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Abstract

To better understand trends, this paper models the behavior of decision-makers seeking
conformity and influence in a connected population. Link formation is one-sided with infor-
mation flowing from the target to the link’s originator. A premium for leading ensures that
a link’s target benefits more from the link than its originator, and yet a leader serves the
population by coordinating decisions. The desire for conformity drives the population to
organize into a single hub with the leader at the center. Certain conditions support multiple
leader structures as Nash as well. A strong desire to influence produces an equilibrium with
an unlinked subpopulation.

Keywords: Opinion leadership, Social networks, Conformity, Non-cooperative games
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“My goal is to acquire works that great museums letch after.”1

1 Introduction

Apparently, in certain settings, decision-makers enjoy conformity and place a premium on pre-

empting the popular choice. A natural tension exists between conformity and early adoption.

Thornton (2009) observes that an avant-garde collector’s reputation is based on his or her suc-

cess in being an early collector of an emergent artist’s works. At the same time the success of

an aspiring artist is driven, in part, by the reputation of the collectors acquiring the artist’s

works. The buying and selling of art is not conducted anonymously. The scenario is such that

∗I am indebted to Buz Brock, Richard Carson, Sven Feldmann, Virginie Masson, William Schworm, Anne van
den Nouweland, Joel Watson, John Wooders, and Myrna Wooders for their comments and suggestions, as well as
seminar and conference participants at the University of Melbourne, George Washington University, University
of New South Wales, University of California San Diego, and the Australasian Economic Theory Workshop.
Support was provided by an industry linkage grant jointly financed by pureprofile Pty. Ltd. and the Australian
Research Council (LP-0990750) and by the University of Technology Sydney Business Faculty Reader program.
†Economics Discipline Group, University of Technology Sydney, PO Box 123 Broadway, NSW 2007 Australia,

david.goldbaum@uts.edu.au
1Avant-garde art collector David Teiger quoted in Thornton (2009) (p.100)
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an individual benefits from acting in advance of a phenomenon, the emergence of which may

be influenced by the individual’s own actions.2 Apparently, acting early is less risky for some

than it is for others. Socially determined consequences such as those found among avant-garde

collectors can be assigned to a variety of decision-makers, from designers and retailers, particu-

larly in subjective consumer products, to real estate developers, foreign direct investors, media

outlets, revolutionaries, politicians, and political supporters.3

The developed game captures the highlighted social aspect of decision making. The available

actions capture the tension between early adoption and conformity. They also create pathways

for exerting or responding to influence. Popularity arises from coordinating behavior made

possible by the flow of information over personal contacts. The selective use of contacts is

modeled with directed links that form an endogenous social network. Coordination manifests

as a network of followers linked directly or indirectly to a leader. The premium earned by

preempting the decision of others creates an asymmetry. The premium means that the benefit

of a link is greater for the target than it is for the player forming the link.

Players are ex ante homogeneous such that prior to organizing they face the same payment

opportunities, there are no explicit costs for either moving or waiting, and they have equal

access to when and how to choose among the options. Thus, while the presence of a leader

serves to make the followers better off, the leader’s ability to do so is derived entirely from

the followers’ willingness to concede the leadership position to a single individual and adopt

optimizing strategies accordingly. The conflict between cooperating with and competing for

leadership impacts the social structure.

Actions manifest as a social structure in the form of directed links. Equilibrium in the

developed environment is reflected in the social structure. A population organized around a

single leader is the prevailing equilibrium. The decisions that sustain a second leader are not

in the hands of the leader but in those of the followers. The environment, not individuals,

determine whether equilibria with multiple leader-follower populations also exist.

2Of Teiger, Thornton (2009) comments, “He enjoys being a player in the power game of art, particularly at this
level where patronage can have an impact on public consciousness.” (p.100). Thornton also observes, “Unlike
other industries, where buyers are anonymous and interchangeable, here, artists’ reputations are enhanced or
contaminated by the people who own their work.” (p.88). Glazek (2014) profiles a patron who promotes emerging
artists among collectors with little knowledge of art. Unresolved in the piece is whether the artists had no future
among knowledgable collectors or whether the artists’ career were poisoned by their affiliation with the patron.

3“Making a big bet on something before anyone else really grasps it. That is what success has in common in
energy and in equities,” political strategist Tim Phillips as cited in Confessore et al. (2015)
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The present paper identifies equilibria for a simultaneous play game and the resulting social

structures. Section 2 introduces a network structure, strategies, and payoffs. The included ex-

amples based on populations of two and three players illustrate that while a greater reward to

leading undermines the interest in following, equilibrium always includes at least one follower.

To identify how relative proximity to the leader alters behavior requires analysis with larger

populations, an undertaking that starts in Section 3. A population of five players allows for

multiple, and possible majority and minority, leaders. Section 4 considers the conditions nec-

essary to allow multiple leaders to co-exist in equilibrium. Extensions of the model, including

non-linear payoffs and possible best response cascades, are considered in Section 5.

Appendix A includes formal definitions of essential population and social structures. Ap-

pendix B includes a formal statement and proof of each proposition. Appendix C formally

develops examples from Sections 2 and 4.2. Appendix D formally develops examples based on

sequential play.

1.1 Related literature

The strategic complementarities found in Katz and Shapiro (1985) rewards adopting a popular

choice. Classic evidence of social influence in individual decisions, even in the absence of physical

complementarities, can be found in Whyle (1954), Katz and Lazarsfeld (1955) and Arndt (1967).

Hill et al. (2006) and Dwyer (2007) exploit modern technology to consider social connections

as they develop in mobile phone friend networks and online chats.

Some of the early examples exploring the influence of social networks model a bi-directional

interaction between individual decision-making and global behavior, including Schelling (1971),

Schelling (1973), and Katz and Shapiro (1985).4 Cowan and Jonard (2004) document the impact

of local and global connectivity on overall knowledge across a population.

The issues of conformity and influence arise in the social learning model of DeGroot (1974)

and in the word-of-mouth communication of Ellison and Fudenberg (1995). The importance of

network structure and individual behavior are further developed in such works as Golub and

Jackson (2010), Acemoglu and Ozdaglar (2011), Acemoglu et al. (2013), Corazzini et al. (2012),

Battiston and Stanca (2015), and Buechel et al. (2015), where conformity and influence are the

consequence of the social learning environment. Arifovic et al. (2015) considers conformity as a

4Watts (2001) and Jackson and Watts (2002) offer useful literature reviews of works on social influence.
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motivator shaping beliefs and network formation in the context of social learning. In the current

investigation, players actively seek conformity and influence. They also operate in a setting in

which the actions of the population entirely define the state. There is no underlying exogenous

truth to be discerned from the opinions of one’s neighbors. All uncertainty is intrinsic. These

features alter the nature of information gathering. Combining information from various sources

does not necessarily serve the individual’s objectives.

Coordination in adoption imparts a positive peer effect in the Brock and Durlauf (2001)

model of utility-driven conformity. The Ali and Kartik (2012) preference for complimentary

actions motivates strategic exploitation of influence in the sequential decision making of the

Banerjee (1992) observational learning model.5 The benefits of early adoption appear in models

such as the Pesendorfer (1995) early adoption of new fashion and in the Challet et al. (2001)

model of investing.

Jackson and Wolinsky (1996), Watts (2001), Jackson and Watts (2002), and related works

employ sequential decision-making to model endogenous network formation, allowing the indi-

vidual decision-maker to take as given the links beyond her control. Seeking the rewards to

connectivity, costly links are formed as a myopic best response to the current network structure.

Bala and Goyal (2000) considers network formation as a process of one-sided link creation in

the presence of inertia, so that only a fraction of the population simultaneously reset their links.

Haller and Sarangi (2005), Galeotti and Goyal (2010), Zhang et al. (2011), and Baetz (2015)

characterize the endogenously determined equilibrium network structures as the product of a

static model or of simultaneous linking decisions, agnostic on the issue of how a particular

coordinating structure might arise. These works also explicitly model the beneficial interaction

that gives rise to network connectivity rather than folding the benefit of interaction into a

reward to connectivity. In equilibrium the population employs the identified network to achieve

the model-specific ends. Like the current investigation, the settings generate asymmetry in

outcomes from ex ante homogeneity.

Social connections form the foundation upon which the agents develop strategies to facilitate

5To adapt the Ali and Kartik (2012) observational learning model to the present setting, provide observational
learning agents with the discretion to implement their choice at the time of their own choosing and offer a greater
reward to those adopting the conforming choice early. Expanding the authors’ own example, the model captures
political contributions made to curry favor from the eventual winner. Allowing the candidate to place greater value
in earlier contributors offers a counterweight to the information advantage gained from delay. Freeing contributors
to choose the timing of a contribution increases intrinsic uncertainty, particularly when contributions can be made
simultaneously, as the contributor cannot know the value of their contribution on subsequent decision-makers.
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coordination. Were the population to seek conformity when repeatedly confronted with a new

set of options, reliable social connections substitute for the inability to employ a consistent

product-specific language as relied upon in the coordination game of Crawford and Haller (1990).

Multiple Nash equilibria exist in the present model. The asymmetry in the payoff means

that the players have conflicting interests with regards to which equilibrium emerges. The

two-player version of the current environment reflects the endogenous heterogeneity that can

emerge in R&D and duopoly games, as in Reinganum (1985), Sadanand (1989), Hamilton and

Slutsky (1990), Amir and Wooders (1998), and Tesoriere (2008). Such games may be played

over two stages, but a parallel emerges in the decision regarding when the player wishes to act.

Amir et al. (2010) generalizes the issue of symmetry breaking, as is the case when a leader and

follower emerge. The general n player game retains the issues regarding asymmetry in outcome

while introducing new strategy possibilities. It also introduces the possibility of best response

cascades as in Dixit (2003) and Heal and Kunreuther (2010) as a way of refining the equilibrium

set of structures.

2 Model

Let N = {1, . . . , n} be the set of players and let the n×n matrix g describe the potential directed

links between players. If i can form a link to j then gij = 1 and gij = 0 otherwise. Let gii = 1

always. Write Nd(i; g) = {j ∈ N\{i}|gij = 1} for a set of players to which i can form a link.

The link opportunities captured by Nd(i; g) reflect the subset of the population that player i

is able to directly observe based, for example, on physical proximity or personal contact. The

absence of a potential link from i to j indicates that i does not have the opportunity to directly

observe the action of j.

Let O = {O1, O2, . . . , Om} be a set of m ≥ 2 options or alternatives. To capture the absence

of a common labeling of the alternatives, let K be a set of m labels for these alternatives

and let the one-to-one function fi, determined by nature, map player i’s labels to alternatives,

fi : K → O. Each player thus privately observes a set of labeled alternatives. For every i, j

pair there is a one-to-one correspondence that is unknown to the players. Labels {kA, kB} ∈ K

correspond to the same alternative for players i and j if kA = f−1
i (fj(kB)).

Let ai denote the action of player i. Players act simultaneously with each player choosing
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(i) one of the m alternatives or (ii) to link to another player. In the former case, the player

chooses ai = ki ∈ K which corresponds to alternative fi(ai) ∈ O. If player i links to player

j, then assign ai = j. A player who chooses an alternative is said to lead while a player who

links to another is said to follow. The set of actions for player i is Ai = K ∪ Nd(i; g). Write

a = (a1, . . . , an) for an action profile, where ai ∈ Ai. Let A (g,m) be the set of all possible

action profiles given g and m.

An action profile a induces an n×n matrix σ describing the actual links between the players

as determined by their actions. If ai = j then σij = 1 and if ai ∈ K, such that i leads, then

σii = 1. Otherwise, σij = 0. Thus, for the matrix σ, σ · 1 = 1, indicating that each player

employs one and only one source to inform adoption, including possibly self-informed adoption.

Imposing a single source is non-binding on the obtained solutions. Say that j is a predecessor

of i if σij = 1 or if there is a sequence of players j1, . . . , jτ such that σij = . . . = σjτ j = 1.

Write NP (i;σ) for the predecessors of i. Say that j is a successor of i if σji = 1 or if there is a

sequence of players j1, . . . , jr such that σjj1 = . . . = σjτ i = 1. Write NS(i;σ) for the successors

of i.

Let NL(σ) = {i|ai ∈ K} denote the set of players who lead. A leader is an agent who leads

and has a non-empty set of successors. It is possible to lead without being a leader since the

player may have no successors. If player i leads and player j is a successor of i, this makes player

i player j’s leader. Note that each player i has at most one player who leads as a predecessor,

that is |NL(σ) ∩ NP (i;σ)| ∈ {0, 1} for each i. It is possible for a successor to be without a

leader. Let Li identify the predecessor of i who is a leader.

Example 1. Consider a population of twelve players arranged in a ring with each player able

to link to her nearest neighbor on either side. For m = 2, the set of feasible action profiles

includes, as an illustrative example, the action

a = (f−1
1 (O1), f−1

2 (O1), 2, 5, 6, f−1
6 (O1), 6, 7, f−1

9 (O2), 9, 12, 11).

Figure 1 includes graphical representations of g and the σ induced by a. Here, NL(σ) =

{1, 2, 6, 9} and for i ∈ {4, 5, 7, 8}, Li = 6. In Figure 1c, the leaders all occupy the root node of

a tree capturing the tiers of a hierarchical social structure determined by σ with predecessors

above successors. Player 1, without successors, occupies a trivial tree. Player 9 is the only
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(c) σ depicted as trees with predeces-
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Figure 1: A g and feasible σ for a population of n = 12 players with m = 2 alter-
natives. The structure of g is a ring with Nd(1; g) = {12, 2}, Nd(12; g) = {11, 1} and
Nd(i; g} = {i − 1, i + 1} otherwise. Frame (1a) is a graphical depiction of the g ma-
trix. Frame (1b) is a graphical depiction of the σ matrix resulting from the actions a =
(f−1

1 (O1), f−1
2 (O1), 2, 5, 6, f−1

6 (O1), 6, 7, f−1
9 (O2), 9, 12, 11). The choice by those who lead is in-

cluded in parenthesis. Frame (1c) depicts the groupings implied by σ as trees (or “hierarchies”)
with predecessors positioned above successors and with the alternative above the trees. Dashed
arrows indicate a leader’s choice according to a. Followers 11 and 12, lacking a path to one of
the alternatives, are placed at the bottom.
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leading player to have selected O2. Player 5 has 6 as a predecessor and 4 as a successor. Players

11 and 12 fail to adopt one of the alternatives as they are successors to each other and thus

without a leader.

Figure 1c includes a route from each player to her adopted alternative through her prede-

cessors and her leader’s chosen alternative. Define the distance from player i to her adopted

alternative as the number of players between i and the alternative. This distance helps to

determine payoffs. Using di to denote player i’s distance,

di =



0 if i ∈ NL(σ)

1 if σij = 1, j ∈ NL(σ)

τ + 1 if σij1 = . . . = σjτ j = 1, j ∈ NL(σ)

∞ otherwise.

Use dij to denote the distance from successor i to predecessor j measured in the number of links

connecting i to j. Observe that when Li = j, dij = di.

Let N c(i; a) denote the set of “conforming” players adopting the same alternative as does

player i (exclusive of i). Let N e(i; a) denote the set of “ensuing” adopters, a subset of N c(i; a)

who are of greater distance from the alternative than is i.6 Let Oi ∈ O represent the alternative

adopted by player i. Let ki represent player i’s label associated with alternative adopted so that

Oi = fi(ki). Let µci and µei represent the cardinality of the respective populations, µci = |N c(i; a)|

and µei = |N e(i; a)|.

The map from action profiles to payoffs rewards conformity to the popular alternative and

for adopting the popular alternative in advance of other players.7 The appendix develops

an additively separable payoff function in µci and µei from a utility function valuing social

interaction. Let π(i;σ) represent player i’s possible payoff based on the structure σ. The payoff

for player i is

πNL(i;σ) = φ(µci ) + ψ(µei ) (1)

6The notion of time and distance are isomorphic when adoption disseminates at a rate of one unit of time per
link.

7Since payoffs depend on the popularity of the adopted option and the relative time to adoption, in practice,
the information should eventually become available to the players. A report on the popularity of each alternative
broken down by time is sufficient. Such information could be seen as emerging slowly over the network after all
decisions have been made or as tabulated and published in a bulletin.
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Player µci µei πi Player µci µei πi Player µci µei πi

1 7 5 22 5 7 2 13 9 1 1 4

2 7 5 22 6 7 5 22 10 1 0 1

3 7 2 13 7 7 2 13 11 0 0 0

4 7 0 7 8 7 0 7 12 0 0 0

Table 1: Payoff for a = (f−1
1 (O1), f−1

2 (O1), 2, 5, 6, f−1
6 (O1), 6, 7, f−1

9 (O2), 9, 12, 11) using payoff
parameters rc = 1 and re = 3.

with φ(0) = ψ(0) = 0 and where φ(µ) and ψ(µ) are increasing and continuously twice differen-

tiable. The first element of the payoff is the conformity component, much like the community

effect of Blume and Durlauf (2001). The second element in (1) captures the reward to holding

a distance advantage over the ensuing players. Let Π(a) = (π1, . . . , πn)′ be the n× 1 vector of

payoffs according to a.

As a special case, let

π(i;σ) = rcµ
c
i + reµ

e
i , (2)

with non-negative reward coefficients rc and re.
8 Table 1 reports the payoff to each player

based on the action a from Example 1. As observed in Figure 1c, for player i ∈ {1, . . . , 8},

N c(i; a) = {1, . . . , 8}\{i} so that µci = 7. In addition, for i ∈ {3, 5, 7}, N e(i; a) = {4, 8},

reflecting that all players of equal distance from O1 benefit equally from the players who are

of greater distance. Player 9, having chosen differently than the other leading players, benefits

only from her successor, player 10. For players i ∈ {4, 8, 10, 11, 12}, N e(i; a) = ∅. Players 11

and 12, failing to adopt a choice, receive no payoff nor do they contribute to the payoff of any

other player.

2.1 Strategic behavior

For any two leading players i and j, uncertainty about other players’ fi cause players to believe

Pr (fi(ai) = fj(aj)) = 1/m. The uncertainty in whether two leaders will match alternatives

means that there can be a random element to pure strategy payoffs. A couple of small-n

examples illustrate the issues and outcomes inherent to the setting.

8The linear model generalizes to one in which instead of rewarding early adoption there is a cost or penalty
to late adoption. Similar to the examples used in Brindisi et al. (2011) in which late adopters pay higher costs,
payoffs become π(i;σ) = bc(µ

c
i ) − be(µ

c
i − µei ) where bc is the per member conformity payoff and be is the

cost associated with each player who acts concurrent or in advance of player i on the same alternative. With
bc = rc + re and be = re, the two scenarios are isomorphic.
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Player 2
lead follow

Player 1 lead 1
2 ,

1
2 re + 1, 1

follow 1, re + 1 0,0

Table 2: The relevant action-dependent expected payoff matrix and game of Example 2 with
n = 2, m = 2, rc = 1, re > 0 .

Example 2. n = 2, m = 2, φ(µc) = µc, ψ(µe) = reµ
e, re > 0, and g = 1

2×2
. The game as

presented in Table 2 excludes the inconsequential distinction between leading with “A” and

leading with “B”.

The Nash equilibrium strategy profile produces one leader and one follower. For the equi-

librium with player 2 leading player 1, player 2 receives the higher payoff for being the leader.

Player 1’s lower payoff remains higher than the expected payoff that can be obtained from also

leading. Player 2’s selection of a2 ∈ {“A”, “B”} has no impact on the realized payoffs in equi-

librium nor does the choice effect expected payoffs in non-equilibrium play.9 The symmetry of

the game means that there is also an equilibrium with player 1 leading player 2. The players

want to avoid the strategy profile in which both lead. They also want to avoid the outcome

produced when each follows the other.10

Example 3. n = 3, m = 2, φ(µc) = µc, ψ(µe) = reµ
e, re > 0, and g = 1

3×3
. A larger population

introduces the possibility of adopting a minority option. Table 3 reports the expected payoff

matrix for the actions for players 1 and 2 based on player 3 leading.

The set of equilibrium structures depends on re. For re ≤ 2, the equilibrium structures

are those in which one player leads and the other two follow. If player 2 follows player 3,

player 1’s optimal strategy is to also follow player 3 and is indifferent between succeeding 3

directly or indirectly by succeeding 2. Player 1’s indifference stems from being the most distant

follower in either scenario. Off equilibrium, if player 2 had not followed player 3, player 1 is

still sure to follow. If player 2 follows 1, 1 still follows 3 in order to gain the conformity reward

while retaining a distance advantage over 2. If both players 2 and 3 are leading, player 1 is

indifferent in choosing which to follow. Symmetry ensures the same structures regardless of

9See Appendix C for the full payoff matrix associated with each possible outcome and the proper normal-form
game.

10The mixed strategy solution for this example has Pri(lead) = (1 + re)/(
3
2

+ re). The value of the game in
the mixed strategy solution is v = (2 + 2re)/(3 + 2re). Since v < 1 for all re ≥ 0, the value of the mixed strategy
solution is always less than the follower’s payoff in the pure strategy game.
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Player 2
lead follow 1 follow 3

lead 1, 1, 1 3
2 + re,

3
2 , 1 + re

2 1 + re
2 ,

3
2 ,

3
2 + re

Player 1 follow 2 3
2 ,

3
2 + re, 1 + re

2 0, 0, 0 2, 2 + re, 2 + 2re

follow 3 3
2 , 1 + re

2 ,
3
2 + re 2 + re, 2, 2 + 2re 2, 2, 2 + 2re

Player 3 leads

Table 3: Example 3 relevant expected payoff table for n = 3, k = 2, rc = 1, re > 0, σ3,3 = 1

which individual leads.

For re > 2 the equilibrium structures are those in which one player follows and the other two

players lead. If player 2 follows player 3, player 1’s optimal strategy is to lead. This strategy

is motivated by the 1/m = 1/2 probability that f1(a1) = f3(a3) when both 1 and 3 lead. In

case they match, player 1 gains the distance advantage over player 2. This gamble becomes

worthwhile for sufficiently large re. Notice that player 1 only takes this gamble when player 2

follows player 3. Without a successor to player 3, there is no inducement for player 1 to gamble

with leading. Regardless of re, if both 2 and 3 lead, player 1 chooses to follow.

For a network of directed links, a strongly connected network is one for which every player

pair {i, j} has either gij = 1 or there exists j1, . . . , jm such that gij1 = . . . = gjmj = 1. As a

consequence, for every {i, j} pair there is a directed path from i to j. Let G(n) be the universe

of strongly connected networks based on a population size n. Both examples 2 and 3 are based

on a g that is a complete graph (all players are able to link to any other player directly). For

n = 2 the only strongly connected graph is the complete graph. There are 18 possible g ∈ G(3)

with five that are unique to a relabeling of the players. The benefit to coordinating on an

alternative through imitation is the same for any g ∈ G(3). The following can be demonstrated

to be true for all g ∈ G(3).

1. For re ≤ 2, an action profile is a Nash equilibrium if and only if it produces one leader

and two successors.

2. For re > 2, an action profile is a Nash equilibrium if and only if it produces two leading

players and one successor.

3. The set of Nash equilibria include action profiles that produce i as the unique leader for

all i ∈ {1, 2, 3}.
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From 1 and 2 above, every equilibrium action produces one and only one non-trivial tree. From

3, it is always possible that any one of the players can hold the favorable position of leader.

To be developed in the following sections, the features found in the n = 3 population

generalize for any size population occupying a strongly connected network. For linear reward,

these features are

• Pure strategy Nash equilibria exist.

• A unique leader, possibly in the presence of other leading players, is among the equilibrium

social structures.

• Any player i ∈ N can be the equilibrium leader of the non-trivial tree.

• Whether the leader is the only agent who leads in equilibrium depends on a formula

expressed primarily in terms of rc/re and m. Above a threshold, the entire population

can join to form a single tree. For rc/re below the threshold, the size of the single non-

trivial tree declines in rc/re.

3 Single-leader equilibria

This section formally develops the behavior observed in the two examples of Section 2.1 while

generalizing to a population of size n and a network of potential links g ∈ G(n). A special

case of the strongly connected graph is the complete graph. Considering the more general

structure of potential links allows application more broadly to settings in which participants

seeking to be involved in social phenomena do not necessarily have direct access to all members

of the population. Limits on connectivity create scenarios of interest that cannot be addressed

when considering a complete graph. A population of n > 3 makes feasible coexisting multiple

non-trivial trees. Some additional aspects of the equilibrium actions only come to light when

considering a larger n. There is, for example, a social structure considered in Section 4 that

requires n ≥ 8.

The equilibrium concept employed is that of a pure strategy Nash equilibrium. Section 3

culminates in establishing the condition to ensure that the set of Nash equilibria is non-empty

and includes social structures, embodied in σ, consisting of just a single leader.
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3.1 Hierarchies

The term hierarchy refers to a non-trivial tree. Let h(i; g) be the set of σ given g such that

i ∈ NL(σ) with a non-trivial tree of successors. Let H(i; g) represent the set of σ given g such

that {i} = NL(σ) with a successor population NS(i;σ) = N\{i}. As a reminder, g ∈ G(n) is a

strongly connected network of n players.

Lemma 1. For every strongly connected g and for every i ∈ N there exists a non-empty set of

structures in which the entire population follows i and i leads.

Note that the a generating σ ∈ H(i; g) is generally not unique. In particular, σ ∈ H(i; g) is

independent of ai ∈ K. In addition, there generally exists more than one path through which

any follower j can link to leader i.

Analysis of a structure is facilitated by identifying populations as they relate to follower

j ∈ NS(i;σ) within structure σ. Let Nx(j;σ) be the set of successors of i who are of distance

no greater than dji. Let Ny(j;σ) be the set of successors of i with a distance greater than dji who

are not successors of j. Recall that set N s(j;σ) identifies the population that succeeds player

j. Let µxj = µx(j;σ) = |Nx(j;σ)|, µyj = µy(j;σ) = |Ny(j;σ)|, and µsj = µs(j;σ) = |NS(j;σ)|.

The nodes of the left tree depicted in Figure 2 are labeled consistent with each player’s position

relative to j with µxj = 1, µyj = 3 and µsj = 2.11 Observe that for any σ ∈ H(i; g),

µcj ≡ 1 + µxj + µyj + µsj = n− 1 and (3)

µej ≡ µyj + µsj . (4)

For σ ∈ H(i; g), let h−(i, σ; g) be the set of structures produced when some player j ∈

NS(i;σ) leads rather than follows. Let

ANL(j;σ) := A1 +A2(µyj , µ
s
j) +A3(µsj) (5)

A1 = (m− 1)(φ(n− 1)− φ(n− 2))

A2(µyj , µ
s
j) = m(ψ(µyj + µsj)− ψ(µsj))

A3(µsj) = (m− 1)φ(n− 2)− ψ(n− 2)]− [(m− 1)φ(µsj))− ψ(µsj)

11The possible second tree lead by iB depicted on the right of Figure 2 is developed in Section 4.
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β

β

Figure 2: Labeled positions in relation to player j. In j’s own tree are x ∈ Nx(j;σ), y ∈ Ny(j;σ),
and s ∈ NS(j;σ). In the presence of a second tree (considered in Section 4) are α ∈ Nα(j;σ)
and β ∈ Nβ(j;σ).

and let

BNL(n,m) := (m− 1)
φ(n− 1)

ψ(n− 2)
− 1. (6)

As a reminder, both φ′(µ) > 0 and ψ′(µ) > 0. Let λ(µ) = φ(µ)/ψ(µ) and let j̄ represent the

follower most distant from i in structure σ. As an alternative structure, let σ
′

= σ
′
j × σ−j and

σ
′
jj = 1 producing σ′ = h−(i, σ; g)

Proposition 1. For a structure σ consisting of a single leader and a population of n−1 followers

and for rewards such that λ′(µ) ≥ 0, BNL ≥ 0 is a necessary and sufficient condition that all

followers prefer following to leading.

Proof. See Appendix B

According to Proposition 1, BNL ≥ 0 is the condition by which each follower j ∈ NS(i;σ)

prefers σ ∈ H(i; g) to the structure produced by a switch by j to lead. The proof establishes

λ′(µ) ≥ 0 as the condition ensuring that the decision to follow by the successor most distant

from i identifies the preference to follow for every member of the tree.

The value of ANL(j;σ) reflects the differential for player j between following an exist-

ing leader i or leading in the presence of i. The proof of Propositions 1 establishes that

ANL(j;σ) ≥ 0 ensures that player j ∈ NS(i;σ) prefers imitating over leading. The A1 compo-

nent of ANL(j;σ) is strictly positive. The A2 component is weakly positive and increasing in

µyj .
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(a) λ′(µ) > 0
(b) λ′(µ) < 0

Figure 3: A3(j;σ) as shaped by λ(µ). The most distant follower of i has µsj = µyj = 0 so that
BNL = A1 + A3(0). BNL < 0 indicates that the most distant follower prefers to lead. For
λ′(µ) ≥ 0, the minimum of A3(µsj) is at a boundary value for µsj . For λ′(µ) < 0 the minimum
can occur for an interior value of µsj so that BNL ≥ 0 does not ensure A(j;σ) ≥ 0 for all j.

The A3 component, which can also be expressed as

A3(µsj) = [(m− 1)λ(n− 2)− 1]ψ(n− 2)− [(m− 1)λ(µsj)− 1]ψ(µsj),

has A3(n−2) = 0. For any increasing ψ(µ), λ′(µ) = 0 results in an A3(µ) that is monotonically

decreasing in µ for A3(0) > 0, monotonically increasing in µ for A3(0) < 0, and constant at

zero if A3(0) = 0. Use A0
3(µ) to indicate the A3(µ) produced by λ′(µ) = 0.

Given ψ(µ), for λ′(µ) ≥ 0 then A3(µ) ≥ A0
3(µ) for 0 < µ < n− 2. As a result, the minimum

of A3(µsj) is at one of the extremes. Either A3(0) ≥ 0 and A3(µsj) ≥ A3(n − 2) = 0 for all

possible µsj or A3(0) < 0 is the minimum value of A3(µsj). In the former case, A(j;σ) > 0 for

all j. In the latter case, A(j;σ) > A(j̄;σ) for all j ∈ NS(i;σ)\j̄. For the most distant follower,

A(j̄;σ) ≥ 0 if A3(0) ≥ −A1 or equivalently, BNL ≥ 0. Figure 3a is illustrative. The example

employs φ(µ) = µ1−a/(1− a) and φ(µ) = cµ1−b/(1− b) with a > b so that λ′(µ) > 0.

Reflecting the fact that the payoffs at both the top and the bottom of the tree depend only

on the size of the tree and not its organization, the condition BNL ≥ 0 underpinning Proposition

1 is determined by universal parameters independent of the particular i, the characteristics of

σ ∈ H(i; g), or the nature of g ∈ G(n). Curvature in the increasing φ(µ) and ψ(µ) functions

also plays no role so long as λ′(µ) ≥ 0.

Corollary 1. For a structure σ consisting of a single leader and a population of n−1 followers

and the condition BNL ≥ 0, λ′(µ) < 0 can produce a preference among middle distance followers

to lead.
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Figure 4: ANL(j;σ) surface produced for n = 18 with λ′(µ) < 0 and BNL > 0. Each point on
the surface represents a unique feasible triplet (µxj , µ

y
j , µ

s
j). The height of the point is ANL(j;σ).

For σ ∈ H(i; g), µxj +µyj +µsj = n−2. Each follower occupies a point on the surface. Each point
can be occupied by zero, one, or multiple players with the condition that at least one player
occupy the lower left corner. The far corner is always the highest point. For BNL ≥ 0, all three
corners are positive with only the near left corner at zero for BNL = 0. For BNL < 0 the near
left corner is negative. For λ′(µ) ≥ 0, one of the near corners is the lowest point on the surface.
For λ′(µ) < 0, local convexity in the µy = 0 plane allows a low point along the near edge. Any
σ with a player located at a point with A(j;σ) < 0 cannot be an equilibrium.

Proposition 1 relies on the weak concavity of A3(µsj) to ensures A(j;σ) ≥ 0 for all j ∈

NS(i;σ) when BNL ≥ 0. Given ψ(µ), for λ′(µ) < 0 then A3(µ) ≤ A0
3(µ) for 0 < µ < n − 2,

introducing the possibility that A3(µsj) is at its minimum at an interior 0 < µ < n − 2. This

introduces the possibility that A(j;σ) ≤ 0 for some middle distance j ∈ NS(i;σ) of even when

A3(0) ≥ −A1 (equivalent to BNL ≥ 0). The example included in Figure 3b illustrates the

consequence of λ′(µ) < 0. The dip in A3(µsj) below −A1 indicates that some middle-distance

tree nodes are inferior to leading. The surface in Figure 4 presents the A(j;σ) for all possible

nodes for any σ ∈ H(i; g) from g ∈ G(n), n = 18 in this example. A structure with followers

occupying one or more of the nodes with A(j;σ) < 0, found on the leading edge and in the

second row from the leading edge, is not an equilibrium. For λ′(µ) < 0, the decision to lead or

follow for all j ∈ NS(i;σ) cannot be identified from the preference of i’s most distant follower.

To have µsj = n − 2 requires µxj = µyj = 0. This describes a follower who is the sole direct

successor of i so that the remainder of the population links to i though j. A follower in such

a position always prefers following i to leading because she retains her distance advantage over

16



the remaining population while gaining the conformity reward for i.

Examination of the social impact of λ′(µ) < 0 resumes in Section 5. Until then, analysis will

be dedicated to identifying the equilibrium structures supported by λ′(µ) ≥ 0. Taking advantage

of the inconsequentiality of the particular curvature of φ and ψ, analysis will continue with the

linear payoff of (2), for which λ′(µ) = 0.12

For π(i;σ) = rcµ
c
i + reµ

e
i , ANL and BNL become, respectively,

A(j;σ) = (m− 1)rc +mreµ
y
j + ((m− 1)rc − re)(n− 2− µsj) (7)

and

B(n,m) = (m− 1)
rc(n− 1)

re(n− 2)
− 1

for re 6= 0. Proposition 1 applies so that B ≥ 0 is a necessary and sufficient condition for

π(j, σ) ≥ π(j, σ′) for all j ∈ NS(i;σ) for σ ∈ H(i; g) and σ′ = {h−(i, σ; g)|σ′jj = 1}. An

evaluation of Proposition 1 based on the linear payoff function can be found in Appendix B.

A useful re-expression of the condition B ≥ 0 defines

B(n, θ) := θ −
(

1− 1

1− n

)
(8)

where

θ =
(m− 1)rc

re
.

Throughout the paper, how θ compares to some threshold value determines whether all players

prefer to follow an existing leader or whether there exists some player who prefers to lead in the

presence of another leader. The condition B ≥ 0 is just one expression of this threshold. Other

threshold values for θ arise when analysis turns to more complicated social structures involving

multiple leaders, considered in Section 4. It is worth understanding environmental influencers

on the individual’s decision in support of Proposition 1 to better understand the role of the

parameter θ and the condition B ≥ 0 here and in future settings.

12Linearity allows for aggregation in expectation over possible states. Curvature in the reward components
means accounting for each possible state separately, adding complexity to the equations without additional
insight.
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Population j leads j follows

{i} 1
mrc rc

Nx(j;σ) 1
m(rc + re)µ

x rcµ
x

Ny(j;σ) 1
m(rc + re)µ

y (rc + re)µ
y

NS(j;σ) (rc + re)µ
s (rc + re)µ

s

Table 4: Expected contribution to j’s payoff according to j’s decision

Using (3) to express A(j;σ) in term of µxj and µyj yields

A(j;σ) := (m− 1)rc + (m− 1)(re + rc)µ
y
j + ((m− 1)rc − re)µxj . (9)

How followers value the Nx(j;σ) and Ny(j;σ) populations determines how A(j;σ) changes

as a reflection of j’s position in the structure. As reported in Table 4, the NS(j;σ) popu-

lation contributes equally whether j leads or follows. The first term in (9) reflects the gain

of certain conformity with i when following. The certain conformity and ensuing adoption of

the Ny(j;σ) population in the second term of (9) provides the strongest incentive to follow.

The Nx(j;σ) population offers both opportunity and sacrifice. When following, player j gains

certain conformity with the Nx(j;σ) population. By leading, with probability 1/m, player j

retains conformity and gains a timing advantage over the population.

The numerator of θ reflects the marginal contribution of a player in the Nx(j, σ) population

to j’s payoff when j follows i. The denominator of θ captures the marginal payoff contribution

of a player in Nx(j, σ) when j leads. For θ > 1, the reward to conformity with the Nx(j, σ)

population exceeds the expected gain from capturing a distance advantage over Nx(j, σ) so that

the coefficient on µxj is positive. For θ < 1, the Nx(j, σ) population rewards j’s leading more

than following i in expectation.

More simply, the scenarios that contribute to make following attractive are those scenarios

in which the reward to conformity is relatively high (rc/re is large) and chance coordination by

independent actors is unlikely (m is large). Conversely, the scenarios that undermine following

are those in which there is a high premium to preempting and the opportunity to coordinate

by chance is high, so that low rc/re and low m yield B < 0.

Lemma 2. Among the set of structures consisting of a single leader and a population of n− 1

followers, each follower maximizes own payoff as a follower of i by minimizing µxj .

18



Lemma 2 identifies the optimal follow action. Lemma 2 emerges from the fact that µsj is

independent of j’s action, that µe(j) = µyj + µsj , and that, since for σ ∈ H(i; g) with µyj =

n− 2−µxj −µsj , increasing µxj decreases π(j;σ). Let H ′(i; g) be the set of σ ∈ H(i; g) such that

each j 6= i employs an imitation strategy that minimizes µxj . By Lemma 2, for σ ∈ H ′(i; g), no

player can do better for herself as a follower.

Let H∗(i; g) be the set of σ ∈ H(i; g) such that each j 6= i employs an imitation strategy

offering a distance-minimizing connection to the leader. Note that if σ′ exists such that {σ, σ′} ∈

H∗(i; g), then dj(σ) = dj(σ
′) for all j ∈ N . As a result, all σ ∈ H∗(i; g) offer exactly the same

payoff profile. Similar to H∗(i; g), let h∗(i; g) be the set of strategies for which each successor

of i imitates the player offering the shortest distance from i.

Proposition 2. Among the set of structures consisting of a single leader and a population of

n− 1 followers, minimizing distance to the leader is a subset of minimizing µxj .

Proof. See Appendix B

Following Proposition 2, H∗(i; g) ⊆ H ′(i; g). In order to have H∗(i; g) ⊂ H ′(i; g) requires

the existence of a σ ∈ H∗(i; g) satisfying three criteria. For σ ∈ H ′(i; g) there exists σ′ ∈ H ′(i; g)

if and only if there exists j with the following three properties:

1. There exists some j′ ∈ Nd(j, g) with dj′,i = dj,i, indicating that j′ is equal distance to the

leader as is j and that j has the option to imitate j′.

2. µy(j;σ) = 0, indicating that there are no successors to i of greater distance to i than j

without also being a successor to j.

3. All successors to j have no alternative option to link to i but through j.

The criteria make it possible for some j to increase her distance to i (property 1) while preserving

µxj minimization for herself (property 2) and for everyone else (property 3). In this case there

exists σ′ ∈ H ′(i; g)\H∗(i; g) where σ
′
jj′ = 1 and σ

′
−j = σ−j . Figure 5 includes an illustrative

example.

Proposition 3. If a structure σ consisting of a single leader and a population of n−1 followers

is an equilibrium then σ is a member of the subset in which all followers minimize µxj .
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(a) σ ∈ H∗(1, g)

1

2

3

4 5

(b) σ′ ∈ H ′(1; g′)\H∗(1; g)

Figure 5: An example of σ′ ∈ H ′(i; g)\H∗(i; g) based on Nd(2; g) = {1, 3}, Nd(4; g) = {2, 5},
and Nd(5; g) = {2, 4}, σ ∈ H∗(1; g). The conditions for a non-empty σ′ ∈ H ′(1; g)\H∗(i; g) are
satisfied. For players i = 1, 2, 4, 5, π(i;σ) = π(i;σ′) while π(3;σ) > π(3;σ′).

Proof. See Appendix B

Proposition 3 excludes σ ∈ H(i; g)\H ′(i; g) from the set of Nash equilibria while preserving

σ ∈ H ′(i; g) as a candidate member of the set of Nash equilibrium. Following Lemma 2,

Proposition 3 establishes that for σ ∈ H(i; g)\H ′(i; g), some follower j ∈ NS(i;σ) is able to

improve her reward while remaining in NS(i;σ). For σ ∈ H ′(i; g), no player (including i) is

able to improve her own reward while preserving the structure’s membership in H(i; g).

Returning to Figure 5, the action by j to minimize µxj but not dj benefits some player

j′ ∈ NS(i;σ)\{j} without cost to any player. In a sense, any structure σ ∈ H ′(i; g)\H∗(i; g) is

socially preferred to a structure σ ∈ H∗(i; g).

Proposition 4. For the set of structures consisting of a single leader and a population of n− 1

followers, B ≥ 0 is a necessary and sufficient condition to have the subset in which all followers

minimize µxj as Nash equilibria.

Proof. See Appendix B

By Proposition 4 for every i ∈ N there is an equilibrium structure for which i is a leader

to the remaining population. The only condition needed to produce this set of structures as

equilibria is B ≥ 0. As observed with Proposition 1, B ≥ 0 is the product of the environment

and preferences, independent of the particular i or the characteristics of σ ∈ H ′(i; g) or g ∈ G(n).

Proposition 4 follows naturally from Propositions 1 and 3.

Corollary 2 follows from H∗(i; g) being a non-empty subset of H ′(i; g).
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Corollary 2. The structures consisting of a single leader and a population of n− 1 followers,

all of whom minimize their distance to the leader, are Nash equilibrium if B ≥ 0.

For the more complicated social structures developed in the sections that follow, analysis will

proceed with optimizing followers minimizing dji. Allowing for the larger set of actions available

when minimizing µxj adds to the complexity of derivations without substantively altering the

outcomes.13

Let gc represent the special case of a complete graph. The {σc} = H∗(i; gc) is a star network.

Since gc ∈ G(n), by Proposition 4 and Corollary 2, the star network is an equilibrium structure

when B ≥ 0. The set H ′(i; gc) consists of additional equilibrium structures in which i leads,

n−2 players link directly to i and one player links indirectly to i through one of the n−2 direct

successors.

3.2 Leading without followers

This subsection identifies candidate structures for equilibrium for when B < 0, a setting that,

according to Proposition 1, excludes the set of structures H(i; g).

Defined formally in the appendix, let hL(i, µsi ; g) represent the set of structures in which i’s

successor population is of size µsi < n− 1 and the n− µsi − 1 most distant players on g from i

lead rather than follow. For σ ∈ h∗L(i, µsi ; g), the NS(i;σ) population of successors to i is the µsi

players closest to i according to g with each member of NS(i;σ) minimizing her distance to i.

Observe that for σ ∈ hL(i, µsi ; g) and j ∈ NS(i;σ),

1 + µxj + µyj + µsj︸ ︷︷ ︸
=µsi

+ µl = n

where µl = |NL(σ)|. Let

C(µsi ; θ) = θ −
(

1− 1

µsi

)
. (10)

13While σ′ ∈ H ′(i; g)\H∗(i; g) is socially preferred to σ ∈ H∗(i; g), it is reasonable to consider σ′ as unlikely to
emerge from autonomous play for a number of reasons, including the foregone opportunity to exploit disequilib-
rium play by other followers and the increased exposure to adverse outcome that may result from the disequilib-
rium play of others. Though not proven, I have found no counterexample to the notion that H∗(i; g) ⊂ H ′(i; g)
only when the structure σ ∈ H ′(i; g)\H∗(i; g) is inconsequential to the optimizing decisions of the players.

21



Allow µ∗ to represent the value of µsi that solves C(µsi ; θ) = 0,

µ∗ =
1

1− θ
, (11)

where B < 0 ensures θ < 1. Defined below, n̄ is an integer near µ∗, |n̄− µ∗| < 1.

Proposition 5. For B < 0 and θ 6= 0, if a structure σ consisting of a single leader with a

successor population consisting of the µsi closest followers and in which the remaining n−µsi −1

players all lead is an equilibrium, then µsi = n̄.

Proof. See Appendix B

The proof of Proposition 5 establishes that for σ ∈ hL(i, µsi ; g), the same A(j;σ) ≥ 0 condi-

tion developed in Proposition 1 ensures that player j ∈ NS(i;σ) prefers her current imitation

strategy over leading, implying the N l(σ) population does not influence j’s decision. Identify

the most distant successor of i given σ as j̄(µsi ) so that A(j̄(1);σ) is the value of A(j̄;σ) for a σ

in which µsi = 1 and A(j̄(n−1);σ) is the value of A(j̄;σ) for a σ ∈ H(i; g). The proof establishes

that A(j̄(1);σ) > 0, A(j̄(µsi );σ) is decreasing in µsi and, since B < 0, A(j̄(n−1);σ) < 0. At size

µsi = n̄, j̄(n̄) ∈ NS(i;σ) prefers following to leading while at size µsi = n̄+1, j̄(n̄+1) ∈ NS(i;σ′)

prefers to lead. For σ ∈ h∗L(i, n̄; g), no j ∈ NS(i;σ) can improve her payoff within the tree nor by

leading and no j ∈ N l(σ) can improve her payoff by joining the i-led tree. Thus, the structure

σ ∈ h∗L(i, n̄; g) is a candidate Nash equilibrium.

A non-trivial set of alternatives and a preference for conformity, meaning m > 1 and rc > 0

so that θ > 0, are prerequisite for the existence of a non-trivial tree as a possible equilibrium.

For θ = 0, A(j;σ) ≤ 0. When due to m = 1, the coordination problem is solved trivially

without the leader-follower structure. When due to rc = 0, there is nothing to be gained by

delaying adoption.

Similar to the finding in Proposition 4, for µsi = n̄ < n, it is the candidate equilibrium size

of the tree, according to Proposition 5, that is determined by universal parameters independent

of the particular i or the characteristics of σ ∈ H∗(i; g) or g ∈ G(n).
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4 Single and multiple leaders

Proposition 4 establishes that for B ≥ 0, the set of Nash equilibria includes H∗(i; g) and

excludes σ ∈ H(i; g)\H ′(i; g). Additionally, Proposition 1 excludes from the set of possible Nash

equilibria the set of structures σ ∈ h∗(i; g) for which {i, j} = NL(σ) and where either i or j can

link to any member of the other leader’s tree. There remain other multiple-leader structures,

σ /∈ H(i; g), yet to be identified as included or excluded from the set of Nash equilibria. Likewise,

for B < 0, Proposition 5 falls short of establishing σ ∈ h∗L(i, n̄; g) as an equilibrium but does

establish that the structures of hL(i, ñ; g) for ñ 6= n̄ cannot be equilibria. This section establishes

σ as an equilibrium structure if and only if σ ∈ h∗L(i, n̄; g) when B < 0 and identifies conditions

for alternatives to σ ∈ H∗(i; g) to be included among the Nash equilibrium structures when

B ≥ 0.

Let h(iA, iB; g) be the set of σ given g ∈ G(n) such that {iA, iB} ∈ NL(σ) with successor

populations NS(ih;σ) 6= ∅ for h = A,B. Let H(iA, iB; g) represent the subset of h(iA, iB; g)

such that {iA, iB} = NL(σ). In h∗(iA, iB; g) and H∗(iA, iB; g) are structures σ in which each

successor employs the shortest path to the chosen leader. Let µsh = |NS(ih;σ)| indicate the

number of successors in the ih-led tree. Without loss of generality, assume µsA ≥ µsB.

For h = A,B, let jh represent j ∈ NS(ih;σ). With two non-trivial trees, there is a need

to identify and label populations in the i−h-led tree based on their position relative to jh.

Let Nα(jh;σ) be the set of successors of i−h who are of distance no greater than djh,ih and

let Nβ(ih;σ) be the set of successors of i−h who are of a distance greater than djhih . Let

µαj = µα(j;σ) = |Nα(j;σ)| and µβj = µβ(j;σ) = |Nβ(j;σ)|. The node labels in Figure 2 identify

the agent’s position relative to player j with µαj = 2 and µβj = 4.

4.1 B < 0

Given a leader iA, consider the set of structures in which some or all of the n − n individuals

not in NS(iA;σ) form a second hierarchy.14

Recalling that θ = (m− 1)rc/re, B = θ − (1− (n− 1)−1), and C = θ − (1− (µsi )
−1), let

D(j;σ) := (m− 1)
(
rc + (re + rc)µ

y
j

)
+ ((m− 1)rc − re)µxj − reµαj (12)

14For any two {j1, j2} /∈ NS(iA;σ), the ability to form such a hierarchy is not assured by the assumption of
strong connectivity since it may require the chain of links to pass through a member of NS(iA;σ).
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and

E(ih; θ, n, σ) := θ −
(

1− 1

µsh

)
− µα(j̄h;σ)

µsh
. (13)

Proposition 6. B < 0 is a necessary and sufficient condition for the set of σ in which the n̄

players closest to i follow i, while the n− n̄− 1 remaining players lead, is the set of equilibrium

structures.

Proof. See Appendix B

The proof establishes that D(j;σ) ≥ 0 ensures that player j ∈ NS(ih;σ) for h = A,B prefers

her current follow strategy over leading. As with A(j;σ), D(j;σ) is not necessarily monotonic

in the player’s distance from the leader and yet D(j̄(µsi );σ) ≥ 0 implies D(j;σ) ≥ 0 for all

j ∈ NS(i;σ). For E(ih;σ) ≥ 0, the most distant successor of ih prefers her current position in

the ih-led tree to leading.

Recognize that D(j;σ) = A(j;σ)−reµαj and that E(ih; θ, n, σ) = C(µsh; θ)−µα(j̄h)/µsh. The

minimum threshold value on θ to maintain a second tree in the presence of an existing tree is

greater than the threshold necessary to maintain an equal sized tree in which all of the non-

members lead. This is because player j gains a distance advantage over the Nα(j;σ) population

when leading but not when following i.

Since µαj ≥ 1 for all σ ∈ h(iA, iB; g),

(
1 +

µα(j̄h)− 1

µsh

)
≥ 1 >

(
1− 1

n− 1

)
. (14)

Thus, E(ih;σ) ≥ 0 imposes a higher threshold for θ than does the condition B ≥ 0. A multiple

leader structure cannot be an equilibrium when B < 0. The set of Nash equilibria are drawn

from hL(i, µsi ; g) only. The set h∗L(i, n̄; g) constitutes the set of Nash equilibria.

There are two features of this solution worth exploring. First, starting from the structure

σ ∈ h∗L(iA, n; g) and iB ∈ NL(σ), the condition E(iB;σ) < 0 for all µsB > 0 makes it imprudent

for any of the remaining n − n̄ − 2 leading players to instead follow iB since following would

lower the player’s own expected payoff.

Second, consider the impact of a second non-trivial tree on the original iA-led structure.

By the nature of the structure, µα(j̄A) = 0 if and only if µsB = 0. Otherwise, µα(j̄A) ≥ 1 for

µsB > 0. For µsB = 0, then E(iA) = C(µsA), the equation used to solve n. For µsB > 0, there
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Figure 6: An example of σ ∈ H(iA, iB; g) with iA = player 1, iB = player 7, and dµ = 2. With

d6,1 = 3 and d10,7 = 2, µβ(10) = 1. If Nd(10; g) = {5, 8}, then µβA(10) = 0.

is no positive value of µsA for which E(iA) ≥ 0 given B < 0. The result points to a fragility of

the σ ∈ h∗L(i, n̄; g) equilibrium structure. A single deviation that results in a second non-trivial

tree undermines the entire iA-led structure.

Theorem 1. Given a non-trivial choice, a preference for conformity, and a strongly connected

population, for every i ∈ N there exists an equilibrium structure with player i as the only leader.

Proof. Follows directly from Proposition 4 and Proposition 6.

Propositions 4 and 6 establish that a single-leader structure led by player i for all i ∈ N

is among the equilibrium set. The tree structure is supported by the presence of a meaningful

choice between options and a desire to conform, reflected in θ > 0.

4.2 B ≥ 0

For σ ∈ H(iA, iB; g), let dµ = µsA − µsB so that dµ captures the population size differential

between the two trees. Let NAB(iA, iB;σ) represent the set of followers possessing potential

links to predecessors in both trees. A strongly connected g ensures that some member of the

ih-led tree is able to link to some member of the i−h-led tree, h = A,B.

Let σ′ = σ−jh × σ
′
jh

be the structure produced by jh switching predecessors in order to

become a member of the i−h-led tree. The alternative structure identifies populations Nβ
−h(jh) =

Nβ(jh;σ′) and Ny
−h(jh) = Ny(jh;σ′). The former is the population of players in jh’s current tree

who are more distant from ih than is jh from i−h in σ′. The latter is the population in the i−h

led tree more distant from i−h than jh in σ′. Let µβ−h(jh) = |Nβ
−h(jh)| and µy−h(jh) = |Ny

−h(jh)|.
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As illustration, for player 10 in Figure 6, d10,7 = 2. In the player 1-led tree, only player 6

has a distance d6,1 = 3 > d10,7 and thus µβ(10) = 1. If Nd(10; g) = {3, 8}, then µβA(10) = 0 and

µyA(10) = 1 since, as a successor of player 1, d10,1 = 2 and no successor of player 7 has dj,7 > 2.

Let

FA(jA; θ,m, σ) := θ −
µβB(jA)− µβ(jA)−m(µy(jA)− µyB(jA))

dµ− 1− µs(jA))
, (15)

FB(jB; θ,m, σ) :=
µβ(jB)− µβA(jB) +m(µy(jB)− µyA(jB))

dµ+ 1 + µs(jB)
− θ. (16)

For σ ∈ H(iA, iB; g), members of NAB(iA, iB;σ) have the option to switch leaders. All

followers have the option to lead. Let H+(iA, iB; g) be the subset of H∗(iA, iB; g) satisfying the

three conditions of Proposition 7.

Proposition 7. B ≥ 0 allows multiple leader equilibrium structures when these feasible condi-

tions are met:

1. no leader is capable of linking directly with a member of another tree,

2. the most distant follower in each tree prefers following to leading despite the presence of

other trees, and

3. that all followers capable of linking to a member of another tree prefer their current

position.

Proof. See Appendix B

The proof of Proposition 7 confirms that D(j;σ) ≥ 0 ensures that player j ∈ NS(ih;σ) for

h = A,B prefers her current imitation strategy over leading so that for E(ih;σ) ≥ 0 the most

distant successor of ih prefers her current position in the ih-led tree to leading. The proof also

establishes that Fh(jh) ≥ 0 ensures that player jh ∈ NAB(iA, iB;σ) ∩ NS(ih;σ) prefers her

current imitation strategy over any available alternate imitation strategy that places her in the

i−h-led tree.

The higher minimum threshold to satisfy E(ih;σ) ≥ 0 rather than B ≥ 0 follows from

the weaker reward to following in a multi-leader setting. Consider σ1 ∈ H∗(i; g) and σ2 ∈
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H∗(iA, iB; g). Though the reward to following in a multi-leader setting depends on the size of

various position-specific relative populations, the structure-independent differential

E(π(j̄, σ1)− π(j̄h, σ2)) =
m− 1

m
(n− 1− µsh)rc

reveals a reward to following in the multi-leader σ2 that declines relative to following in the

single-tree structure of σ1 as the size of j̄h’s affiliated tree decreases.

The attraction to lead, on the other hand, depends only on the total size of the follower

population and not on how the followers are distributed among leaders. Let σ
′
h, h = 1, 2

represent the structure produced when j̄h switches to lead. The differential

E(π(j̄;σ
′
1)− π(j̄h;σ

′
2)) = re/m

is independent of n and µsh. The non-zero value reflects that with two trees, there is one less

follower, iB. Thus, maintaining followers in a multi-leader setting requires a θ that more strongly

penalizes leading.

The maximum possible lower bound on θ is generated by µα(jh) = n − 3 and µsh = 1. A

sufficient condition to ensure no follower prefers to lead is E′ ≥ 0 where

E′(µsh; θ, n) := θ − (n− 3) .

Though already established by Proposition 1, compute Fh for iA and iB and the condition

Nd(ih; g) ∩ {NS(i−h;σ), i−h} 6= ∅ violates Fh ≥ 0. That is, if either leader can link with

a member of the other tree, σ ∈ H(iA, iB, ; g) cannot be an equilibrium. Given E(ih) ≥ 0,

σ ∈ H∗(iA, iB; g) is an equilibrium only if every jh ∈ NAB(iA, iB;σ) has Fh(jh;m, rc, re) ≥ 0.

Generally, FA ≥ 0 and FB < 0 so that individuals in the smaller of the two trees prefer

joining the larger tree to gain the larger conformity reward. There are two scenarios, described

here informally based on the formal findings in the proof of Proposition 7, in which followers

prefer their position in a smaller tree to a switch to the larger tree. Such exceptions are the

basis that produce σ ∈ H+(iA, iB; g).

The first exception consists of a structure in which (i) the less populous tree has a population

concentrated near iB and (ii) the more populous iA-led tree has a bulge so that there is a large
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Figure 7: Illustration of Example 4 as a two-leader structure equilibrium. The dashed link is
the position available to jh in the i−h tree. Here, dµ = 3, µβB(jA) = 1, µβ(jB) = 10, µyA(jB) = 2,
µsA = 12, and µsB = 9. Let m = 2, then FA ≥ 0 implies θ ≥ 1

2 , FB ≥ 0 implies θ ≤ 3
2 , and

E(iB) ≥ 0 implies θ ≥ 11
9 . There is nontrivial support θ ∈ [11

9 ,
3
2 ] for which σ ∈ H+(iA, iB; g) is

a Nash equilibrium.

number of followers at a distance just below the most distant follower of iB. The structure

depicted in Figure 7 conforms to these features. Example 4 illustrates how this structure is

advantageous to jB.

Example 4. WithNAB(iA, iB;σ) = {jA, jB}, the structure depicted in Figure 7 is inH+(iA, iB; g)

for conforming values of θ. Player jB benefits from the possibility of holding a distance advan-

tage over the large population of β-labeled players. She would lose that advantage were she

to switch to the iA-led tree. Player jA does not gain advantage over the β population with a

switch to the iB-led tree and thus also prefers to stay. The large population of x-labeled players

is needed to counter the benefits to jB of the α- and γ-labeled populations were she to switch.

Formally, with µy(jB) = µs(jB) = 0, FB(jB; θ) ≥ 0 reduces to

θ ≤ θ ≡
µβ(jB)−mµyA(jB)

dµ+ 1
. (17)

In addition, with µy(jA) = µs(jA) = 0, FA(jA; θ) ≥ 0 reduces to

θ ≥ θ ≡
µβB(jA)

dµ− 1
. (18)

The two conditions define upper and lower bounds on permissible θ to have σ ∈ H+(iA, iB; g).

In general, each member of NAB(iA, iB;σ) imposes her own threshold on θ. For a particular σ

and g, the support producing σ ∈ H+(iAiB; g) may be empty, with θ ≤ θ, or may have θ fall

28



outside of the support. The lower bound on θ established by the condition E(iB) ≥ 0 can be

greater than that produced by FA ≥ 0, in which case the most distant follower of iB will lead

before jA considers switching to the iB-led tree.

The second exception, illustrated in Example 5, consists of structures in which a follower

in the less populous iB-led tree has a sufficiently large µy(jB) such that the larger conformity

reward offered by the iA-led tree does not compensate for the loss of a distance advantage over

the Ny(jB;σ) population.

Example 5. With NAB(iA, iB;σ) = {6, 9} and Nd(9; g) = {5, 7}, the structure σ depicted in

Figure 6 satisfies FB ≥ 0 with θ ≤ 1 + m
3 . The E(iB) ≥ 0 condition is satisfied with θ ≥ 2. The

condition E(iA) ≥ 0 is less stringent, requiring only that θ ≥ 7/5. To support σ ∈ H+(iA, iB; g)

as an equilibrium requires m ≥ 3. For, say, m = 4, then rc/re ∈ [6/9, 7/9] produces a non-empty

H+(iA, iB; g). In this range the certainty of the conformity reward discourages player 10 from

leading while the relatively high premium for leading pays enough to keep 9 from switching

to the greater conformity reward offered by the larger player 1-led tree. In this example,

σ ∈ H+(iA, iB; g) is preserved as the number of alternatives increases by a conforming rc/re

where lim
m→∞

rc/re ∈ (0, 1/3].

The structure in Figure 6 also illustrates how σ ∈ H+(iA, iB; g) depends on the possi-

ble links between players. Multi-leader structures are feasible as equilibrium (though not as-

sured) due to g-identified impediments to association. Consider the same σ but a g′ such

that NAB(iA, iB;σ) = {2, 9} instead of NAB(iA, iB;σ) = {6, 9}. Because FA(2; θ) < 0, then

σ /∈ H+(iA, iB; g). By switching trees, player 2 retains her distance advantage over players

{4, 5, 6} while forming a larger tree under player 7 than under player 1. Though player 2 is

not a leader, the feature that attracts her to join the player 7-led tree is the same as would

attract player 1: to gain larger conformity reward while retaining a distance advantage over her

population of successors.
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5 Non-conforming environments

5.1 Decreasing λ(µ)

Consider, again, the nonlinear payoff function of (1),

πNL(i;σ) = φ(µci ) + ψ(µei )

with λ(µ) = φ(µ)/ψ(µ), φ(0) = ψ(0) = 0, and φ′(µ), ψ′(µ) > 0. Recall that BNL ≥ 0 ensures

σ ∈ H∗(i; g) is an equilibrium when λ′(µ) ≥ 0 but not when λ′(µ) < 0, according to Proposition

4 and Corollary 1, respectively. With λ′(µ) ≥ 0, dissatisfaction with following, if present,

originates with the most distant follower. In contrast, as seen if Figure 4, λ′(µ) < 0 produces

local convexity in A(j;σ) with respect to µsj that causes middle distance followers with µsj > 0

and low µyj to prefer leading while the most distant follower, with µsj = µyj = 0, prefers following.

Recall from Section 3, given σ ∈ H∗(i; g) player j’s NS(j;σ) population provides a foun-

dational reward φ(µsj) + ψ(µsj) independent of j’s decision to lead or follow. Players with a

substantial Ny(j, σ) population have a strong incentive to follow as it produces a large positive

A2 component in (5). For those players with µyj at or near zero, the decision between following

and leading comes down to how to best position the Nx(j;σ) population to supplement the

NS(j;σ)-assured reward. The Nx(j;σ) population contributes towards a certain conformity

reward when j follows and towards an uncertain preemptive reward when j leads.

The sign of λ′(µ) indicates the change in relative marginal contribution between conformity

and preemption rewards as µ increases. With λ′(µ) = 0 the relative contribution is constant. For

λ′(µ) > 0, the relative importance of conformity relative to preemption increases as µsj increases

so that the contribution of conformity is relatively weak when µsj is small and strongest when µsj

is large. If the most distant follower, despite being in the position that most favors preemption

over conformity, still prefers following to leading, then so, too, do all other followers.

For λ′(µ) < 0, the relative importance of conformity relative to preemption decreases as µsj

increases so that the relative contribution of conformity is at its strongest when µsj is small and

becomes weaker as µsj increases. A follower with µsj > 0 extracts the substantial component

of the conformity from her successors. The marginal contribution of positioning the Nx(j;σ)

population to contribute to the conformity reward declines relative to the preemption reward as
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µsj increases. Taking advantage of the certainty of her successors in establishing her own smaller

hierarchy, the follower may find it beneficial to concede conformity with the larger population.

If lucky, player j as a leader of her own hierarchy chooses the same as i, adding the Nx(j;σ)

population to her own N s(j;σ) successors for the large preemption reward.

Given BNL ≥ 0 settings with λ′(µ) < 0 might, in contrast to λ′(µ) ≥ 0, instead tend to

organize into multiple small-conforming groups, each headed in its adoptions by an autonomous

leader. Also in contrast to λ′(µ) ≥ 0, among the features that make the multiple leader struc-

tures prevalent when λ′(µ) < 0 is the connectivity of g ∈ G(n). A single leader can be sustained

despite λ′(µ) < 0 when either all followers have zero or near zero values for µsj or when those

followers with µsj > 0 all also have µyj > 0. A g with few links, forcing followers into a small

number of long imitation branches, cannot sustain a single leader structure as equilibrium.

5.2 Excessive popularity

Consider a penalty for excessive popularity in the nature of Arthur (1994).

Example 6. For g ∈ G(n), consider a linear increasing conformity reward for a population not

in excess of n†,

φ(µc) =


rcµ

c for µc + 1 ≤ n†

0 otherwise

(19)

with n/2 ≤ n† < n− 2. The result is an environment that supports a tree of size µsA ≤ n† − 1.

The environment imposes a penalty for excessive conformity should f iA(aiA) = f iB (aiB ), though

the reward to early preemptive adoption remains. Those not in the primary tree may lead or

join to form a second tree. For a potential second tree, for illustrative purposes assume an equal

number of successors at each distance through the first nB − 1 successors so that for nA > nB,

the additional players are of greater distance from iA than is the most distant follower of iB. In

this case,

θ ≥ m

m− 1

(
1− 1

n− n† − 1
+

µα(jB;σ)

n− n† − 1

)
(20)

ensures σ ∈ {H∗(iA, iB; g)|µsA = n† − 1} is an equilibrium. The condition in (20) supports the

formation of a population of size µsA = n†−1 as successors of some iA leader and is necessary to

have µsB = n−n†− 1 succeed some iB leader. The threshold on θ is higher than that produced
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Players
Contacts
1 2

i x s1

j i s2

x i j

s1 j s2

s2 j s1

Table 5: Links of g in an example for which not all σ ∈ {H∗(i; g)}i∈N are subgame perfect
equilibrium.

by the condition E(iB) ≥ 0. When this condition does not hold, there is no interior value to

0 < µsB < n− n† − 1 that is an equilibrium.15

5.3 Sequential play

5.3.1 Subgame perfect hierarchies

The single leader structure can also be supported as a subgame perfect equilibrium (SPE) in

a game with σ established through sequential moves. Typically, the first mover can establish

herself as the leader and the remaining population adopts the following strategy to best accom-

modate this reality generating the same single leader Nash equilibrium structures produced by

simultaneous play. There are instances, though, in which the first mover does not end up as the

leader in the equilibrium structure, as illustrated in Example 7 below. The inability of player

i to lead in a SPE indicates a susceptibility of the Nash equilibrium σ ∈ H∗(i; g) to disruption

by a player whose deviation from Nash equilibrium play, in a cascade of best responses, would

lead to a different Nash equilibrium σ /∈ H∗(i; g) favored by the original deviant player.

Example 7. Table 5 lists the potential links of network g. Each member of the population has

two contacts. Figure 8 depicts {σ1} = H∗(i; g) and σ3 ∈ H∗(j; g), both Nash equilibria. Given

i, j, x, s1, and s2 as the order of play, σ3, rather than σ1, is the SPE despite i’s first mover option

to establish herself as a leader. The full extensive-form game is included in Appendix D.1. Best

response to player i leading produces σ2 ∈ h∗L(j, µs(j); g) in which both i and j lead but with

j attracting all of the followers. Two features present in σ1 and g are essential to exclude it

15For µsB < n− n† − 1, the necessary condition to have the most distant successor of iB remain a follower is

θ ≥ m

m− 1

(
1 +

µα(jB ;σ)− 1

µsB

)
+

(m− 2)rc
(m− 1)re

(
n− n† − 1

µsB
− 1

)
for which, with µα(jB ;σ) ≥ 1 and µsB ≤ n− n† − 1, the threshold on θ declines as µsB is increased.
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x j

s1 s2

(a) {σ1} = H∗(i; g)

i

x

j

s1 s2

(b) σ2 ∈ h∗L(j, µs(j); g) where
both i and j lead. Only j is a
leader.

i

x

j

s1 s2

(c) σ3 ∈ H∗(j; g) where
player i is indifferent be-
tween following x or s1.

Figure 8: The tree structures of σ1 and σ3 are both Nash equilibria structures based on g
as defined in Table 5. For for moves in the order i, j, x, s1, then s2, only σ3 is a SPE . The
structure σ2 reflects the best response by players x, s1, and s2 if faced with both i and j leading.
The fact that j prefers σ2 to σ1 is what undermines player i’s leadership when considering a
cascade of best responses.

from the set of SPE. First, player j’s has an advantage in attracting followers despite i moving

first. Because s1 and s2 have no choice but to follow j, j has the larger population of followers

regardless of x’s decision regarding whom to follow. This compels x to follow j. Second, the

potential defector from the actions producing σ1 must be motivated to defect despite i’s lead

as is true here with π(j;σ2) > π(j;σ1). The motivation in this example comes from player x.

Player x best responds by following j when both i and j lead.

Similar to the best response cascade discussed in Heal and Kunreuther (2010), were the

population to start from σ1, the cascade of best responses to the single deviation by player j

transitions the population from σ1 to σ3. As is trivially exemplified in the n = 2 example, a

Nash equilibrium can be susceptible to a best response cascade that just as easily reverses in

direction. This does not contribute to identifying the more “fragile” Nash equilibria prone to

transition to a more stable alternative Nash equilibrium. SPE offers such a refinement as to

avoid cascades that would reverse from the destination structure.

5.3.2 Multiple hierarchies as subgame perfect

Appendix D.2 offers an analysis of the σ ∈ H∗(iA, iB; g) structure with FB ≥ 0 in support of the

two leader equilibrium illustrated in Example 5. Recall that NAB ∩NS(7) = {9} and µy(9) > 0

supports a H∗(iA, iB; g) structure as a Nash equilibrium. Such a σ is not a SPE regardless of the

order of play within the players of the player 7-led tree. The reason is that as the only conduit
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through which player 7 and the NS(7, σ) population can join NS(1, σ), player 9’s switch to join

the player 1-led tree enables the remainder of NS(7, σ) to also join in following NS(1, σ) in a

cascade of best responses. The end result is to player 9’s advantage as she now precedes player

7 and the entire former NS(7, σ) population.

6 Conclusion

The model offers a structure by which to consider the social structures that may arise to

support trends among subjective products. Driven by a desire for conformity, personal contacts

provide scaffolding upon which the population establishes information pathways facilitating

both informed decisions and channels with which to exert influence. With the tacit support of

the entire population, a leader identifies the choice for adoption. The choice disseminates to

and through followers via a network of imitations.

A desire to preempt a trend means that the number of followers and whether multiple leaders

can be present in equilibrium depends on the tradeoff between following an existing leader or

acting autonomously in the presence of that leader. The parameter θ captures this tradeoff in

the linear rewards model. Interestingly, the term is relevant to the decisions of the population’s

followers, not its leader(s). Everyone wants to be the leader. It is the willing participation of

the followers that makes the structure an equilibrium.

Left unresolved in the current analysis is the process by which the coordinating Nash equilib-

rium structure can emerge. The substantial coordination involved, confounded by the asymme-

try of the equilibrium payoff, makes the realization of an equilibrium structure in a single round

of play highly unlikely. The analysis developed here rests on the possibility that coordination

can emerge as the consequence of building consistency in player relationships. Computational

analysis points processes by which the coordinating structure of the static Nash equilibrium

solution can emerge as the consequence of reactive path dependent repeated play. Whether the

identified Nash equilibria emerge as the final product of dynamic equilibria play in a repeated

game is another question altogether.
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A Appendix: Foundations

Formally, define

• h(i; g) = {σ|i ∈ NL, NS(i;σ) 6= ∅} as the set of structures in which i leads,

• H(i; g) = {σ|NL(σ) = {i}, NS(i;σ) = N\{i}} as the set of structures in which i uniquely

leads,

• hL(i, µsi ; g) = {σ ∈ h(i; g)|NL(σ) = N\NS(i;σ)} as the set of structures in which i has µsi

followers and is the unique leader,

• h(iA, iB; g) = {σ ∈ h(iA; g)∩h(iB; g)} as the set of structures in which {iA, iB} are leaders,

• H(iA, iB; g) = {σ ∈ h(iA, iB; g)|NL(σ) = {iA, iB}} as the set of structures in which only

{iA, iB} lead and are leaders,

• N c(i; a) = {j ∈ N\{i}|Oi = Oj} as, for action profile a, the set of conforming adopters,

• N e(i; a) = {j ∈ N c(i; a)|dj > di} as, for action profile a, the set of ensuing adopters,

• NS(i;σ) = {j ∈ N |σji = 1 or σjj1 = . . . = σjτ i = 1} as, for structure σ, the set of players

who are successors to i,

• Nx(j;σ) = {jx ∈ NS(i;σ)|dxi ≤ dji} as, for structure σ, the set of players who are as

close or closer to leader i as is j,

• Ny(j;σ) = {jy ∈ NS(i;σ)\NS(j, σ)|dyi > dji} as, for structure σ, the set of players who

are farther from leader i than is j but not successor to j,

• Nα(jh;σ) = {jα ∈ NS(i−h;σ)|djαi−h ≤ djhih} as, for structure σ, the set of players who

are as close or closer to leader i−h as is j to ih,

• Nβ(jh;σ) = {jβ ∈ NS(i−h;σ)\NS(j, σ)|djβi−h > djhih} as, for structure σ, the set of

players who are farther from leader i−h than is j to ih,

• NAB(iA, iB;σ) = {j|Nd(j; g)∩{iA, NS(iA;σ)} 6= ∅, Nd(j; g)∩ (iB, N
S(iB;σ)} 6= ∅} as, for

structure σ, the set of players with potential links to members of both of the iA-led tree

and the iB-led tree,

35



and recognize that for g ∈ G(n)

• Nd(ih; g) ∩ {NS(i−h;σ), i−h} = ∅ implies NAB(iA, iB;σ) ∩NS(ih;σ) 6= ∅.

An ∗ on the set of structures indicate that all followers imitate the contact offering the shortest

distance to the leader, that is aj = arg min
Nd(j;g)

dji ∀j ∈ N s(i;σ). The sets h∗L(i; g) and h∗(iA, iB; g)

have the additional condition that the N l(σ) population are at least as distant from the leader

as is the most distant follower measured in the potential links of g, dij ≥ dij̄(µsih ) for j ∈ N l(σ),

h = ∅, A,B.

A.1 Utility of interactions

Individuals face a discrete choice in which they receive utility from the interaction between their

own choice and the choices of other members in the population. Let the m× d̄ matrix ωi denote

the adoption of an option with element wi,o,d = 1 if player i adopts option oi ∈ O at distance

di = d. Otherwise, ωi,o,d = 0. Let ω−i = (ω1, . . . , ωi−1, ωi+1, . . . , ωn) represent the choices of all

agents other than i. Individual utility can be defined broadly as the sum of three elements,

V (ωi) = u(ωi) + S(ωi, ω−i) + ε(ωi).

The current analysis considers only the social utility associated with a choice, S(ωi, ω−i), setting

the innate preferences over the different options, u(ωi), and the idiosyncratic random element

of utility, ε(ωi), each to zero.16

Let the n × d̄ matrix Ωi denote the possession of an option with element Ωi,o,d = 1 when

player i adopts option oi ∈ O at distance di ≤ d. Otherwise, Ωi,o,d = 0. Let

µi =
∑
j 6=i

ωj

and

νi =
∑
j 6=i

Ωj

so that µi denotes the aggregate choice for each option at each distance and νi denotes the

cumulative aggregate choice at each distance.

16Also excluded from the utility function is a direct reward from early adoption. The coordination problem of
interest is distinct from the utility some people might receive simply by being the first to try new products.
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The complementarities of the social choice depends only on the two measures of popularity,

µci = 1′µ′iωi1

and

µei = µci − 1′ωiν
′
iωi1.

Let

S(ωi, µ
c
i , µ

e
i ) = φ(µci ) + ψ(µei ),

then linearity with φ(x) = rcx and ψ(x) = rex produces constant cross partials

∂2S(ωi, u
c
i , µ

e
i )

∂ωi,o,d∂µi,o,d
= rc and

∂2S(ωi, u
c
i , µ

e
i )

∂ωi,o,d∂νi,o,d
= re,∀i, o, d

so that dependence across players is captured by the two constant coefficients.

A.2 Formal Statement of Lemmas

Lemma 1. For every g ∈ G(n) there exists H(i; g) 6= ∅ for all i.

Lemma 2. For {σ, σ′} ∈ H(i; g) with σ−j = σ
′
−j and {aj , a

′
j} ∈ Nd(j; g), then for µx(j;σ) ≤

µx(j;σ′) ,

π(j;σ)


= π(j;σ′) if µx(j;σ) = µx(j;σ′),

> π(j;σ′) if µx(j;σ) < µx(j;σ′).

B Appendix: Propositions and proofs

B.1 Formal statement and proof of Proposition 1 and Corollary 1

Proposition 1. For σ ∈ H(i; g), σ′ ∈ h−(i, σ; g), and λ′(µ) ≥ 0, the condition BNL ≥ 0 is a

necessary and sufficient condition for πNL(j, σ) ≥ πNL(j, σ′) for all j ∈ NS(i;σ).

Proof. Let σ−j indicate the strategies of all players in N\{j}. For σ ∈ H(i; g), let σ
′

= σ
′
j×σ−j

and σ
′
jj = 1 producing σ

′ ∈ h−(i, σ; g). Let µhj = µh(j;σ) = |Nh(j;σ)| for h = x, y, s so

that relational populations are identified according to the structure σ. Recall φ′(µ) > 0 and
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ψ′(µ) > 0. For player j ∈ NS(i;σ),

π(j;σ) = φ(n− 1) + ψ(µyj + µsj).

The payoff to j when leading is uncertain due to the uncertainty in the outcome of whether

fi(ai) = fj(aj). Expectations are taken over the possible maps f with

E(π(j;σ
′
)) =

1

m
(φ(n− 1) + ψ(µxj + µyj + µsj)) +

m− 1

m
(φ(µsj) + ψ(µsj)) (21)

The condition ANL(j;σ) ≥ 0, derived from E(π(j;σ) − π(j;σ′)) ≥ 0, ensures that player j ∈

NS(i;σ) prefers her position as a follower of i over leading.

The condition BNL ≥ 0 is equivalent to A(j̄;σ) ≥ 0 for j̄ = argmax
j∈NS(i;σ)

dji. For j̄, µy(j̄) =

µs(j̄) = 0, leaving

ANL(j̄;σ) = (m− 1)[φ(n− 1)− φ(n− 2)] + (m− 1)φ(n− 2)− ψ(n− 2) ≥ 0.

The first term is strictly positive. BNL ≥ 0 implies

(m− 1)φ(n− 2)− ψ(n− 2) ≥ −(m− 1)[φ(n− 1)− φ(n− 2)].

For follower j,

ANL(j;σ) = A1 +A2(µyj , µ
s
j) +A3(µsj) (22)

where

A1 = (m− 1)[φ(n− 1)− φ(n− 2)]

A2(µyj , µ
s
j) = [ψ(µyj + µsj)− ψ(µsj)]

A3(µsj) = [(m− 1)λ(n− 2)− 1]ψ(n− 2)− [(m− 1)λ(µsj)− 1]ψ(µsj).

Recall λ(µ) = φ(µ)/ψ(µ) and n−2 = µxj +µyj +µsj . Observe that for µsj = n−2, A2(0, n−2) = 0

and A3(n− 2) = 0.
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The derivative of A3(µ) yields

A
′
3(µ) = −(m− 1)ψ(µ)λ′(µ)− [(m− 1)λ(µ)− 1]ψ′(µ).

Recall ψ(0) = 0 and ψ′(µ) > 0. The sign of the first term is determined by λ′(µ). The sign

of the second term is determined by the sign of (m − 1)λ(µ) − 1. For λ′(µ) = 0 only the

second term remains. An A3(0) > 0 implies (m − 1)λ(n − 2) − 1 > 0 and thus for λ′(µ) = 0,

(m − 1)λ(µ) − 1 > 0 so that A
′
3(µ) < 0 for all µ. Likewise, A3(0) < 0 implies A

′
3(µ) > 0 and

A3(0) = 0 implies A
′
3(µ) = 0 for all µ. Thus, λ′(µ) = 0 produces an A3(µ) function that is

monotonically converging on A3(n − 2) = 0, either from above if A3(0) > 0 or from below if

A3(0) < 0. In the former case, arg minA3(µsj) = n − 2 so that A3(µsj) ≥ 0 for µsj ∈ [0, n − 2]

indicating that every follower is content to follow rather than lead in the presence of leader i.

For the latter, A3(µsj) < 0 for µsj ∈ [0, n− 2) with arg minA3(µsj) = 0 so that the most distant

follower, with µsj = µyj = 0 is the most dissatisfied follower. The most distant follower prefers

to lead if A3(0) < −A1.

For λ′(µ) > 0, the first term is zero at the origin and otherwise negative. An A3(0) > 0

still ensures (m − 1)λ(n − 2) − 1 > 0 but with λ(0) < λ(n − 2), (m − 1)λ(0) − 1 could be less

than zero. The ψ(0) = 0 in the first term leaves the sign of A
′
3(0) to be determined by whether

(m− 1)λ(0)− 1 > 0 or (m− 1)λ(0)− 1 < 0. The sign A
′
3(µ) for interior values of µ is subject

to the combined effects of λ(µ), ψ(µ), λ′(µ), and ψ′(µ). Let A0
3(µ) indicate the A3(µ) produced

by a given ψ(µ) and where λ′(µ) = 0. Despite the freedom in characterizing A3(µ), given ψ(µ),

A3(µ) = A0
3(µ) at µ = 0, n− 2 and for λ′(µ) > 0, A3(µ)−A0

3(µ) ≥ 0 for 0 < µ < n− 2 so that

A0
3(µ) is the lower bound for A3(µ). Thus, the conditions arg minA3(µsj) = n− 2 for A3(0) > 0

and arg minA3(µsj) = 0 for A3(0) ≤ 0 for µsj ∈ [0, n − 2], identified for λ′(µ) = 0, remain true

for λ′(µ) > 0.

Corollary 1. For σ ∈ H(i; g), σ′ = {h−(i, σ; g)|σ′jj = 1}, and BNL ≥ 0, if λ′(µ) < 0 then

πNL(j, σ) < πNL(j, σ′) is possible for some j ∈ NS(i;σ)\{j̄}.

Proof. For λ′(µ) < 0, the first term is zero at the origin and otherwise positive. An A3(0) > 0

ensures (m − 1)λ(n − 2) − 1 > 0 and thus (m − 1)λ(µ) − 1 > 0, µ ∈ [0, n − 2]. For λ′(µ) > 0

and a given ψ(µ), A3(µ) − A0
3(µ) ≤ 0 for 0 ≤ µ ≤ n − 2 so that A0

3(µ) is the upper bound for

39



A3(µ). Thus, the condition arg minA3(µsj) = n − 2 for A3(0) > 0 and arg minA3(µsj) = 0 for

A3(0) ≤ 0 is not assured when λ′(µ) < 0. Sufficient, but by no means necessary, evidence that

A3(µ) has a minimum for some interior value of µ would be a positive slope in A3(µ)|µ=n−2.

Realizing (m− 1)λ(n− 2)− 1 = A3(0), A
′
3(n− 2) > 0 if

(m− 1)ψ(n− 2)λ′(n− 2) +A3(0)ψ′(n− 2) < 0

which, with λ′(n− 2) < 0, can be true even for A3(0) > 0.

B.2 Evaluation of Proposition 1 with linear payoff

Proof. Let σ−j indicate the strategies of all players in N\{j}. For σ ∈ H(i; g), let σ
′

= σ
′
j×σ−j

and σ
′
jj = 1 producing σ

′ ∈ h−(i, σ; g). Let µhj = µh(j;σ) = |Nh(j;σ)| for h = x, y, s. For

player j ∈ N\{i},

π(j;σ) = rc(µ
x
j + µyj + µsj + 1) + re(µ

y
j + µsj). (23)

The payoff to j when leading is uncertain due to the uncertainty in the outcome of whether

fi(ki) = fj(kj). Expectations are taken over the possible maps f with

E(π(j;σ
′
)) =

1

m
((rc + re)(µ

x
j + µyj + µsj) + rc) +

m− 1

m
(rc + re)µ

s
j (24)

= (rc + re)µ
s
j +

1

m
((rc + re)(µ

x
j + µyj ) + rc).

The condition A(j;σ) ≥ 0, derived from E(π(j;σ) − π(j;σ′)) ≥ 0, ensures that player j ∈

NS(i;σ) prefers her position as a follower of i over leading.

With µyj ≥ 0 the first term of A(j;σ) as expressed in (9) is strictly positive. For θ =

(m−1)rc/re > 1 the second term is also positive so that A(j;σ) > 0 for all j ∈ N\{i}. For θ < 1,

the coefficient on µxj is negative. For j̄ = argmax
j∈NS(i;σ)

dji, µ
y
j = µsj = 0 and µxj = n−2. With n−2 as

the maximum possible value for µxj , A(j̄;σ) ≤ A(j;σ) for θ < 1. With B = A(j̄;σ)/(re(n− 1)),

B ≥ 0 is necessary and sufficient to ensure A(j̄;σ) ≥ 0 implies A(j;σ) ≥ 0 ∀j ∈ N\{i}, for all

σ ∈ H(i; g), and for all i ∈ N .
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B.3 Formal statement and proof of Proposition 2

Proposition 2. For σ ∈ H(i; g) and aj ∈ Nd(j; g), aj = arg min
Nd(j;g)

µxj if aj = arg min
Nd(j;g)

dji.

Structure σ′ ∈ H ′(i; g) if σ′ ∈ H∗(i; g) or if σ′ = σ−j × σ
′
j with a

′
j = j′ where σ ∈ H ′(i; g) and

where j ∈ NS(i;σ) satisfies the following three properties

1. j′ ∈ Nd(j, g) with dj′i = dji,

2. µy(j;σ) = 0, and

3. either µs(j;σ) = 0 or µs(j;σ) > 0 with successors NS(j;σ) having no option to link to i

but through j.

Proof. For {j1, j2} ∈ Nd(j; g) with dj1i < dj2i, let σh = σ|σjjh = 1, h = 1, 2, so that µx(j, σ1) ≤

µx(j, σ2). The condition that allows µx(j, σ1) = µx(j, σ2) is µyj = 0. With j2 /∈ NS(j;σ), µyj = 0

implies j2 ∈ Nx(j;σ) and dj2i = dji = dj1i + 1. For σ1 ∈ H ′(i; g), a necessary and sufficient

condition to have σ2 ∈ H
′
(i; g) is that for all js ∈ NS(j;σ1), Nd(js; g) ⊂ {NS(j;σ) ∪ {j}}.

The condition establishes that no successor of j has the option to link to i without having the

chain of links pass through j, a condition necessary to ensure that µx(js;σ
2) is minimized for

all js.

B.4 Formal statement and proof of Proposition 3

Proposition 3. If σ ∈ H(i; g) is a Nash equilibrium, then σ ∈ H ′(i; g).

Proof. For player i, leading dominates following since to choose one’s own successor as a pre-

decessor pays zero. From µe(j) = µyj + µsj and µyj = n − 2 − µsj − µxj , increasing µxj decreases

π(j;σ). Among the following options, a player can do no better than to minimize µxj . A player

who is not minimizing µxj is not optimizing against her available following options. Thus, any

structure σ ∈ H(i; g)\H ′(i; g) cannot be a Nash equilibrium. For σ ∈ H ′(i; g) each player is

optimizing from the set of strategies that preserve σ ∈ H(i; g).

B.5 Formal statement and proof of Proposition 4

Proposition 4. B ≥ 0 is a necessary and sufficient condition for {H ′(i; g)}i∈N to be a set of

equilibrium strategies to the exclusion of all {H(i; g)\H ′(i; g)}i∈N .
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Proof. From Proposition 1, given B ≥ 0, every player j ∈ N\{i} prefers any structure σ ∈

H(i; g) over the structure produced by player j’s deviation to lead. In combination with Propo-

sition 3, B ≥ 0 implies that no follower in the population can do better for herself than to

minimize her µxj .

Corollary 2. B ≥ 0 is a necessary and sufficient condition for {H∗(i; g)}i∈N to be a set of

equilibrium strategies.

B.6 Formal statement and proof of Proposition 5

Proposition 5. For B < 0 and θ 6= 0, if σ ∈ hL(i, µsi ; g) is a Nash equilibrium, then σ ∈

h∗L(i, n̄; g) where n̄ is an integer value with |n̄− µ∗| < 1.

Proof. Let µhj = µh(j;σ) = |Nh(j;σ)| for h = x, y, s and µl = µl(σ) = |NL(σ)|. For σ ∈

hL(i, µsi ; g), let σ
′

= σ
′
j × σ−j and σ

′
jj = 1, j ∈ NS(i;σ). The payoff to j when following

is uncertain due to the uncertainty in the outcome of whether fi(ki) = fl(kl) for each l ∈

NL(σ)\{i} with,

E(π(j;σ)) = rc(µ
x
j + µyj + µsj + 1) + re(µ

y
j + µsj) +

1

m
rc(µ

l − 1). (25)

The payoff to j when leading is uncertain due to the uncertainty in the outcome of whether

fj(kj) = fl(kl) for each l ∈ NL(σ) with,

E(π(j;σ′)) = (rc + re)µ
s
j +

1

m
(rc + re)(µ

x
j + µyj ) +

1

m
rc(µ

l(σ)). (26)

For agent j ∈ NS(i;σ), the same condition A(j;σ) ≥ 0 as developed for Proposition 1, derived

from E(π(j;σ)− π(j;σ′)) ≥ 0 using (25) and (26), ensures that player j ∈ NS(i;σ) prefers her

position in the hierarchy over leading. Let j̄(µsi ) = arg max
j∈NS(i;σ)

dji, then µy(j̄(µsi )) = µs(j̄(µsi )) = 0

and µx(j̄(µsi )) = µsi − 1 so that

A(j̄(µsi );σ) = (m− 1)rc + ((m− 1)rc − re)(µsi − 1) (27)

and C(µsi ; θ) = A(j̄(µsi );σ)/reµ
s
i . With B < 0, ((m−1)rc−re) < 0 so that A(j̄(µsi );σ) decreases

as the size of the tree increases. For µsi = 1, A(j̄(1), σ) = (m − 1)rc > 0 while B < 0 means
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that for µsi = n− 1, A(j̄(n− 1);σ) < 0.

For m = 1, A(j;σ) = −reµxj < 0. For rc = 0, A(j;σ) = re((m − 1)µyj − µxj ) so that the

most distant follower, with A(j̄(µsi );σ) = −re(µsi − 1) ≤ 0, prefers to lead in the presence of

other followers. Player j̄ is indifferent to leading only when she is the only follower, m = 1,

and rc = 0. With a non-trivial choice (m > 1) and a preference for conformity (rc > 0), the

equilibrium structure requires µsi ≥ 1.

The value of µsi that sets C(µsi ; θ) = 0 need not be an integer. There exists n̄ ∈ {floor(µ∗), ceil(µ∗)}

such that A(j(n̄);σ) ≥ 0 and A(j(n̄+ 1);σ) < 0. A structure σ ∈ hL(i, n̄; g)\h∗L(i, n̄; g) cannot

be an equilibrium because either there are members of NS(i;σ) able to improve their payoff by

choosing a different predecessor offering a shorter distance to i or there is a member of NL(σ)

able to improve her payoff by choosing to follow a predecessor offering a shorter distance to

i than the current j̄(µsi ) player. For σ ∈ h∗L(i, n̄; g), no player is able to improve her payoff

through unilateral deviation while preserving a single-leader structure.

B.7 Formal statement and proof of Proposition 6

Proposition 6. B < 0 is a necessary and sufficient condition for {h∗L(i, n; g)}i∈N to be the set

of equilibrium strategies.

Proof. Let µsh = µs(ih). For σ ∈ h∗(iA, iB; g), let σ′ = σ−j ×σ
′
j , with σ

′
jj = 1, j ∈ NS(i;σ). For

j, the expected payoff for following and leading are, respectively,

E(π(j;σ)) = rc(1 + µxj + µyj + µsj) + re(µ
y
j + µsj) (28)

+
1

m
(rc(µ

l(σ)− 1 + µαj + µβj ) + re(µ
β
j )),

E(π(j;σ′)) = (rc + re)µ
s
j (29)

+
1

m
((rc + re)(µ

x
j + µyj + µαj + µβj ) + rcµ

l(σ))

where µhj = µh(j;σ) = |Nh(j;σ)| for h = x, y, s, α, β and µl = µl(σ) = |NL(σ)|. Observe, for

h = A,B,

1 + µxj + µyj + µsj︸ ︷︷ ︸
=µsh

+ µαj + µβj︸ ︷︷ ︸
=µs−h

+ µl = n.

The condition E(π(j;σ) − π(j;σ′)) ≥ 0 implies D(jh;σ) ≥ 0 as reported in (12). For the
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most distant player(s) from ih according to σ, E(ih;σ) = D(j̄(µsh);σ)/reµ
s
h. With µy(j̄(µsh)) =

µs(j̄(µsh)) = 0, µx(j̄(µsh)) = µsh−1, and µα(j̄(µsh)) ≥ µα(jh) for all jh ∈ NS(ih;σ), D(j̄(µsh);σ) ≥

0 implies D(jh;σ) ≥ 0 for all j ∈ NS(ih;σ), so that E(ih;σ) ≥ 0 is necessary and sufficient to

ensure D(jh;σ) ≥ 0 holds for all jh ∈ NS(ih;σ). Since

(
1 +

µαh(jµsh)− 1

µsh

)
≥ 1 >

(
1− 1

n− 1

)
,

the condition E(ih;σ) ≥ 0 violates B < 0. For σ ∈ h∗L(i, n̄; g), no player is able to improve her

payoff through unilateral deviation.

B.8 Formal statement and proof of Proposition 7

Proposition 7. For

H+(iA, iB; g) = {σ ∈ H∗(iA, iB; g)}

such that Nd(ih; g) ∩ {NS(i−h;σ), i−h} = ∅,

E(ih, µ
s
h, θ, σ) ≥ 0,

Fh(jh; θ,m, σ) ≥ 0 for all j ∈ NAB(iA, iB;σ),

a structure σ ∈ H(iA, iB; g) is a Nash equilibrium if and only if σ ∈ H+(iA, iB; g). The set

H+(iA, iB; g) is feasibly non-empty.

Proof. For σ ∈ H(iA, iB; g), without loss of generality, let µsA ≥ µsB. With g ∈ G(n), {ih ∪

NAB(iA, iB;σ)} ∩ {i−h ∪ NS(i−h;σ)}, h = A,B, are both nonempty sets. The compliments

{ih, NS(ih;σ)}\NAB(iA, iB, σ) h = A,B can be nonempty, indicating that possibly ih and

some j ∈ NS(ih;σ) have no direct potential link to {i−h, NS(i−h;σ)} with the current σ.

For player jh ∈ NS(ih;σ), expected payoff for remaining a follower in the ih-led tree is

E(πh(j;σ)) as expressed in (28). Let σ′h→−h = σ−jh × σ
′
jh, with jh ∈ NS(i−h;σ

′
h→−h). That

is, σ′h→−h ∈ H∗(iA, iB; g) represents the alternative to σ ∈ H∗(iA, iB; g) based on a switch by

player jh ∈ NAB(iA, iB;σ) ∩NS(ih;σ) from the ih-led tree to the i−h-led tree. Compute

E(π(jh;σ)− π(jh;σ
′
h→−h)) =

1

m
((m− 1)rc(µ

s
h − µs−h − 1− µs(jh))

+re(µ
β(jh)− µβ−h(jh) +m(µy(jh)− µy−h(jh))).
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Table 6: Example 2 payoff matrix and game for n = 2, m = 2, rc = 1, re > 0

(a) State-Dependent Payoffs

Player 2
lead (options)

follow
O1 O2

lead O1 1,1 0,0 re + 1, 1
Player 1 (options) O2 0,0 1,1 re + 1, 1

follow 1, re + 1 1, re + 1 0,0

(b) Action-dependent expected payoffs

Player 2
lead (labels)

follow
A B

lead A 1
2 ,

1
2

1
2 ,

1
2 re + 1, 1

Player 1 (labels) B 1
2 ,

1
2

1
2 ,

1
2 re + 1, 1

follow 1, re + 1 1, re + 1 0,0

The condition FA ≥ 0 of (15) corresponds to E(π(jA;σ)− π(jA;σ
′
A→B)) ≥ 0 and the condition

FB ≥ 0 of (16) corresponds to E(π(jB;σ)− π(jB;σ
′
B→A)) ≥ 0.

The condition Fh(ih) ≥ 0 reduces to

−

(
θ −

(
1− 1

µs−h + 1

))
≥ 0.

Since µs−h ≤ (n − 2), B ≥ 0 ensures that Fh(ih) ≤ 0 for both leaders. The condition holds

at equality only if B = 0 and µs−h = (n − 2), a condition that cannot hold for both leaders

simultaneously.

Fh(j) > 0 for all j ∈ NAB(iA, iB;σ) is feasible.

C Appendix: Examples

C.1 Example 2

The full payoff matrix associated with each possible outcome is listed in Table 6a. Table 6b is the

proper normal-form game based on the options labels K = {A,B}. The payoff table includes all

possible actions by each player and the expected payoff associated with the uncertain outcome

produced when both players lead.
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C.2 Multiple-leader structures

Two scenarios allow for a multiple leader structure in equilibrium with linear payoff functions.

Both feature a σ given g such that a particular follower finds it advantageous and feasible to

preserve the multiple leader structure.

C.2.1 Example 4

Let µh(j) = µh(j;σ) = |Nh(j;σ)| for h = x, y, s, α, β. For h = A,B, let σ′ = σ−jh × σ
′
jh

be the

structure produced by jh switching predecessors in order to become a member of the i−h-led tree.

The alternative structure identifies populationsNβ
−h(jh) = Nβ(jh;σ′) andNy

−h(jh) = Ny(jh;σ′).

Let µβ−h(jh) = |Nβ
−h(jh)| and µy−h(jh) = |Ny

−h(jh)|.

The structure σ is as depicted in Figure 7. With µy(jA) = µs(jA) = µβ(jA) = µy(jB) =

µs(jB) = µβA(jB) = 0, FA ≥ 0 and FB > 0 of (17) and (18) jointly imply

µβB(jA)

θ
+ 1 ≤ dµ <

µβ(jB)−mµyA(jB)

θ
− 1. (30)

The key features needed of σ to satisfy (30) are

1. µsB ≥ 1 + µα(jB) + (mµyA(jB) − (θ − 1)µβ(jB))/θ so that µsB is larger than µsA less the

NS(iA;σ) followers at distance djB ,i+ 1. Each member of the Ny
A(jB) population requires

m members of NS(iB;σ) to keep jB in NS(iB;σ). θ = 1 is the minimum possible threshold

on θ derived from Eh ≥ 0. The stronger condition µsB ≥ 1 + µα(jB) + mµyA(jB) ensures

FB ≥ 0 over the entire feasible support for θ;

2. a concentration of the iA-led population at the distance djB ,iB + 1 sufficiently large to

have µsA ≥ µsB despite feature 1;

3. djB ,iA ≥ djB ,iB + 1; and

4. djA,iB = djB ,iB + 1.

Figure 7 is an equilibrium structure satisfying (30). Feature 1 requires a large x population

based on the sizes of the α and γ populations. The β population is sufficiently large to produce

µsA ≥ µsB in accordance with Feature 2. So that jB prefers the iB-led tree, she cannot benefit

from the β population were she to switch, which is captured by Feature 3. Feature 4 puts jA
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in a position where she fails to share in jB’s distance advantage over the β population from the

iB-led tree, thereby keeping µβB(jA) small. By Feature 3, the β population exists within the

distance range djB ,iB + 1 and djB ,iA (inclusive) but Feature 4 constrains the population to have

a distance of djB ,iB + 1.

C.2.2 Example 5

The inequality FB(jB) > 0 supports follower jB ∈ {NS(iB, σ) ∩NAB(iA, iB;σ)|µsj = 0, µyj > 0}

in her current position, as illustrated in Example 5. The additional imposition of µyA(jB) = 0

minimizes the attraction of the iA-led tree to jB as it implies player jB has to join the iA-led

tree at the maximum distance.

D Appendix: Sequential play games

D.1 Unsupported leaders

The g network is as listed in Table 5. The extensive-form game depicted in Table 7 only includes

the decisions of i, j, and x in that order of play since s1, s2 ∈ NS(j; {σ1, σ2, σ3}). Each player

has the option to lead, labeled “L”, or to imitate the first or second contact. Under “Strategies”

are the actions employed to achieve each structure, identified by number in the top row of the

table. The payoff to each player in each structure is listed in the “Payoff” section of Table 7.

Those payoff areas labeled “Loop” are strategies that produce self-referencing imitation loops

with no leader within the loop. Since this generates a zero payoff for those in the loop, a

structure that includes a loop is never an equilibrium strategy.

Structure 5 in the decision tree generates σ1 ∈ H∗(i; g). The two hierarchies that make

up H∗(j; g) are produced in structures 12 and 20. The subgame perfect structure-dependent

strategy of each player is shaded (if viewed in color, they are colored blue for player n, orange

for player j, and yellow for player i).

Both structures 12 and 20 are subgame perfect solutions to this sequential-play game while

5 is excluded from the subgame perfect equilibrium set.
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D.2 Multiple hierarchies

A structure σ ∈ H∗(iA, iB; g) like that depicted in Figure 6 conforms to the scenario of Example

5. For m → ∞, the particular structure depicted is supported as a Nash equilibrium for

rc/re ∈ (0, 1/3]. The SPE analysis of a sequential game is based on this environment with the

expected payoffs reported in Table 8 computed based on m→∞, rc = 0.1, and re = 1.17

The two lower sections of Table 8 include the structure-dependent payoffs to each player

in the player 1-led tree depending on whether player 9 imitates player 7 or joins NS(iA;σ),

as indicated in the “Strategies” section of the table. Excluded from the table are the payoffs

associated player 9’s dominated option to lead. This leaves 54 possible structures as show in

Table 8. These are spread out over two sets of columns of 27 payoffs each; the first set is based

on player 9 imitating player 7 and the second set, in the lower portion, is based on player 9

joining NS(iA;σ). The table contains all of the information of the remaining extensive-form

tree which is large but straight forward to construct. Each structure requires the construction

of the resulting hierarchy to determine individual payoff. Structure 5 with player 9 imitating

player 7 is the Nash equilibrium reflected in Figure 6.

In a sequential play game, decisions proceed in the order players 1 through 6 and then

players 7, 8, 10, 9. Eliminate A from player 9’s action set and only strategy profiles of the

upper payoff section of Table 8 can be reached. Structure 5 is also the SPE of this limited

action set. Consistent with the Nash equilibrium, given structure 5, player 9 prefers to imitate

player 7 to switching to the iA-led tree.

Allow player 9 to freely choose from a9 ∈ {L, 7, A}, then structures 15 and 18 with a9 = A

are both SPE and structure 5 is not a SPE. Despite the early mover advantage to players 7 and

8, players 9 and 10 are both better off in the iA-led tree. If player 10 imitates 8, then player

9 imitates 7 but this is not in player 10’s interest. Player 10 enables player 9’s choice of A by

following 9 rather than 8. Without the support of players 9 and 10 as followers, players 7 and 8

are forced to follow 9 as well. The final σ′ ∈ H∗(iA; g) benefits player 9 more than preserving σ

because she has a distance advantage over 7, 8, and 10 rather than just player 10, as depicted

in Figure 9.

17This is for convenience of display only. Any combination of parameters such that the σ depicted in Figure 6
is in H+(iA, iB ; g) leaves the relative payoffs reported in Table 8 unaffected.
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8

Figure 9: Player 9 with iA as a predecessor and with player 7 and the former NS(7;σ) population
as successors following a best response cascade that transitions from a Nash equilibrium σ ∈
H∗(iA, 7; g) with two leaders to a Nash equilibrium σ′ ∈ H∗(iA; g) with a single leader.
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