Cre

Global Bcl11b 

deficiency or 

temporal 

deletion with 

tamoxifen

Bcl11b 

required for 

ILC2 

development

155
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Table 2: Potential ILC2 targets as novel therapies for chronic lung diseases

Class of target 
molecule

Drug Key results References

Molecules that 
activate ILC2s
IL-25/IL-25R Anti-IL-25 and anti-IL-

25R
Pre-clinical. Inhibition of inflammation and 
airway hyperresponsiveness in experimental 
models of lung inflammation

156-158

IL-33/IL-33R 
(ST2)

Anti-ST2 antibody
GSK3772847
RG6149/AMG282) 

Anti-IL-33 
ANB020

Antibodies that inhibit IL-33 signaling are in 
clinical development

159

TSLP/TSLPR anti-TSLP
Tezepelumab

Administration reduced lung inflammation 
and airways bronchoconstriction in mild 
asthma, and lowered rates of asthma 
exacerbations in patients with uncontrolled 
asthma

133, 160

IL-9/IL-9R Anti-IL-9 and anti-IL-9R
MEDI-528

Humanized IL-9 antagonist that inhibits 
features of asthma in pre-clinical 
experimental models. No available data in 
humans

161

CRTH2 antagonists 
OC000459 (Timapiprant)
BI 671800 
AZD1981
Fevipiprant

Compounds have entered clinical trials. 
Notably, Fevipiprant treatment of patients on 
inhaled corticosteroids improved Forced 
Expiratory Volume and reduced sputum 
eosinophilia

162-165Prostaglandin 
pathway

Anti-huCRTH2 antibody Pre-clinical humanized anti-huCRTH2 
antibody causes depletion of CRTH2-
expressing cells

166

Leukotriene 
pathway

Montelukast and 
Zafirlukast are cysteinyl 
leukotriene receptor 
antagonists

ILC2 expression of type-2 cytokines is 
partially inhibited by Montelukast in vitro

167, 168

Arginase 2(S)-amino-6-
boronohexonic acid 
(ABH) or S-(2-
boronoethyl)-L-cysteine 
(BEC)

Efficacy in pre-clinical experimental asthma 
models. Arginase inhibitors are in clinical 
trials as a cancer therapeutics. 

169-172

Transcription 
factors
GATA3 Antisense DNAzyme 

molecule (SB010) that 
cleaves GATA3 mRNA

Administration of SB010 in a small clinical 
trial resulted in improved lung function and 
reduced eosinophilia following allergen 
provocation

173-175

ILC2-derived 
cytokines
IL-4 Anti-IL-4 receptor alpha 

(IL-4R) antibody
The anti-IL-4 receptor alpha (IL-4R) 
antibody (Dupilumab) that inhibits signaling 

176, 177
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Dupilumab by both IL-4 and IL-13 has proven 
efficacious in patients with asthma and atopic 
dermatitis

IL-5 Anti-IL-5 antibody
Mepolizumab

Has proven beneficial in the treatment of 
people with uncontrolled severe eosinophilic 
asthma

178-181

IL-13 Anti-IL-13 antibody 
Lebrikizumab 
Tralokinumab

Limited improvements in lung function in 
periostin-high and eosinophilic patients, but 
failed to reduce asthma exacerbations

182, 183
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A. In asthma ILC2 development and activity is driven by eicosanoids, prostaglandin D2 (PGD2) and 
leukotrienes from mast cells, macrophages and eosinophils, as well as innate type-2 cytokines IL-33, -25, 

TSLP and neuromedin U (NMU). This is accompanied by increases in ILC2 markers such as Arginagse-1 and 
the neuropeptide receptor Nmur1. Activated ILC2s release IL-5 and -13 that activate DCs and Th2 cells to 
reinforce type-2 immunity and asthma pathogenesis by inducing eosinophilic airway inflammation, mucus 
hypersecretion, airway remodeling and airway hyperresponsiveness (AHR, wheezing). These responses are 
opposed by lipoxin A4 and E-cadherin actions released from neutrophils, epithelial cells and macrophages, 
and by increases in type I IFNs, IFN-γ and IL-27 that are induced by typical viral infections. B. In COPD 

cigarette smoke and likely air pollution induce the increased expression of IL-33 that is released upon viral 
infection and exacerbates the underlying disease. However, acute smoke exposure reduces IL-5 and -13 
responses and ST2 expression on ILC2s. ST2 inhibition suppresses virus-induced exacerbation of acute 

cigarette smoke-driven inflammation, IL-33 enhances macrophage and NK cell killing of virus, and ILC2s and 
IL-33 promote airway fibrosis. C. Helminth infections induce granulomas and fibrosis that are dependent on 
IL-33, -25, TSLP, IL-17 and IL-13+ ILC2s. Combined targeting of IL-33, -25 and TSLP suppressed type-2 
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driven inflammation, IL-13+ ILC2s, airway remodelling and fibrosis. IL-5+ and IL13+ ILC2s induce 
macrophage, eosinophil and mucus activity that destroy and clear helmniths but eosinophils promote fibrosis 

and allergy. D. In early life, rhinovirus (RV) and respiratory syncytial virus (RSV) induce IL-33, -25, TSLP 
and IL-13+ ILC2s, airway eosinophilia, mucus hypersecretion and AHR and predispose to the development 
of asthma. IFN-γ  suppresses ILC2s, but infection reduces IFN-γ, IL-12 and TNF expression. E. Asthma and 

COPD patients are more susceptible to bacterial and viral infections such as with influenza A virus (IAV), 
which induce the accumulation of ILC2s in the lung that are tissue protective. They also typically induce 

type-1 responses that restrict ILC2s but also type-2 responses that are responsible for tissue protection but 
IL-13 and -33 contribute to asthma exacerbations. IAV infection induces AHR independently of Th2 cells in 
an IL-13/-33/ST2/ILC2-mediated axis. IAV infection induces IL-33 production from alveolar macrophages 

and NKT cells that increase ILC2s, and causes transient IL-5 production, and the influx of c-kit+ ST2+ ILC2s 
and associated eosinophils that exacerbate asthma. In COPD ILC2s are plastic and upon IAV infection 

acquire an ILC1 phenotype, with reduced GATA-3 expression and produce IFN-γ, IL-12 and -18. These cells 
reinforce virus-induced inflammation and exacerbations. 
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