
 

 

 

Abstract—This paper proposes a coordinated strategy of a 

hybrid power plant (HPP) which includes a wind power 

aggregator (WPA) and a commercial compressed air energy 

storage (CAES) aggregator to participate in three electricity 

markets (day-ahead, intraday and balancing markets). The 

CAES aggregator has an extra ability which is called a simple-

cycle mode operation which makes it works like a gas turbine 

when is needed which helps the HPP to economically handle the 

miscalculations of the wind power and electricity price 

predictions. The coordinated strategy of the HPP is formulated as 

a three-stage stochastic optimization problem. To control the 

financial risks, the conditional value-at-risk model is added to the 

optimization problem. Moreover, the proposed offering method 

is capable of submitting both bidding quantity and curves to the 

day-ahead market. A mixed integer linear programming 

formulation is written for the problem which can be easily solved 

by commercially available software such as GAMS. The results 

which were tested on a realistic-based case study located in Spain 

show the applicability of the suggested method to increase the 

joint operation profit, and decrease the financial risks. 

 

Index Terms— Hybrid power plant (HPP), Wind power 

aggregator (WPA), Compressed air energy storage (CAES), 

Mixed integer linear programming, Financial risks, Stochastic 

optimization problem. 

NOMENCLATURE 

A. Definitions 

CVaR Conditional Value-at-Risk 

WPA Wind Power Aggregator 

CAES Compressed Air Energy Storage 

HPP Hybrid Power Plant 
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B. Indices 

1) Sets 

𝑠 Index of scenario. 

t Index of time. 

𝑤 Index of wind power generation scenario. 

𝑑 Index of day-ahead market price scenario. 

𝑖 Index of intraday market price scenario. 

𝑏 Index of balancing market price scenario. 

2) Superscripts 

𝐶ℎ𝑎 Index for charge mode of CAES. 

𝐷𝐴 Index for offered power to day-ahead market. 

𝐷𝑖𝑠 Index for discharge mode of CAES. 

𝐼𝑁 Index for offered power to intraday market. 

𝐼𝑁𝑇 Index for initial value. 

𝑅𝑒 Index for real power for generating system. 

𝑆𝐶 Index for scheduled power for generating system. 

𝑆𝑖𝑚 Index for simple-cycle mode of CAES. 

C. Constants 

𝑁𝑠 Total number of scenarios. 

𝑁𝑇 Total period of time. 

𝜋𝑠 Probability of occurrence of scenario s. 

𝜌 Price of energy in electricity market. 

𝜂+/− Positive/negative imbalance price ratio. 

𝜁 Risk-aversion factor. 

𝜎 Confidence level with 𝜎 ∈ (0,1). 

𝑃𝑤𝑀𝑎𝑥 Maximum capacity of WPA.  

𝑃𝑐𝐸𝑥𝑝/𝐶𝑜𝑚
𝑀𝑎𝑥  

Maximum expanding/compressing capacity of 

CAES. 

Λ A bounding factor for biddings to intraday market 

𝐸𝑟 CAES energy ratio for converting power to 

energy in cavern. 

𝐸𝑐𝑀𝑎𝑥/𝑀𝑖𝑛  Maximum/minimum schedulable level of energy 

in CAES cavern. 

𝐻𝑐 CEAS heat rate in one of operating modes. 

NG Natural gas price. 

D. Variables 

𝑃ℎ Power produced by HPP.  

𝑃𝑤 Power produced by WPA.  

𝑃𝑐 Power produced by CAES.  
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𝜀ℎ+/− 

Positive/negative deviations of the generating 

power of HPP from the scheduled power.  

 

𝜀ℎ Total deviation of HPP power from the scheduled 

power.  

𝜀𝑤+/− Positive/negative deviation of WPA power from 

the scheduled power.  

𝜀𝑤 Total deviation of WPA power from the 
scheduled power.  

𝑂𝐶𝑡,𝑠 Total operational cost of CAES.  

𝜃 Supplementary variable to calculate CVaR. 

𝜑𝑠 Continious non-negative variable to calculate 
CVaR. 

𝑈𝑐 Binary variable to show ON/OFF operating status 
of CAES.  

𝐸𝑐 Scheduled energy level of the CAES. 

𝑉𝑐𝐸𝑥𝑝/𝐶𝑜𝑚  
CAES variable operation and maintenance cost 
for expanding/compressing modes. 

I. INTRODUCTION 

UE to the stochastic nature of the wind power input, it is 

generally very challenging for wind power aggregators 

(WPAs) to participate in electricity markets such as day-ahead 

and intra-day markets in a determined way and also to equally 

compete with non-renewable deterministic conventional 

power producers. Consequently, it is vital for WPAs to find 

new strategies to overcome these problems.  

Currently, there is a significant amount of attention to 

energy storage systems mainly commercial compressed air 

energy storage (CAES) which is a developed technology with 

the ability to work as a gas turbine when is required [1]. 

Commercial CAES facilities can deliver an energy-shifting 

when there is a volatility in electricity market prices. 

Moreover, it is necessary to note that the capability of working 

as a gas turbine which is called simple-cycle mode operation, 

makes the CAES facilities to be different from other types of 

energy storages such as batteries or normal CAES itself.  

CAES with simple-cycle mode operation can follow the 

everyday scheduling in a more enhanced way and exploit price 

spikes when is more desirable [2].  

A. Literature Review and Approach 

Recently, numerous studies focus on self-scheduling 

approaches for CAES facilities and aggregators and analyze 

the energy trading in different types of electricity markets to 

maximize their profit [3]. For instance, a co-optimized CAES 

model to clarify the importance of providing operating 

reserves and energy arbitrage in diverse electricity markets 

located in the united states is presented in [4]. Ref. [2] offers a 

risk-constrained bidding strategy for a commercial CAES 

aggregator that participates in a day-ahead (DA) market. The 

CAES used in this study has an additional facility called 

simple-cycle mode which works as an extra gas turbine. 

On the other hand, many studies concentrate on the best 

offering strategies for WPAs to contribute in different types of 

electricity markets [5]. For example, in [6], a method is 

suggested to advance an offering strategy for a WPA 

participating in different electricity markets considering the 

uncertainties of the wind power and electricity market prices. 

Ref. [7] offers a strategy for a WPA to participate in a DA 

market by considering the WPA as a price-maker producer. 

Ref. [8] also offers a strategy for a WPA as a price-taker 

producer in a DA market, but as a price-maker producer in the 

real time (balancing) market. Ref. [9] presents a new model 

considering the uncertainties of the wind power and loads for 

corrective voltage control to handle the condition when power 

systems have voltage instability because of an unexpected 

failure and contingencies. 

Besides, a variety of studies offer strategies for WPAs in 

conjunction with other types of aggregators [10-12]. For 

example, Ref. [13] analyses the combined operation of a 

pumped-storage unit and a WPA. The uncertainties included 

in this study are the wind power and market prices fluctuations. 

In this regard, a very similar study is done in [4] which  

evaluates the impact of wind power uncertainties in a joint 

operation with a pumped-hydro aggregator. Ref. [14] offers a 

bidding strategy for a hydro aggregator and a WPA to 

contribute in a DA market. In this study, in order to control the 

financial risk, the conditional value-at-risk (CVaR) is added to 

the model. Ref. [15] assesses two separate models comprising 

of joint operation of a WPA and a gas turbine aggregator, as 

well as a WPA and a CAES aggregator. An offering strategy 

for a WPA along with a flexible load (demand response 

provider) is provided in [16] which helps the WPA to handle 

the wind uncertainties. With the intention of minimizing the 

operational cost and imbalance payments due to the wind 

power imbalances, an offering strategy for controlling critical 

peak pricing events is assessed in [17]. The strategy is done 

from the viewpoint of a demand response aggregator which 

owns a wind facility. Ref. [18] provides a bidding strategy for 

a WPA and a demand response provider to contribute in 

intraday market along with DA and balancing markets. 

B. Contribution 

This paper proposes a framework in which a WPA can 

compensate its deviation between the actual and forecasted 

value of wind generation by the coordinated operation with a 

commercial CAES aggregator in the form of an HPP. As can 

be seen from Fig. 1, HPP gathers information from the WPA 

and CAES, and takes part in DA, intraday and balancing 

markets. The uncertainties of the WPA production and the 

three mentioned market prices are stochastically considered 

using the stochastic programming method. To find the best 

bidding strategy which also controls the financial risk, the 

CVaR is added to the stochastic programming model. Note 

that this paper is an extended version of a conference paper 

presented on Australasian Universities Power Engineering 

Conference (AUPEC), 2017 [19].  

The contributions of the paper are given as follows: 

 To model a CAES which is equipped with a simple-cycle 

mode of operation and thus able  to work like a gas 

turbine. 

 To develop a risk-constrained optimal offering strategy 
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model for a HPP consisting of a CAES aggregator and a 

WPA so as to maximize their expected profit and also to 

mitigate wind power uncertainties in DA, intraday and 

balancing markets. 

 
Fig. 1. Diagram illustration of three configurations 

C. Paper Organization 

The rest of the paper is organized as follows: Section II 

provides the problem formulation of three configurations 

including CAES aggregator, WPA, and HPP. Section IV 

discusses the case study and provides the results. Finally, 

Section V concludes the paper. 

II. PROBLEM FORMULATION 

A. CAES Aggregator Modeling 

In this section, a bidding strategy for a CAES aggregator to 

participate in the electricity markets is modeled as a stochastic 

optimization problem, in which the goal is to maximize the 

profit which includes the total profits of the CAES aggregator 

from the electricity markets minus its operational costs. From 

the reliability point of view, CAES has very highly reliable 

performance and output in comparison with other producers 

like WPA [2]. Therefore, there is no need for CAES 

aggregator to participate in the balancing market. In this case, 

two electricity markets including DA and intraday are 

considered in this paper for the modeling of CAES aggregator. 

About the two mentioned electricity markets, the CAES 

operational cost and considering the CVaR to control the 

financial risks, the objective function of the optimization 

problem can be written as follows: 

Max𝛩𝑐𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃 [𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝐶𝐴𝐸𝑆 ]

= ∑ ∑ 𝜋𝑠[𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑐𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 . 𝑃𝑐𝑡,𝑠

𝐼𝑁

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

− 𝑂𝐶𝑡,𝑠]  +  𝜁 (𝜃 −
1

(1 − 𝜎)
∑ 𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

) 

(1) 

where 𝛩𝑐𝑡,𝑠 = { 𝑃𝑐𝑡,𝑠
𝐷𝐴,   𝑃𝑐𝑡,𝑠

𝐼𝑁,   𝑃𝑐𝑡,𝑠
𝑆𝐶 , 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠 ,  𝑃𝑐𝑡,𝑠
𝑆𝐶,𝑆𝑖𝑚, 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐶ℎ𝑎 

, 𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠,   𝑈𝑐𝑡,𝑠

𝑆𝐶,𝑆𝑖𝑚,   𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎,   𝐸𝑐𝑡,𝑠

𝑆𝐶 ,     ∀𝑡, ∀𝑠 } are the variables 

of the CAES aggregator optimization problem. The objective 

function has two general terms including the expected profit of 

CAES aggregator, which is the difference between its revenue 

and operating cost, and the CVaR (i.e., multiplied by the risk- 

 
Fig. 2. the CVaR to control the financial risks 

aversion factor 𝜁). The revenue/cost of CAES aggregator is 

obtained from selling energy in DA and intraday markets; 

while its costs is sum of the purchased energy to charge the air 

cavern plus variable costs of simple-cycle mode. The terms 

𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑐𝑡,𝑠

𝐷𝐴  and 𝜌𝑡,𝑠
𝐼𝑁. 𝑃𝑐𝑡,𝑠

𝐼𝑁  express the revenue/cost from the 

selling/purchasing of energy in CAES in DA and intraday 

markets, respectively. The term 𝑂𝐶𝑡,𝑠 in the objective function 

is related to the CAES operational cost which is computed 

according to the different CAES operating modes (charging, 

discharging and simple-cycle modes) and their amount of 

power. The last term is for modeling of the CVaR, and it is 

multiplied by 𝜁 which has the values between 0 and 1, and the 

value 0 represents financial risk is not considered while 1 fully 

considers the financial risk. The CVaR signifies the expected 

profit of the (1 − 𝜎) × 100 percent of scenarios yielding the 

lowest profits, and it is used to regulate the risk due to profit 

variability confronted by the CAES aggregator. Noteworthy, 

as shown in Fig. 2, (1 − 𝜎) regulates the area of the profit 

distribution function covering the least profitable scenarios. 

Note that 𝜃  is an auxiliary variable, and its value is 

simultaneously optimized along with variables 𝛩𝑐𝑡,𝑠  and 𝜑𝑠 , 

where 𝜑𝑠  is a continuous non-negative variable equal to the 

maximum of 𝜃 − ∑ [𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑐𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 𝑃𝑐𝑡,𝑠

𝐼𝑁 − 𝑂𝐶𝑡,𝑠]
𝑁𝑇
𝑡=1  and 0. 

More information about CVaR modeling is provided in [20, 

21].  

The objective function defined in (1) is subject to the 

following constraints [2]: 

−𝑃𝑐𝐶𝑜𝑚
𝑀𝑎𝑥 ≤ 𝑃𝑐𝑡,𝑠

𝛽
≤ 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥      ∀𝑡, 𝑠,     𝛽 = 𝐷𝐴, 𝑆𝐶 (2) 

−Λ. 𝑃𝑐𝐶𝑜𝑚
𝑀𝑎𝑥 ≤ 𝑃𝑐𝑡,𝑠

𝐼𝑁 ≤ Λ. 𝑃𝑐𝐸𝑥𝑝
𝑀𝑎𝑥      ∀𝑡, ∀𝑠 (3) 

𝑃𝑐𝑡,𝑠
𝑆𝐶  = 𝑃𝑐𝑡,𝑠

𝐷𝐴+𝑃𝑐𝑡,𝑠
𝐼𝑁    ∀𝑡, ∀𝑠 (4) 

𝑃𝑐𝑡,𝑠
𝑆𝐶 = 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠 + 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝑆𝑖𝑚 − 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐶ℎ𝑎     ∀𝑡, 𝑠 (5) 

0 ≤ 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝜛 ≤ 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥 . Uct,s
SC,𝜛 ∀t, s,   ϖ = 𝐷𝑖𝑠, 𝑆𝑖𝑚, 𝐶ℎ𝑎  (6) 

𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠 + 𝑈𝑐𝑡,𝑠

𝑆𝐶,𝑆𝑖𝑚 + 𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎 ≤ 1  ∀𝑡, 𝑠 (7) 

𝐸𝑐𝑡,𝑠
𝑆𝐶 = 𝐸𝑐𝑡−1,𝑠

𝑆𝐶 + 𝐸𝑟(𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎 − 𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠)    ∀𝑡

> 1, ∀𝑠 
(8) 

𝐸𝑐𝑡,𝑠
𝑆𝐶 = 𝐸𝑐𝐼𝑁𝑇    𝑡 = 1, ∀𝑠 (9) 

𝐸𝑐𝑀𝑖𝑛 ≤ 𝐸𝑐𝑡,𝑠
𝑆𝐶 ≤ 𝐸𝑐𝑀𝑎𝑥      ∀𝑡, 𝑠 (10) 



 

 

𝑂𝐶𝑡,𝑠 = 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠(𝐻𝑐𝐷𝑖𝑠 . 𝑁𝐺 + 𝑉𝑐𝐸𝑥𝑝)

+ 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝑆𝑖𝑚(𝐻𝑐𝑆𝑖𝑚 . 𝑁𝐺 + 𝑉𝑐𝐸𝑥𝑝

+ 𝑉𝑐𝐶𝑜𝑚)

+ 𝑃𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎𝑉𝑐𝐶𝑜𝑚      ∀𝑡, 𝑠 (11) 

− ∑[𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑐𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 𝑃𝑐𝑡,𝑠

𝐼𝑁 − 𝑂𝐶𝑡,𝑠]

𝑁𝑇

𝑡=1

+  𝜃 − 𝜑𝑠

≤ 0     ∀𝑠 

(12) 

𝜑𝑠 ≥ 0     ∀𝑠 (13) 

(𝑃𝑐𝑡,𝑠
𝐷𝐴 − 𝑃𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 −  𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, 𝑠, 𝑠 , (14) 

𝑃𝑐𝑡,𝑠
𝐷𝐴 = 𝑃𝑐𝑡,𝑠,

𝐷𝐴      ∀𝑡, 𝑠, 𝑠 ,   ∶  𝜌𝑡,𝑠
𝐷𝐴 =  𝜌𝑡,𝑠,

𝐷𝐴 (15) 

where (2) limits the offering CAES power to the DA market 

and its scheduled power, respectively. Note that both of 𝑃𝑐𝑡,𝑠
𝐷𝐴 

and 𝑃𝑐𝑡,𝑠
𝑆𝐶  in (2) can in each hour has positive or negative 

power values which means that the CAES aggregator has the 

capability of either buying or selling energy in each hours of 

the day. The amount of CAES aggregator power to participate 

in the intraday market is also limited to Λ  multiply by its 

participation capacity to the DA market as formulated in (3). 

In other words, according to (3), CAES is not allowed to use 

its full capacity to participate in the intraday market even it is 

more economical [20]. The total scheduled CAES power 

which is based on the summation of  CAES bidding powers to 

DA and intraday electricity markets is expressed in (4). 

Equation (5) shows that the CAES scheduled power is 

restricted by three mentioned CAES working modes (i.e. 

discharging, simple-cycle or charging modes). The restrictions 

of CAES power in these modes are formulated in (6). It is 

worthwhile to mention that at each period of time and scenario, 

the CAES can only work in one of the charging, discharging, 

or simple-cycle modes. This limitation can be precisely 

specified in (7). The scheduled CAES energy level which is 

also called the state-transition equation is expressed in (8) and 

also the initial value of this energy is limited by (9). This 

energy is also restricted by the capacity of CAES cavern as 

mathematically formulated in (10). Equation (11) formulates 

the operational cost of CAES which is used in the objective 

function (1). The CAES operational cost is computed 

according to the different CAES operating modes (charging, 

discharging and simple-cycle modes) and their amount of 

power. In order to calculate and control the functional risk, 

(12) and (13) are required for the model.  

The stochastic programming  model (1)–(13) can be solved 

to attain the optimal quantities to be submitted in the day-

ahead market. However, it is more appropriate to develop 

optimal offering curves for every hour of this market. For this 

purpose, variable 𝑃𝑐𝑡
𝐷𝐴, which are the power traded in the day-

ahead market for each time period t, is considered to be 

dependent on scenarios (𝑃𝑐𝑡
𝐷𝐴  → 𝑃𝑐𝑡,𝑠

𝐷𝐴 ) and the constraints 

(14) and (15) are added to model (1)–(13). Constraints (14) 

make offering curves non-decreasing which is an obligation in 

most electricity markets. Equations (15) are non-anticipativity 

constraints, which enforce the idea that only one offering 

curve can be submitted to the day-ahead market regardless of 

the imbalance price and actual wind power generation. Note 

that the bidding strategy model remains decomposable at each 

time period even constraints (14) and (15) are included. 

B. WPA Modeling 

 In this section, the bidding strategy of the WPA is 

formulated for profit maximization. Three electricity markets 

including DA, intraday and balancing markets are considered 

in this model, as shown in Fig. 3 [22]. Note that, as it can be 

seen in Fig. 3, the intraday market remains two and a half 

hours before the balancing market. With regard to the three  

 
Fig. 3. Three electricity markets framework 

mentioned electricity markets and considering the CVaR to 

control the financial risks, the objective function of the 

optimization problem can be written as (16) [22]. 

Max𝛩𝑤𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃 [𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝑊𝑃𝐴 ]

= ∑ ∑ 𝜋𝑠[𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑤𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁. 𝑃𝑤𝑡,𝑠

𝐼𝑁

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

+  𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀𝑤𝑡,𝑠
+ − 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
− . 𝜀𝑤𝑡,𝑠

− ]  

+   𝜁 (𝜃 −
1

(1 − 𝜎)
∑ 𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

) 

(16) 

where 𝛩𝑤𝑡,𝑠 = { 𝑃𝑤𝑡,𝑠
𝐷𝐴,  𝑃𝑤𝑡,𝑠

𝐼𝑁 ,  𝑃𝑤𝑡,𝑠
𝑆𝐶 , 𝜀𝑤𝑡,𝑠

+ ,  𝜀𝑤𝑡,𝑠
− ,       ∀𝑡, 𝑠} 

are the variables related to the WPA optimization problem. 

The objective function is composed of the expected profit of 

WPA, and the CVaR which is multiplied by the risk-aversion 

factor ζ. The total revenue/cost of WPA comes from the 

following: firstly, selling energy in the DA market; secondly, 

selling/purchasing energy in the intraday market and thirdly, 

the revenue/cost of participation in the balancing market due 

to positive/negative scheduling deviations from the actual 

generated power of producer. In (16), the terms 𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑤𝑡,𝑠

𝐷𝐴 

and 𝜌𝑡,𝑠
𝐼𝑁 . 𝑃𝑤𝑡,𝑠

𝐼𝑁  state the revenue from DA market and 

revenue/cost from intraday market, respectively; while the 

terms  𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀𝑤𝑡,𝑠
+ and 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
− . 𝜀𝑤𝑡,𝑠

−  indicate the 

revenue/cost from the positive/negative energy deviations in 

the balancing market. The last term in (16) is related to 

considering the CVaR to control the financial risks.  

The objective function of profit maximization of WPA in 

(16) is subject to some important constraints as follows [22]: 

0 ≤ 𝑃𝑤𝑡,𝑠
𝛽

≤ 𝑃𝑤𝑀𝑎𝑥      ∀𝑡, 𝑠,    𝛽 = 𝐷𝐴, 𝑆𝐶 (17) 

0 ≤ 𝑃𝑤𝑡,𝑠
𝐼𝑁 ≤ Λ. 𝑃𝑤𝑡,𝑠

𝐷𝐴     ∀𝑡, 𝑠 (18) 

𝑃𝑤𝑡,𝑠
𝑆𝐶 = 𝑃𝑤𝑡,𝑠

𝐷𝐴 + 𝑃𝑤𝑡,𝑠
𝐼𝑁    ∀𝑡, 𝑠 (19) 

where (17) limits the offering power of WPA to the DA 

market and its scheduled power. Note that 𝑃𝑤𝑡,𝑠
𝐷𝐴 and 𝑃𝑤𝑡,𝑠

𝑆𝐶  in 

(17) can only be positive values. In other words, WPA can 



 

 

only sell electricity to the DA market and have positive value 

for its scheduled power. The amount of WPA power to 

participate in the intraday market is also limited just like 

CAES aggregator to Λ multiply by its participation capacity to 

the DA market as formulated in (18). The total scheduled 

powers of WPA is also limited to its participation in DA and 

intraday offers as formulated in (19) [22]. 

𝜀𝑤t,s = 𝑃𝑤𝑡,𝑠
𝑅𝑒 − 𝑃𝑤𝑡,𝑠

𝑆𝐶      ∀𝑡, ∀𝑠 (20) 

𝜀𝑤𝑡,𝑠 = 𝜀𝑤𝑡,𝑠
+ − 𝜀𝑤𝑡,𝑠

−      ∀𝑡, ∀𝑠 (21) 

0 ≤ 𝜀𝑤𝑡,𝑠
+ ≤ 𝑃𝑤𝑡,𝑠

𝑅𝑒      ∀𝑡, ∀𝑠 (22) 

0 ≤ 𝜀𝑤𝑡,𝑠
− ≤ 𝑃𝑤𝑚𝑎𝑥      ∀𝑡, ∀𝑠 (23) 

− ∑[𝜌𝑡,𝑠
𝐷𝐴. 𝑃𝑤𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 . 𝑃𝑤𝑡,𝑠

𝐼𝑁  + 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀𝑤𝑡,𝑠
+

𝑁𝑇

𝑡=1

− 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

− . 𝜀𝑤𝑡,𝑠
− ] +  𝜃 − 𝜑𝑠

≤ 0     ∀𝑠 (24) 

𝜑𝑠 ≥ 0     ∀𝑠 (25) 

(𝑃𝑤𝑡,𝑠
𝐷𝐴 − 𝑃𝑤𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 − 𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, 𝑠, 𝑠 , (26) 

𝑃𝑤𝑡,𝑠
𝐷𝐴 = 𝑃𝑤𝑡,𝑠,

𝐷𝐴     ∀𝑡, 𝑠, 𝑠 ,  ∶  𝜌𝑡,𝑠
𝐷𝐴 =  𝜌𝑡,𝑠,

𝐷𝐴 (27) 

The total negative and positive imbalances according to the 

amount of scheduled and actual wind power productions are 

formulated in (20) to (23). Constraints (24) and (25)  

formulates the required limitations for the CVaR calculation. 

(26) and (27) are used with the aim of offering non-decreasing 

curves to the DA electricity market. 

C. HPP Modeling 

In this section, a bidding strategy for the HPP is modeled to 

achieve the maximum profit of joint operation of CAES 

aggregator and WPA. All three electricity markets used in 

WPA modeling as shown in Fig. 3 are also taken into 

consideration in HPP modeling [22]. Taking into 

consideration the CVaR model, the objective function for the 

participation of HPP in all given electricity markets can be 

written as follows:   

Max𝛩ℎ𝑡,𝑠;𝜑𝑠,∀𝑠;𝜃  [𝒵𝑃𝑟𝑜𝑓𝑖𝑡
𝐻𝑝𝑝

]

= ∑ ∑ 𝜋𝑠[𝜌𝑡,𝑠
𝐷𝐴. 𝑃ℎ𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 . 𝑃ℎ𝑡,𝑠

𝐼𝑁

𝑁𝑇

𝑡=1

𝑁𝑠

𝑠=1

+ 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀ℎ𝑡,𝑠
+ − 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
− . 𝜀ℎ𝑡,𝑠

+

− 𝑂𝐶𝑡,𝑠]  +  ζ (𝜃 −
1

(1 − 𝜎)
∑ 𝜋𝑠𝜑𝑠

𝑁𝑠

𝑠=1

) 

(28) 

where 𝛩ℎ𝑡,𝑠 = {𝑃ℎ𝑡,𝑠
𝐷𝐴, 𝑃ℎ𝑡,𝑠

𝐼𝑁,  𝑃ℎ𝑡,𝑠
𝑆𝐶 ,  𝜀ℎ𝑡,𝑠

+ ,  𝜀ℎ𝑡,𝑠
+ , 𝑃𝑤𝑡,𝑠

𝐷𝐴, 𝑃𝑐𝑡,𝑠
𝐷𝐴,  𝑃𝑤𝑡𝜔

𝐼𝑁 , 

𝑃𝑐𝑡,𝑠
𝐼𝑁, 𝑃𝑤𝑡,𝑠

𝑆𝐶 , 𝑃𝑐𝑡,𝑠
𝑆𝐶𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐷𝑖𝑠,  𝑃𝑐𝑡,𝑠
𝑆𝐶,𝑆𝑖𝑚,   𝑃𝑐𝑡,𝑠

𝑆𝐶,𝐶ℎ𝑎,   𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐷𝑖𝑠,   𝑈𝑐𝑡,𝑠

𝑆𝐶,𝑆𝑖𝑚, 

 𝑈𝑐𝑡,𝑠
𝑆𝐶,𝐶ℎ𝑎,  𝐸𝑐𝑡,𝑠

𝑆𝐶       ∀𝑡, 𝑠}  are the variables related to the HPP 

optimization problem. As it can be seen from (28), two 

general expressions of the objective function are  included the 

expected profit of HPP (i.e. as the result of market transactions 

and operational cost) and the CVaR. The revenue/cost of HPP 

comes from selling/purchasing energy in both of the DA and 

intraday markets as well as the revenue/cost from the 

positive/negative energy deviations in the balancing market. In 

(28), the terms 𝜌𝑡,𝑠
𝐷𝐴. 𝑃ℎ𝑡,𝑠

𝐷𝐴  and 𝜌𝑡,𝑠
𝐼𝑁 . 𝑃ℎ𝑡,𝑠

𝐼𝑁  refer to the 

revenue/cost of HPP from the DA and intraday markets, and 

the terms 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀ℎ𝑡,𝑠
+  and 𝜌𝑡,𝑠

𝐷𝐴. 𝜂𝑡,𝑠
− . 𝜀ℎ𝑡,𝑠

−  indicate the 

revenue/cost from the positive/negative energy deviations in 

the balancing market. The term 𝑂𝐶𝑡,𝑠 in the objective function 

is related to the CAES operational cost which is computed 

according to the different CAES operating modes (charging, 

discharging and simple-cycle modes) and their amount of 

power; see (11). The last term in the HPP modeling objective 

function is for modeling of the CVaR which is multiplied by ζ 

with the values between 0 for not considering the financial 

risk and 1 for fully considering the financial risk.  

The objective function of HPP optimization problem (28) is 

subject to some joint constraints associated with both of the 

WPA and CAES providers, some constraints associated 

specifically with for modeling of CAES aggregator, and some 

only for the WPA model. 

The constraints of HPP associated with the CAES model are 

defined previously in the CAES modeling section; see (2) to 

(11). The constraints of HPP associated specifically with  the 

WPA model are also previously defined in in the WPA 

modeling section; see (17) to (23). 

The joint constraints associated with both of both of the 

WPA and CAES providers to function as an HPP are defined 

as bellow: 

𝑃ℎ𝑡,𝑠
𝛽

= 𝑃𝑤𝑡,𝑠
𝛽

+ 𝑃𝑐𝑡,𝑠
𝛽

     ∀𝑡, 𝑠,   𝛽 = 𝐷𝐴, 𝑆𝐶, 𝐼𝑁 (29) 

𝑃ℎ𝑡,𝑠
𝑆𝐶 = 𝑃ℎ𝑡,𝑠

𝐷𝐴 + 𝑃ℎ𝑡,𝑠
𝐼𝑁      ∀𝑡, 𝑠 (30) 

𝜀ℎ𝑡,𝑠 = 𝑃𝑤𝑡,𝑠
𝑅𝑒 + 𝑃𝑐𝑡,𝑠

𝑅𝑒 − 𝑃ℎ𝑡,𝑠
𝑆𝐶      ∀𝑡, 𝑠 (31) 

𝜀ℎ𝑡,𝑠 = 𝜀ℎ𝑡,𝑠
+ − 𝜀ℎ𝑡,𝑠

−      ∀𝑡, 𝑠 (32) 

0 ≤ 𝜀ℎ𝑡,𝑠
+ ≤ 𝑃𝑤𝑡,𝑠

𝑅𝑒 + 𝑃𝑐𝑡,𝑠
𝑅𝑒      ∀𝑡, 𝑠 (33) 

0 ≤ 𝜀ℎ𝑡,𝑠
− ≤ 𝑃𝑤𝑀𝑎𝑥 + 𝑃𝑐𝐸𝑥𝑝

𝑀𝑎𝑥      ∀𝑡, 𝑠 (34) 

− ∑[𝜌𝑡,𝑠
𝐷𝐴. 𝑃ℎ𝑡,𝑠

𝐷𝐴 + 𝜌𝑡,𝑠
𝐼𝑁 𝑃ℎ𝑡,𝑠

𝐼𝑁 + 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

+ . 𝜀ℎ𝑡,𝑠
+

𝑁𝑇

𝑡=1

− 𝜌𝑡,𝑠
𝐷𝐴. 𝜂𝑡,𝑠

− . 𝜀ℎ𝑡,𝑠
− ] +  𝜃 − 𝜑𝑠 ≤ 0     ∀𝑠 (35) 

𝜑𝑠 ≥ 0     ∀𝑠 (36) 

(𝑃ℎ𝑡,𝑠
𝐷𝐴 − 𝑃ℎ𝑡,𝑠,

𝐷𝐴). (𝜌𝑡,𝑠
𝐷𝐴 −  𝜌𝑡,𝑠,

𝐷𝐴) ≥ 0     ∀𝑡, 𝑠, 𝑠 , (37) 

𝑃ℎ𝑡,𝑠
𝐷A = 𝑃ℎ𝑡,𝑠,

𝐷A     ∀𝑡, 𝑠, 𝑠 ,  ∶   𝜌𝑡,𝑠
𝐷𝐴 =  𝜌𝑡,𝑠,

𝐷𝐴 (38) 

where (29) limits DA and intraday offers and the total 

scheduled power of HPP. The total scheduled power of HPP 

should be equal to its DA and intraday offers which is 

mathematically formulated in (30). The total negative and 

positive imbalances according to the HPP scheduled power 

and the actual wind and CAES powers in the time of balancing 

market are formulated in (31) to (34). As previously 

mentioned, unlike the WPA, the CAES aggregator is very 

reliable and has a deterministic output. For that reason, in this 

paper, it is supposed that the actual CAES powers in the time 

of balancing market are equal to its power that has been 



 

 

scheduled. Similar to WPA and CAES modeling, constraints 

(35) and (36) are formulated for CVaR calculation, and (37) 

and (38) are defined for obtaining the non-decreasing DA 

market offering curves. 

III. WIND GENERATION AND MARKET PRICES  MODELING 

The wind power and market price uncertainties are modeled 

as follows: 𝑁1, 𝑁2, 𝑁3 and 𝑁4 scenarios are generated for wind 

power generation, day-ahead market, intraday market and 

balancing market prices, respectively. These uncertainty 

sources are separated into two categories; 1) wind power 

generation (𝑃𝑤(𝑤) ) and day-ahead market price (𝜌𝐷𝐴(𝑑)) 

scenarios which are independent uncertainty parameters (here-

and-now), 2) the intraday market price (𝜌𝐼𝑁(𝑑, 𝑖)) scenarios 

which are feasible for each possible realization of day-ahead 

market price scenarios. In other words, the intraday market 

price scenarios are generated based on day-ahead market price 

scenarios. Similarly, the balancing market price (𝜂+(𝑏) , 

𝜂−(𝑏)) scenarios are generated based on each possible wind  

 

Fig. 4. Flowchart of stochastic variable modeling process 

power generation and day-ahead market price scenarios. 

Due to a dependency of intraday and balancing market 

prices on wind power generation and day-ahead market price, 

the correlation among these stochastic variables are defined as 

(𝜌𝐷𝐴 − 𝜌𝐼𝑁)  and (𝜂+ + 𝜂− − 1)  for all scenarios. Also, the 

symmetric scenario tree is implemented to construct the 𝑁𝑆 =
𝑁1 × 𝑁2 × 𝑁3 × 𝑁4  scenarios based on the independent and 

dependent scenarios.  

Fig. 4 shows the flowchart of the stochastic modeling 

process which leads to the generation of all 

scenarios (𝑃𝑤(𝑤), 𝜌𝐷𝐴(𝑑), (𝜌𝐼𝑁(𝑑, 𝑖), (𝜂+(𝑏), 𝜂−(𝑏)) . It is 

worthy to mention that the red highlighted section indicates 

the first category uncertainty source (i.e., the wind power 

generation and day-ahead market price scenarios), and the 

blue and green highlighted section indicate the second 

category uncertainty source (i.e., the intraday and balancing 

market price scenarios). After scenario generation of 

balancing market prices 𝜂(𝑏), the highlighted green color part 

of Fig. 4 shows that there are two ways of calculating the 

balancing market prices (𝜂+(𝑏), 𝜂−(𝑏)) based on the values of 

𝜂(𝑏). 

IV. CASE STUDY AND RESULTS 

The intention of the offered method is to manage and bring 

together a WPA and CAES producer to be working as an HPP 

to contribute in three electricity markets. The uncertainties of 

wind power and market prices are produced with a set of 

scenarios using an adapted hybrid neural network and a hybrid 

Jaya algorithm [23].  

The offered methodology is applied to the Sotavento 

(Spain) experimental wind farm, with the maximum capacity 

of 26.54 MW [24]. In order to train the artificial neural 

network, the wind power historical data of the year 2010 are 

used. The scenarios related to market prices are derived by a 

three-step process: First, market prices are predicted for 30 

days using an adapted hybrid neural network and a hybrid 

Jaya algorithm [22, 23], and the error probability distribution 

function (PDF) is estimated for each hours (i.e., 24 PDFs in 

this study). Next, according to the estimated PDFs, immense 

numbers of scenarios are generated by implementing the 

roulette wheel mechanism. Finally, the scenario reduction 

technique (the fast forward algorithm) is implemented in order 

to reduce the number of scenarios by eliminating the similar 

scenarios and very low probable scenarios [25].  

The historical data of market prices are also derived based 

on the Iberian Peninsula electricity market [26]. The 

uncertainties of the problem are modeled through a scenario 

tree with 3000 scenarios (10 × 5 × 6× 10) including ten, five, 

six and, ten scenarios for DA, intraday, balancing market 

prices and the wind generation, respectively. The simulation 

results are presented for the 12th of March, 2010. Note that if 

there is not much historical data available, some other types of 

methods such as robust optimization or information gap theory 

can be used to solve the optimization problem [27, 28]. 

The CAES heat rate for the discharging and simple-cycle 

mode is considered to be 0.4185 and 0.837, respectively in 

which the simple-cycle mode heat rate has double value. The 

cost of expander and compressor operation and maintenance 

are similarly selected to be 0.87 €/kWh. The air storage level 

of cavern is limited between 1 and 15 MW. The initial air 

storage level of cavern and the energy ratio of CAES are equal 

to 1 MW and 0.95, respectively. Also, the natural gas price is 

equal to be 3.5 €/GJ. 

The upper bound level of CAES and wind power production 

for the intraday market are similarly considered to be equal to 

30 percent of their DA market production level. Also, in the 

CVaR calculation, the confidence level 𝜎 is given to be equal 

to 0.95. 

 The offered methodology is initially applied to the 

MATLAB software to generate the wind power and market 

price scenarios. After reducing the number of scenarios by the 

scenario reduction technique, the scenario data are used as an 

input to the GAMS software. Note that the CPLEX solver is 

used in the GAMS software to solve the optimization problem. 

All the simulations of the study are performed in less than 

120.756 seconds on a 2.3 GHz Intel® CORETMi5 laptop with 8 

GB of RAM.  

In this paper, five cases are considered to evaluate the 



 

 

applicability and effectiveness of the proposed approach as 

follows:   

A. Case I: Base Case 

In the base case, the WPA and CAES producers are 

coordinated to participate in three electricity markets. In this 

case, the CAES simple-cycle mode operation is not considered 

by not adding it to the formulation. The offering day-ahead 

market curves are also not considered by not including (14), 

(26) and (37) in the optimization problems of WPA, CAES 

and HPP modeling. Moreover, the CVaR is not considered in 

the base case by giving 0 value to the risk factor ζ.  

Fig. 5 depicts the comparison of optimal energy hourly bids 

in the DA market for three different configurations including 

WPA only, CAES aggregator only, and HPP. It can be seen 

 

Fig. 5. Optimal hourly power bids for the DA market 

 
Fig. 6. Hourly expected profit of CAES, WPA and HPP 

that more capacity of CAES for storage is exploited during the 

period of off-peak when it joins with WPA, and subsequently 

this stored energy can be released during the periods of off-

peak. Obviously, more flexibility of production can be offered 

by having a HPP comparing to two independent aggregators to 

provide energy during specific peak periods. Hourly expected 

profit of operation for three given configurations are compared 

in Fig. 6. Noteworthy, WPA can offer higher hourly profit 

than HPP is some periods (e.g., hours 2 -7). It can be deduced 

that the CAES initially attempts to entirely exploit the wind 

power to store energy in its cavern, and then charges the 

remaining capacity by buying energy from the markets. On the 

contrary, hourly profit of HPP is superior to WPA in some 

periods (e.g. hours 19 - 24) as the result of simultaneous 

utilization of WPA and CAES. 

B. Case II: Considering Bidding Curve 

CAES aggregator and the WPA are incorporated in this case 

study to participate in different markets regarding bidding 

curves. None of the financial risk factor and simple-cycle 

mode of CAES are considered in this section. It means that 

value zero is considered for the risk factor 𝜁 ; while the 

formulations related to CAES simple-cycle mode are not 

modelled in market formulation. However, bidding curves 

equations (14), (26) and (37) are incorporated in the 

optimization. It can be inferred that by respect to the 

formulations of the bidding strategy, the opportunity for 

adoption of different patterns is available for CAES to tackle 

scenarios which model vacillations of DA market price.   

As illustrations, bidding curves corresponding to some 

hours (i.e., 4, 7, 10, 14, 15, 17 and 19) of DA market are 

shown in Fig. 7. It is noticeable in the power curve 

corresponding to hour 10 that HPP bids zero for the prices less 

 
Fig. 7. HPP bidding curves for DA market 

 
Fig. 8. Expected profit versus CVaR for different values of ζ: efficient frontier 

  
Fig. 9. Profit comparison for CAES and WPA versus different ζ values 

than €27; while less than zero are bided for all prices in power 

curve related to hour 4 which means HPP tends to only buy 

power from the DA market. In fact, same pattern can be seen 

for hours 4 and 7 though zero-power is offered for the prices 

more than €15. Two pattern types can be seen in the bidding 

curve related to hour 19. For this specific hour, there are 



 

 

buying of the power in terms of prices less than €21 and 

selling for prices more than €21. It should be mentioned that 

HPP tends to sell energy to the market for curves 

corresponding to hours 14, 15 and 17. Straight line for 

offering curve of hour 17 means that the same amount of 

power is offered to the market by the HPP for all prices.  

C. Case III: Considering Financial Risk 

The coordination of CAES aggregator and WPA for 

participation in three mentioned markets is considered in this 

section while financial risk and bidding curves are considered. 

Modeling of simple-cycle mode of CAES is not included in 

this case. Equation (14), (26) and (37) are involved in the 

formulation of markets as similar to Case II.  

Fig. 8 depicts the efficient frontier that is the expected profit 

contrasted with the CVaR for different values of ζ. Obviously, 

the optimal solution achieved for ζ = 0 reaches the maximum 

expected profit and the maximum risk. The expected profit is 

different from €3409.7 for ζ = 0 to €3400.3 for ζ = 1, 

respectively. As it can be seen from Fig. 8, a decrease of 

0.2738% in the expected profit produces 2.8153% increase in 

the CVaR. It is worthy to mention that moderately slight 

amount of the expected profit deviation and large amount of 

the CVaR specify a risk-averse solution. Also,  low-risk 

solutions are the solutions with high CVaR and low expected 

profits. The patterns of profit change for configurations of 

WPA only and CAES only versus variations of ζ are shown in 

Fig. 9. Expected profit of HPP as well as its difference with 

profit summation of independent WPA and CAES operations 

as a function of ζ changes are shown in Fig. 10. As it can be 

deduced from Fig. 9 and Fig. 10, there are profit reductions for 

all configurations with the increase in value of risk factor ζ. 

Obviously, such the decreases can be manifested as a 

reasonable and expectable phenomenon as the result of a 

decrease in amount of financial risk. However, HPP extra 

profit increases along with the growth of ζ value. In other

 words, more profit is attained even 

 

Fig. 10. HPP profit and its extra profit comparing to the summation of 

independent operations versus different ζ values 

 
Fig. 11. Hourly power bids of CAES with/without CAES simple-cycle mode 

when financial risk is considered in the joint operating model. 

Noteworthy that minimum and maximum extra profits are 

achieved at the risk factors 𝜁 = 0.2 and 𝜁 = 0.7 (i.e., equal to 

€20.8317). In fact, it demonstrates the robustness of proposed 

joint configuration regarding the increase of financial risk of 

system.     

D. Case IV: Considering CAES Simple-cycle Mode 

This section investigates the coordination of CAES 

aggregator and WPA for participating in markets while 

considering the CAES simple-cycle mode, financial risk, and 

bidding curves. As similar to Case III, equations (14), (26) and 

(37) are incorporated in the problem formulation of markets. 

Besides, value 0.6 is assigned to the risk factor 𝜁 . Simple-

cycle mode of CAES is also added to the formulation.  

Fig. 11 compares hourly power bids of CAES (with/without 

simple-cycle mode) to the DA market when it works as a 

producer in joint operation. It can be seen that CAES buys 

power from the market for fewer hours in the case of with the 

simple-cycle mode. Obviously, there is no need for CAES to 

charge the reservoir as much as when no simple-cycle mode is 

considered. Furthermore, the CAES can offer power to the 

market for two first hours of scheduling by utilizing the 

simple-cycle mode even though the cavern is in its initial 

minimum level (i.e. the cavern is empty at the starting point of 

scheduling). Simple-cycle mode is also can assist the system 

operator to fully exploit price strikes in the electricity market. 

In fact, HPP has the opportunity to employ the CAES simple-

cycle mode for an immediate power provision to the energy 

markets to attain the maximum profit of energy price 

fluctuations. As an illustration, this option is available when 

the power price is high for a specific period and no power can 

 
Fig. 12. Comparison of power level changes in the CAES cavern 

with/without CAES simple-cycle mode.  



 

 

 
Fig. 13. Profit and cumulative profit (C-Profit) comparison for CAES 

only, WPA only and HPP over the course of one year 

be provided by WPA (e.g., lack of wind) and CAES (e.g., 

there is no stored energy in cavern). 

Fig. 12 compares changes of power level in the cavern of 

CAES when it operates with/without the simple-cycle mode in 

the joint configuration. It is shown that power level of the 

cavern does not reach its maximum when using simple-cycle 

mode, which means it is financially more beneficial to sell 

power in this mode (e.g., hour 6). In addition, some shifts can 

be observed in cavern depletion for some hours (e.g., 13 and 

14) by means of simple-cycle mode that indicates more 

flexibility of the proposed approach. 

E. Case V: Case study over a one year period 

This section investigates the HPP for participating in 

markets while considering the CAES simple-cycle mode, 

financial risk, and bidding curves over the course of one year. 

Scenarios for the wind power and electricity prices are 

generated based on the historical data of wind speed and 

market prices in the Iberian Peninsula electricity market for 

the year 2016. Fig. 13 show the profit and cumulative profit 

(C-Profit) comparison for CAES only, WPA only and HPP 

over the course of one year. As it can be seen in Fig. 13, the 

daily profit of HPP is higher than the individual operation of 

WPA and CAES aggregators. Moreover, the cumulative profit 

of joint configuration is superior to the ones with independent  

configurations. 

V. CONCLUSION 

This paper has been proposed a methodology for joint 

operation of a CAES aggregator and a WPA which 

participates in DA, intraday and balancing markets in the form 

of a three-stage problem. This stochastic mixed-integer linear 

programming has been solved with an available commercial 

solver of GAMS software.  

To adjust the operation of the HPP to the mentioned 

markets, both bidding curves and bidding quantity have been 

offered. Also, a simple-cycle mode has been added into the 

CAES operation to reach a more flexible operation for 

presented joint configuration in case of electricity price strike. 

Also, fewer hours of buying power from the market have been 

reached using CAES simple-cycle mode. Besides, CAES does 

not need to charge the cavern as much as when there is no 

simple-cycle mode. By using the join operation, the HPP has  

 
Fig. 14. Comparison of the efficiency and investment cost of different 

type of energy storage systems 

 
Fig. 15. Comparison of the life time and size range of different types of 

energy storages 

achieved more profit even by considering the financial risk. 

APPENDIX 

The efficiency and investment cost of different type of 

energy storage systems are illustrated in Fig. 14. According to 

this figure, the CAES investment cost is less than the other 

large-scale types of energy storage systems. The efficiency of 

large-scale CAES is close to 70% and owing to the low 

investment cost, this efficiency level is fair. In addition, life 

time is one of important parameters of energy storages. Fig. 15 

depicts the life time and size range of different types of energy 

storages. According to this figure, the CAES systems have a 

long life time duration in comparison with many other types of 

energy storage which are capable to be employed in power 

systems to integrate with renewable energy resources.  
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