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Abstract—In this paper, a new learning approach for sound
source localization is presented using ad hoc either synchronous
or asynchronous distributed microphone networks based on
time differences of arrival (TDOA) estimation. It is first to
propose a new concept in which coordinates of a sound source
location are defined as functions of TDOAs, computing for each
pair of microphone signals in the network. Then, given a set
of pre-recorded sound measurements and their corresponding
source locations, the multilevel B-Splines based learning model
is proposed to be trained by the input of the known TDOAs
and the output of the known coordinates of the sound source
locations. For a new acoustic source, if its sound signals are
recorded, the correspondingly computed TDOAs can be fed
into the learned model to predict the location of the new
source. Superiorities of the proposed method are to incorporate
acoustic characteristics of a targeted environment and even
remaining uncertainty of TDOA estimations into the learning
model before conducting its prediction and to be applicable
for both synchronous or asynchronous distributed microphone
sensor networks. Effectiveness of the proposed algorithm in terms
of localization accuracy and computational cost in comparisons
with state-of-the-art methods was extensively validated on both
synthetic simulation experiments as well as in three real-life
environments.

Index Terms—Microphone array, sound source localization,
multilevel B-splines, learning approach.

I. INTRODUCTION

In various audio/acoustic based applications, localizing a
sound source is a fundamental but still challenging problem.
Apparently, the sound source localization (SSL) happens in
many nowadays-concerned research topics comprising auto-
matically steering a camera to the direction of a speaker in
a teleconferencing room [1]–[4], separating multiple speaker
speeches [5], detecting a source in an environment where it
requires privacy preserve or has poor lighting conditions and
occlusions [6], [7], search and rescure [8], [9] and mapping a
3D source in autonomous robotic systems [10], [11]. Though
there is a variety of methods proposed for the SSL in the past
decades, accurately and robustly localizing a sound source
in an adverse environment with the gloom of noises and
reflections/refractions is still not comprehensively understood.

Fundamentally, there are two categories of conventional
methods proposed to find a source given its sound signals cap-
tured by microphone sensors. They both are mainly based on
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computing the generalized cross-correlation (GCC) [12], [13]
of a microphone signal pair. The first type is a direct approach
[14]–[16] that aims to maximize the steered response power
(SRP) of the output of a delay and sum beamformer. That is, to
locate a sound source, the algorithm has to exhaustively search
the whole SRP space to find global maxima, which leads to
its computational burden. Furthermore, the SRP technique is
mostly limited to centralized and synchronous microphone
network scenarios since it requires all synchronized sound
signals available at its processing centre. That is, both syn-
chronization and bandwidth requirements prevent the method
from an asynchronous distributed network [17]. In contrast,
localizing a sound source in the indirect method requires two
separate steps [18]–[20]. Time difference of arrival (TDOA)
is firstly estimated from the GCC peaks [21]. Then the source
location, given the correspondingly estimated TDOAs, can be
ascertained by optimally addressing an optimality criteria [22]
such as the hypercone fitting problem [23]. Superiorities of the
TDOA based approach is that it can be utilized in both syn-
chronous and asynchronous distributed microphone networks
as what required to be transmitted among sensor nodes are
TDOA values not raw sound signal data. Nevertheless, results
obtained the indirect method are quite sensitive to the presence
of noises and reflections/refractions [24].

Up to now, most of the conventional approaches in the SSL
context are proposed to employ merely measurements recorded
by microphones at an instant time to localize the corresponding
sources. Nonetheless, there also have recently some supervised
and semi-supervised learning methods that utilize both prior
information and current microphone recordings for the purpose
of SSL. For instance, Deleforge et al. [25], [26] employed the
manifold concept to develop a learning model for localizing
both azimuth and elevation in a binaural system. The binaural
manifold model is firstly learned from pre-recorded audio
measurements by estimating its parameters using the closed
form expectation maximization algorithm. Then when new
observations are recorded the bearings of a sound source
can be inferred in a fashion of the probabilistic Bayesian
perspective. Similarly, by introducing definition of the relative
transfer function, Laufer-Goldshtein et al. [27], [28] presented
a new semi-supervised SSL method based on the manifold
regularization that aims to retrieve the bearing azimuth of a
sound source given its corresponding samples. In terms of
SSL using a distributed ad-hoc microphone network, where
coordinates of a source can be computed, authors in [29]
proposed to use features as a function of relative transfer
function samples. A Gaussian process model is utilized to
present those features, where its parameters are estimated from
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the pre-recorded acoustic training data set by the use of the
maximum likelihood algorithm. Given new audio observations,
the learned Gaussian process model can now predict the source
location. It is noted that a particular covariance function of
the Gaussian process model may appropriately work for a
particular environment. In [30], Li et al. employed a machine
learning technique to estimate sound intensity in order to
localize a sound source in scenarios using a small-sized
microphone array. Furthermore, Wang et al. in [31] formulated
sound source localization as a sparse signal recovery and
parametric dictionary learning problem, which can be solved
by the variational Bayesian expectation maximization method.

Acoustically, given geometrical configuration, each envi-
ronment or space has its own acoustic characteristics, which
consist of noisy levels, reverberations, reflections and some
unknown features. Therefore, if one is more aware of at-
tributes of an acoustic environment, they are more capable
of accurately localizing a sound source positioned in that
environment. Furthermore, we acknowledge that in most of
popular environments such as offices, meeting rooms and
conference rooms in commercial buildings and homes, the
acoustic features are approximately unchanged over time (or
at some period of time). It is clear that, in such scenarios,
if there exist some pre-recorded acoustic measurements, the
acoustic attributes of the environment can be learned a priori
before being efficiently utilized to predict the location of any
new sound source given its corresponding acoustic signals. In
this paper, we propose a new learning model based on the
multilevel B-Splines for this purpose. If the Gaussian process
model is significantly dependent on its covariance function
that must be intelligently selected, the multilevel B-Splines
approximation consists of the predefined functions that enable
our proposed model to be generically applied for any acoustic
environments.

Contrasted with the supervised and semi-supervised learn-
ing methods aforesaid, the proposed approach relies on fea-
tures of TDOAs. In equivalent words, it is assumed that
TDOAs can be first estimated for each pair of microphone
signals in a known training data set. The pre-recorded training
measurements can be easily collected in advance in a given
room by using a speaker (sound source) moving randomly
around the room. At each position, the speaker’s location
is recorded and its sound signals are also observed by a
microphone sensor network. We then present a new concept
in which coordinates of a sound source location are defined as
functions of TDOAs. By employing the multilevel B-Splines,
we introduce a learning paradigm with the defined coordinate
functions where a TDOA grid is hierarchically estimated,
given prior information of both the coordinates of the source
locations and the TDOAs in the training data set, which is
ultimately utilized to interpolate the location of a source when
new TDOAs are computationally observed.

It is apparent that TDOA estimation given adverse condi-
tions of noisy and reverberant environments is highly uncertain
as can be seen in any the indirect methods. Nevertheless,
in the proposed approach, though TDOAs are still required
to be smartly selected from their spurious counterparts, the
remaining uncertainty in their estimation can be adapted by

the learning model. More importantly, our proposed algorithm
is independent from configuration of microphone array; that is,
it can be employed in both the synchronous and asynchronous
distributed sensor networks. Eventually, the proposed approach
has been extensively validated in the synthetic simulation
experiments as well as in the three real environments including
a typical office, a large workstation room and a laboratory. The
results obtained by our algorithm are highly promising when
their accuracy of the source location estimation outperforms
those ascertained by renowned state-of-the-art methods.

The remaining of the manuscript is organized as follows.
Section II introduces how to compute TDOAs for pairs of
microphone signals recorded in both the synchronous and
asynchronous distributed microphone sensor networks. Note
that procedures of selecting the best TDOA from its specious
counterparts is also delineated in this section. In Section III,
we interpret the multilevel B-Splines based learning strategy
of localizing a sound source in a step-by-step fashion. The
computational complexity of our algorithm is also given in
this section. Section IV represents how the synthetic and
real experiments were carried out, and the accuracy of the
resulting localization as well as the operational cost of the
proposed algorithm are compared with those ascertained by
well-known state-of-the-art methods. Conclusions of the work
are summarized in Section V.

II. TDOA COMPUTATION

As a first step of the proposed method, here presents how
TDOAs are computed from the microphone measurements.

A. Signal Model
Consider a network of M microphone sensors that are

deployed arbitrarily in a reverberation environment. A signal
acquired by the mth microphone (m = 1, · · · ,M ) at time t
can be presented by a reverberation model [32] as follows,

dm(t) = hm(t)� s(t) + εm(t), (1)

where � denotes the linear convolution operator, hm(t) is the
complete room impulse response from the sound source to
the mth microphone sensor, s(t) is the sound source signal
and ε(t) is the additive noise. Normally, ε(t) is assumed to be
uncorrelated with s(t) and a noise at another sensor.

In this work, all sound signals collected by the microphone
sensors are processed in a frame to frame basis. Hence,
samples of a frame with a length of Lf at the mth microphone
and a discrete time k can be specified by

dm(k) = [dm(kLf ), dm(kLf + 1), · · · , dm(kLf + Lf − 1)].

B. TDOA Interpretation
Let τmn define the time difference of arrival (TDOA)

between the signals at the two any microphones m and n.
By using the reverberation model introduced in the subsection
II-A, the GCC for a pair of sound signals dm(t) and dn(t) in
the frequency domain can be given as

Rmn(τmn) =
1

2π

∫ ∞
−∞

Φmn(ω)Dm(ω)D∗n(ω)ejωτmndω,

(2)
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where ∗ denotes the complex conjugation operator, Dm(ω) and
Dn(ω) are the Fourier Transforms of the signals dm(t) and
dn(t), respectively, and Φmn(ω) is the combined frequency
dependent weighting factor. This weighting factor is frequently
defined by the well-known phase transform (PHAT) [12] for
realistic applications as follows,

Φmn(ω) =
1

|Dm(ω)D∗n(ω)|
,

where | · | denotes an absolute operator. Eventually, the TDOA
of each pair of the microphone signals can straightforwardly
resolved by globally maximizing the GCC-PHAT in (2) as
given below,

τ̂mn = argmax
τmn ∈ [−τmaxmn , τmaxmn ]

Rmn(τmn), (3)

where τmaxmn = ‖lm−ln‖2
c , lm is the location of the microphone

m, c is the speed of sound propagation and ‖ · ‖2 denotes the
l2 − norm operator.

Nonetheless, due to ambient noise and reverberation condi-
tions in the environment, which cause severe deteriorations in
the received signals, the accuracy of the TDOA estimation is
substantially influenced. Two methods in the following will
be introduced to reduce effect of the disruptive noise and
reflections on the TDOA results in both the synchronous and
asynchronous distributed microphone networks.

1) Synchronous Networks: In a synchronized microphone
network, our approach proposes to employ only three sensors
to localize a sound source. Thus, it is computationally practical
to better tune the TDOA for each microphone signal pair
by using geometrical interpretation [23]. In particular, in the
first step, it is proposed to employ the zero-sum condition
to disambiguate the TDOAs from the spurious ones. P time
delays (P = 10 in our experiments) corresponding to the
P largest local maxima of the GCC of each signal pair are
selected. Then the best combination of the TDOAs in the
network of three microphones must theoretically hold the
condition

τ12 + τ23 + τ31 = 0. (4)

Nevertheless, due to erroneous and noisy TDOAs, the condi-
tion (4) can be relaxed to |τ12 + τ23 + τ31| < ζ, where ζ is
a defined minute positive number, which results in a possible
set of the time delays for each pair of the microphones.

In the second step, three quality metrics including average
of normalized GCC peaks, average between GCC maxima and
product of all ratios between first and seconds peaks of all
the GCCs are used to form a quality score function, where
each metric is factored at a proper weight. By maximizing
the quality score function, the corresponding solution time
delays, which are highly associated with the direct paths from
the sound source, are the three best TDOAs for the three
synchronous microphone network.

2) Asynchronous Distributed Networks: For an asyn-
chronous distributed network, it is proposed to utilize only four
microphones into two unsynchronized nodes, where each node
has a pair of synchronized sensors, meaning there are only two
TDOAs obtained from the network at a particular time. Since

Fig. 1: A reverberant room with a set-up of a synchronous
microphone network and a sound source randomly moving
around, including: microphones mi and sound source foot-
prints when it stops si.

the microphones on the whole network are unsynchronized,
the zero-sum condition is not applicable. Here it is proposed
to employ the local window search [33] on the GCC to find
the TDOA in each sensor node.

Similar to the fist step of the method for the synchronous
network, one also selects P largest peaks of the GCC at each
microphone node. For each element in the selected set, one
computes an energy ratio between sum of that peak element
and its Pn neighbour samples on the GCC and sum of the
remaining samples on the GCC. As shown in [33] the energy
ratio is reliable for discriminating the true peaks from the
specious ones. The time delay corresponding to the GCC local
peak whose energy ratio is maximum is the TDOA for the
sensor node.

III. MULTILEVEL B-SPLINES BASED LEARNING SOUND
SOURCE LOCALIZATION

This section introduces a novel model that first learns
acoustic characteristics of a given environment from the pre-
recorded measurement then predicts a location of a source
when new TDOAs are computed from the observed acoustic
measurements.

A. Source Coordinates against TDOAs

Let us consider the sound source localization in a noisy
and reverberant room with a three synchronous microphone
network and a sound source set up, demonstrated in Fig.
1. Three microphone are deployed on the walls of a shoe-
box shaped room of dimensions 4 m × 4 m × 3 m. It is
noticed that there is only one sound source in the environment,
and it is assumed to randomly move around. At each stop,
the sound source is assumed to emit sound signals and the
microphones record them to compute TDOAs. In the example,
three randomly chosen locations of the sound source when
it stops are located at s1 = [1.7, 1.2, 2], s2 = [3.4, 2.3, 2]
and s3 = [1.2, 2.8, 2]. TDOAs are limited by the maximum
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(a) (b)

Fig. 2: Sound source coordinates against TDOAs: (a) x coordinate and (b) y coordinate.

possible TDOA at each pair of the sensors, which can be
straightforwardly obtained when the microphone locations
are known. Given a acoustic source, three TDOAs can be
ideally obtained by the microphone network. Nonetheless,
only any two TDOAs are needed in solving the sound source
localization problem, assuming τ12 and τ13 herein.

It can be seen that at a particular scenario, when a sound
source location changes, τ12 and τ13 vary accordingly. Equiva-
lently, on the opposite way, when the microphones produce the
different τ12 and τ13, the sound source has a new location. Fig.
2 demonstrates the coordinates of the three source locations
s1, s2 and s3 depending on the TDOAs. Therefore, we propose
to define coordinates of the sound source as functions of the
TDOAs.

fs = f(τ12, τ13), (5)

where fs is a coordinate of the source. Therefore, the sound
source location can be found, given τ12 and τ13, if the function
f(τ12, τ13) is known. In other words, a model can be learned
from TDOAs as inputs and the sound source locations as
outputs.

For the sake of simplicity, let τ1 and τ2 denote any two
TDOAs obtained by the microphone network. We define
Q = {(τ1, τ2)| − τmax ≤ τ1, τ2 ≤ τmax} as a domain of
the TDOAs. In addition, let x(τ1, τ2) and y(τ1, τ2) denote the
x and y coordinate functions of the sound source location. To
formulate the functions x(τ1, τ2) and y(τ1, τ2), let us discretize
the TDOA domain Q into a n1 × n2 TDOA grid.

Given the uniform cubic B-spline basis functions [34]

defined as

F1(u) =
(1− u)3

6
,

F2(u) =
3u3 − 6u2 + 4

6
,

F3(u) =
−3u3 + 3u2 + 3u+ 1

6
,

F4(u) =
u3

6
,

where 0 ≤ u < 1, the functions x(τ1, τ2) and y(τ1, τ2) can be
specified in the following form,

fs(τ1, τ2) = Σ4
p=1Σ4

q=1Fp(u)Fq(v)W (i+ p, j + q), (6)

where

u = |τ1 − bτ1c|,
v = |τ2 − bτ2c|,

i =

{
bτ1c − 1, τ1 ≥ 0
bτ1c+ 1, τ1 < 0

j =

{
bτ2c − 1, τ2 ≥ 0
bτ2c+ 1, τ2 < 0

and W (i + p, j + q) is a weight at the TDOA grid cell (i +
p, j+q). Note that i ∈ {−bn1

2 c−2,−bn1

2 c−1, · · · , bn1

2 c+1},
j ∈ {−bn2

2 c − 2,−bn2

2 c − 1, · · · , bn2

2 c + 1} and b·c denotes
the floor operator.

The sound source can be localized by simply substituting
τ1 and τ2 into (6) if the weights at the TDOA grid cells are
known. The following section will introduce how to compute
those parameters on the grid mesh.

B. Sound Source Location (SSL) Inference

Let us consider a known source at the location [xs, ys, 2]
in the room in Fig. 1. Without loss of generality, it is
supposed that the two any TDOAs obtained by the array of
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the microphones are τ1s and τ2s. We also define W x(p, q) and
W y(p, q) as the grid cell weights of the TDOA domains for
x and y coordinates, respectively. Then the TDOA grid cells
are weighted [34] as follows,

W x(p, q) =
Fp(us)Fq(vs)xs

Σ4
p=1Σ4

q=1(Fp(us)Fq(vs))2
, (7)

W y(p, q) =
Fp(us)Fq(vs)ys

Σ4
p=1Σ4

q=1(Fp(us)Fq(vs))2
, (8)

where us = |τ1s − bτ1sc| and vs = |τ2s − bτ2sc|.
It can be clearly seen that (7) and (8) can only handle

the weights at the grid cells that are neighbours of the point
(τ1s, τ2s). As a result, we propose to employ a set of training
data of pre-recordings to learn the weights on the whole TDOA
grid. In equivalent words, it is assumed that there are multiple
sound sources, which are randomly positioned in the room
but their locations are known (we can utilize one speaker to
move around the room and multiple recordings at various
locations are gathered in sequences). For each set of pre-
recorded measurements from a location-known sound source,
the TDOAs are computed. To capture the characteristics of
an acoustic environment, all the TDOAs in the training data
are obtained from the sound signals by using the method
introduced in Section II, not by using geometries of the
microphone network and the source locations. (7) and (8) are
then used to compute the weights at the grid cells given their
corresponding TDOAs neighbours. The more sound sources
are known, the more coverage of computationally weighted
grid cells is. In the worst case, if a grid cell is faraway from the
TDOAs associated with all the location-known sound sources,
it cannot be mathematically weighted. In that case, we define
the grid cell weight as zero. On the other hand, there are also
many grid cells assigned multiple weights from their known
TDOA neighbours. Averaged weights at those shared grid cells

can be computed by

W x(i, j) =
Σn(Fp(usn)Fq(vsn))2W x(p, q)

Σn(Fp(usn)Fq(vsn))2
, (9)

W y(i, j) =
Σn(Fp(usn)Fq(vsn))2W y(p, q)

Σn(Fp(usn)Fq(vsn))2
, (10)

where p = i+ 1− bτ1snc, q = j + 1− bτ2snc, usn = |τ1sn −
bτ1snc|, vsn = |τ2sn − bτ2snc|, and τ1sn and τ2sn are all the
TDOA neighbours of the grid cell (i, j).

After the TDOA grid on the Q domain is learned, a
location of any unknown sound source can be estimated. That
is, computing the TDOAs from microphone recordings and
substituting them into (6), coordinates of the sound source
location can be straightforwardly obtained. Nonetheless, un-
certainty of the source location estimation is significantly
dependent on the size of the TDOA grid cell. For instance, if
the grid is too coarse, training data could be mingled together.
On the other hand, if the grid is pretty fine, the grid cell
weight is restricted to a small vicinity. Both scenarios leads
to erroneous estimation of the source location. Consequently,
we herein propose to employ hierarchical architecture of the
TDOA coarse-to-fine grids, where the coordinates of the sound
source location can be summed up in sequential steps.

In the first step, a very coarse grid is created on the TDOA
domain Q. By employing equations (6)-(10), we recompute
the coordinates of the known source locations, which are
then utilized to calculate uncertainties of the estimations. For
instance, errors of the coordinates of the known source s and
their estimations are

δ1xs
= xs − f1xs

(τ1s, τ2s), (11)

δ1ys = ys − f1ys(τ1s, τ2s), (12)

where f1xs
(τ1s, τ2s) and f1ys(τ1s, τ2s) are the estimations of xs

and ys, respectively.
In the second step, a less coarser grid is created on the

domain Q, where sizes of the grid cell is halved as compared
to those in the grid in the previous step. Both xs and ys
are replaced by δ1xs

and δ1ys ; and then we find the new

(a) (b)

Fig. 3: Sound source coordinates maps (a) x coordinate and (b) y coordinate.
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estimations and deviations f2xs
(τ1s, τ2s), f2ys(τ1s, τ2s), δ2xs

and
δ2ys , respectively. The algorithm repeatedly runs till the current
grid is fine enough or a maximum deviation is lower than
a defined threshold. Eventually, coordinates of an unknown
sound source location s′ can be interpolated, for instance,

xs′ = fxs′ (τ1s′ , τ2s′) = Σgf
g
xs′

(τ1s′ , τ2s′), (13)

ys′ = fys′ (τ1s′ , τ2s′) = Σgf
g
ys′

(τ1s′ , τ2s′), (14)

where τ1s′ and τ2s′ are the corresponding TDOAs obtained
by the microphone network and g is the number of steps
where the TDOA grid is recreated. The proposed approach
is summarized in Algorithm 1.

Algorithm 1 Multilevel B-Spline based learning algorithm for
the sound source localization
Input:

1) Locations of microphones
2) Measurements recorded by microphones
3) Number of TDOA grids being created g
4) Sizes of the first TDOA grid n1 × n2

Output:
1) Estimated locations of sound sources

1: for each pair of microphones do
2: Compute GCC
3: Find all possible TDOAs
4: Disambiguate a real TDOA from spurious ones
5: end for
6: Select only two TDOAs for each network
7: For learning
8: Deploy the sound sources in an environment as many as

possible
9: Record their locations and sound signals

10: Compute TDOAs corresponding each sound source loca-
tion in steps 2, 3 and 4

11: for k = 1 to g do
12: Create a n1 × n2 TDOA grid
13: Compute the grid cells W x(i, j) and W y(i, j) in (9)

and (10)
14: for Each known source location s do
15: Compute estimated coordinates fkxs

(τ1s, τ2s) and
fkys(τ1s, τ2s) by using (6)

16: Compute estimation errors δkxs
and δkys in (11) and

(12)
17: xs ← δkxs

18: ys ← δkys
19: end for
20: n1 ← 2n1
21: n2 ← 2n2
22: end for
23: For prediction
24: for Each unknown source location s′ do
25: Given the weights of the TDOA grid cells learned,

compute the estimated coordinates of the unknown source
location xs′ and ys′ in (13) and (14)

26: end for

Let us take the room in Fig. 1 as an example, where 50 sets
of sound signals are recorded correspondingly to 50 location-
known sound sources deployed randomly in the room, using
for the training purpose. After learning from the training
data, the proposed algorithm can predict coordinates of any
sound source locations in the room, given their corresponding
TDOAs obtained by the microphone network. Fig. 3 illustrates
the source coordinates x and y of all possible sound source
positions in the room as the TDOAs are covered in a full range
of maximum time delays. Note that in this example, the room
has reverberation time of T60 = 0.2s and a signal-to-noise
ratio (SNR) of 30 dB.

C. Computational Complexity

Computational cost is one of significant factors to consider
feasibility of a sound source localization method in real-
time applications. Here, we consider computing time of our
proposed approach for both the synchronous and asynchronous
distributed networks.

Let Nt define the number of training data, which is a set of
the pre-recorded measurements from the Nt location-known
sources. The complexity of computing and discriminating
TDOAs from the spurious peaks of the GCC time delays are
specified by

TDOAcost ≈ Nt
[

408

9
Lf log2(2Lf ) + 14Lf

]
(15)

for a synchronous microphone network [23], and

TDOAcost ≈ Nt
[

598

9
Lf log2(2Lf ) + 38Lf

]
(16)

for an asynchronous distributed microphone network [33].
In addition, as presented in Section III-B, to interpolate a

sound source, given its corresponding estimated TDOAs, the
TDOA grid is repeatedly designed at every step in which its
cell weights are also recomputed. If we define n1f and n2f
as the sizes of the finest TDOA grid, then operational cost
to compute all these steps until the grid is fine enough is as
follows [34],

SSL− Inferencecost ≈ cNt +
4

3
n1fn2f . (17)

Therefore, the overall computational cost of our algorithm
to localize a sound source is summed up by (15) and (17) for
a synchronous network and (16) and (17) for an asynchronous
distributed network, respectively.

IV. EXPERIMENTAL RESULTS

Effectiveness of the proposed approach for the sound source
localization in a noisy and reverberant condition was evaluated
in both synthetic simulation and real-life environments where
physical phenomena were encountered. Moreover, the perfor-
mances of the proposed method are compared with those of
the conventional well-known techniques including SRP-PHAT
and SRC.
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A. A Synchronous Network of Microphones

1) Simulations: We extensively carried out different ex-
periments on a simulated environment by using the room
impulse response (RIR) generator [35], an implementation of
the acoustic image method [36]. The simulated room was
set up as demonstrated in Fig. 1. Two different reverberation
times including T60 = 0.2s and T60 = 0.6s, which are
normally recommended for typical rooms, were set for the
simulations. In all the simulations, the sampling rate and the
sound propagation speed were set to 16 kHz and 343 m/s,
respectively. At first, room impulse response from the source
recorded by a microphone in the RIR generator was convolved
with a source signal, which is a female speech utterance of
length 8 s. The convolution result was then contaminated by
the white Gaussian noise, generating a noisy and reverberant
synthetic recording at the corresponding microphone sensor.
Note that variance of the white Gaussian noise can be set
to different values, which define various SNRs in diverse
background noise environments.

As delineated in Section III-B, 50 sound sources were
randomly deployed in the room and their corresponding known
locations and sound signals were recorded for the training pur-
poses. To validate the proposed algorithm, another 50 sound
sources were also generated in the room with an assumption
that their locations were unknown, whose emitting sound
signals were also recorded by three synchronized microphones.
In the signal processing procedure, each microphone recording
was split into frames with a length of 2048 samples and
overlap of 50%, and for each source position, we computed
two TDOAs τ12 and τ13. By learning the TDOA grid from
the training data set, our approach can hence work out coor-
dinates of a location of an unknown sound source given its
corresponding TDOAs obtained by the microphone network.
In this example, the starting number of the grid cells on the
first TDOA grid is 1 and the algorithm stopped when the
number of the grid cells on the current grid reached 128×128.

Due to random deployments, we repeated the simulation
experiment at each scenario, given a reverberation time and a
SNR, 1000 Monte-Carlo trials. The averaged results of root
mean square error (RMSE) for each scenario were calculated
and are illustrated in Fig. 4. The proposed approach apparently
outperforms the well-known state-of-the-art methods in both
the examined scenarios of noisy and reverberant environments,
where as expected, the lower reflection and the higher SNR
conditions are, the better the sound source location is esti-
mated. Note that since the SPR-PHAT method is based on
searching the source location coordinates at vertices of the
discrete spatial grids of the source location space, we created
those spatial grids at two different resolutions of 0.05 m and
0.1 m, respectively.

2) Real experiments: To study the performances of the
proposed method in real-life scenarios, we conducted two
real experiments in the realistic noisy and reverberant con-
ditions in the campus of University of Technology Sydney,
Australia. Note that the experimented rooms are daily working
environments where staff and students were walking, talking,
discussing and doing their own works. Therefore, there have

noises from many sources such as human activities, door
opening or closing, ventilation fans, air conditioners and
research/study equipments. There also exist polluted noises
from the traffic roads nearby. All these presented noise el-
ements were naturally captured by the microphones during
the recordings, which leads to the very noisy measurements
in our experiments. The reverberation times and SNRs in
both realistic environments were unknown at the time of the
experiments.

The experiment equipment comprised three the G.R.A.S.
type 40PH free-field microphones and two National Instru-
ments modules of the compact data acquisition cDAQ-9171
and the ADCs NI 9234. The sound source was a mobile
phone playing an audio recording of a eight-second speech
utterance by a female speaker. The sound signals were then
recorded by the NI LabVIEW 2014®. All the measurements
were sampled at frequency of 16kHz with a resolution of 24-
bits. The procedures of the signal processing were similar to
those in the simulation experiments.

In the first real experiment, we set up a test in a typical office
room with approximate dimensions of 2.6 m × 3.8 m × 3.0 m.
The room is formed by two partition walls and two glass walls
with a glass door on one wall. There were office furnitures and
of course two desktops and some other equipment presenting
at the experimental time. Three microphones were located
at a height of 1.04 m. The microphone numbered 1 was
positioned at one corner of the room and the other two against
the two walls perpendicular at that corner. Distances from
the microphones numbered 2 and 3 to 1 were 0.97 m and
1.07 m, respectively. The experimental setup is shown in Fig.
5. In the experiment, the speaker was manually deployed
at 20 different locations in the room, and 20 corresponding
sets of measurements were recorded. Of which 10 sets of
the recordings were used to learn the TDOA grid cells’
weights in the training step, and the others were utilized to
validate the estimated results of the sound source locations.
The measurements of the acoustic signals emitted from each
validating sound source were employed to input into the
learned models. The outputs of those models are coordinates
of a predicted location of the validating sound source, which
were then utilized to compare with those of the realistic
location. Errors between the predicted and real locations of
the 10 validating sound sources were averaged in one reporting
parameter as the RMSE. The resulting RMSEs are compared
and shown in Table I, which confirms the outperformance of
our algorithm.

TABLE I: RMSEs FOR THE TYPICAL OFFICE ROOM
EXPERIMENT

Proposed SRC SRP-PHAT (grid
resolution = 0.05 m)

SRP-PHAT (grid
resolution = 0.1 m)

0.30 m 0.83 m 0.76 m 1.00 m

In the second realistic experiment, a similar setup of the
measurement system in the office room was replicated in a
much larger workstation room of the Centre for Autonomous
Systems, which is a shared space for many staff and postgrad-
uate students. The room is not a shoe-box but a nearly “L”
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(a) (b)

Fig. 4: Synchronized microphone synthetic experiments: RMSEs against SNRs where (a) T60 = 0.6s and (b) T60 = 0.2s.

shape. Its length, maximum width and height are about 21.6
m, 10.1 m and 3.0 m, respectively. Two sides of the room
are surrounded by private offices, and the glass doors of those
offices and the partitions are intermingled on its walls. The
other four walls consist of two partitions and two glass ones.
Many items appeared inside the room when the experiments
were conducted includes staff’s and students’ workstations,
lockers, printers, furnitures and other study equipment. Due
to restrictions of the working and studying environment, we
only conducted the experiments in one of corners of the room
with an area of 4 m × 4 m. 20 sets of the sound measurements
were also collected and processed accordingly, as presented in
the first real experiment. The results are summarised in Table
II, which demonstrates robustness of the proposed approach
against different adverse conditions while the performance of
SRP-PHAT is better as compared with itself in the office
experiment since reflections come at late stages of the sound
signals in a large room.

TABLE II: RMSEs FOR THE WORKSTATION ROOM EX-
PERIMENT

Proposed SRC SRP-PHAT (grid
resolution = 0.05 m)

SRP-PHAT (grid
resolution = 0.1 m)

0.31 m 1.11 m 0.61 m 0.59 m

More importantly, in the proposed scheme, the more training
data used to learn the TDOA grid is, the higher accuracy of the
sound source localization can be archived. In particular, in both
the real-life experiments, we varied the number of the training
data sets from 10 to 15 and utilized the rest for the validations
in each scenario. The results in terms of RMSEs are illustrated
in Fig. 6. It can be clearly seen that the uncertainty of the
source localization gradually goes down when the number of
the training measurements is increased. In other words, if one
is more aware of characteristics of an acoustic environment,
they are more capable of accurately localizing a sound source
positioned in that environment.

Fig. 5: Synchronized microphone real experiments: The office
room layout.

Fig. 6: Synchronized microphone real experiments: RMSEs
against the number of the training data sets.

B. An Asynchronous Distributed Network of Microphones

1) Simulation: This section presents the results of the
simulation experiments that verify the performance of our
proposed algorithm employed in an asynchronous distributed
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Fig. 7: Asynchronous distributed microphone synthetic exper-
iments: The room layout.

microphone network. In this illustrated example, we utilized
the simulation tool similar to that used in the experiments
of the synchronized microphone network. The experimental
settings and signal processing were also obeyed the strategy
delineated in Section IV-A1. Nonetheless, as mentioned in
Section II-B2, our algorithm proposes to use only 4 micro-
phones that are grouped into two pairs of synchronized nodes
but the nodes are asynchronous. The nodes were placed on
the two walls of the room measuring 4 m × 4 m × 3 m,
as demonstrated in Fig. 7. We conducted the experiments by
first randomly deploying 50 sound sources in the room and
their positions were known to the algorithm for the purposes
of learning the TDOA grid cell weights. It is noticed that only
one TDOA for each node was computed in this type of the
proposed asynchronous distributed network. If one assumed
that the room was given a reverberation time of T60 = 0.6s

and SNR = 0 dB, then the x and y possible coordinates of
all potential sound source locations in the room were mapped
to their corresponding TDOAs and are now shown in Fig. 8a
and 8b, respectively. It can be seen that under a more adverse
condition, the maps of the estimated coordinates of the source
locations are rougher than their counterparts obtained in a less
adverse environment shown in Fig. 3.

Furthermore, we considered another 50 assumingly un-
known location sound sources by recording their correspond-
ing sound signals. For each source position, we computed
the error between the estimated location and its true peer.
Every experiment with a given condition of the reverberation
time and SNR combination was repeated 1000 trials. The
summarized results in terms of averaged RMSEs are plotted
in Fig. 9 for two cases of which the reverberation times are
T60 = 0.2s and T60 = 0.6s, respectively.

2) Real experiments: To validate the proposed method in
a realistic scenario given an asynchronous distributed micro-
phone network, we deployed four the G.R.A.S. microphones
in a laboratory in a distributed manner. In other words, two
the microphones were connected to a personal computer (PC)
through the data acquisition cDAQ-9171, while the two others
were connected to another PC. And two PCs were able to
communicate through a local area network. Dimension of
the laboratory is about 5.7 m × 12.1 m × 3.0 m. The
laboratory experimental setup is illustrated in Fig. 10. It can
be seen that two couples of the acoustic sensors were against
the two opposite walls, where each couple recorded sound
signals and saved them in a separate PC. Distance between
the microphones in each couple was about 0.70 m, and they
were located, from floor, at 1.74 m height in the right wall and
1.52 m height in the left wall, respectively. The sound source,
in this example, presented by a laptop was manually moved
around and randomly stopped at 30 locations. At each random
location, the speaker played a male speech of 7 s length, and
the acoustic signals were recorded. In 30 sets of the acoustic
measurements, 15 of which were employed to train the TDOA

(a) (b)

Fig. 8: Asynchronous distributed microphone synthetic experiments: Sound source coordinate maps (a) x coordinate and (b) y
coordinate.
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Fig. 9: Asynchronous distributed microphone synthetic exper-
iments: RMSEs against SNRs.

Fig. 10: Asynchronous distributed microphone realistic exper-
iments: The laboratory layout.

grid cell weights as introduced in the previous sections, while
the rest was utilized for the purpose of validation. Given
the measurements recorded from a particular validating sound
source, the learned models estimated a corresponding location,
which was then compared with its realistic peer. The RMSE
in the 15 validations cases shows that the estimated location
of the sound source is about 0.47 m away from the ground
truth. It is noted that the reverberation times and SNRs in this
illustrated example were comprehensively unknown and the
laboratory environment observed was very noisy.

C. Computing Time

To discuss efficiency of our proposed approach in terms
of computation, this section demonstrates the total computing
time of finding a sound source given its corresponding sound
signals captured by the G.R.A.S microphones in the two real
experiments in the synchronous networks. Note that all the
processing procedures were carried out on the platform of
Matlab 2016® on a 64-bit PC with computational capability of
Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz and memory of
8.00 GB. The running time of our algorithm is compared with
those of SRC and SRP-PHAT with discrete grid resolutions
of 0.05 m and 0.1 m, respectively. The results are shown in
Table III.

As can be seen in Table III, give the number of training
data, our method does not depend on sizes of an environment

TABLE III: COMPARISONS OF COMPUTING TIME IN
REAL EXPERIMENTS

Room Proposed SRC
SRP-PHAT

(grid resolution
= 0.05 m)

SRP-PHAT
(grid resolution

= 0.1 m)

Typical
office 3.16 s 16.80 s 37.06 s 19.43 s

Workstation
room 2.93 s 16.20 s 523.19 s 140.91 s

while SRP-PHAT does. More importantly, its computing time
requirement is significantly less than those of other renowned
state-of-the-art techniques, which is highly potential for vari-
ous real-time audio applications.

V. CONCLUSIONS

The paper has addressed the problem of localizing a sound
source using a distributed microphone network in both syn-
chronous and asynchronous architectures. A novel learning
paradigm has been proposed, which relies on the TDOA
features. In other words, coordinates of a sound source location
are formulated as functions of TDOAs, which are employed in
the multilevel B-Splines based learning model. It is assumed
that a set of pre-recorded sound signals can be gathered a priori
in a targeted environment, accompanied by corresponding
locations of the emitting sound sources. This training data
set is utilized to hierarchically estimate TDOA grids for
the coordinate functions, which allows the proposed learning
model to effectively predict a location of a new acoustic
source when its corresponding TDOAs are computationally
obtained from the microphone measurements. The new ap-
proach were substantially tested in the simulated experiments
as well as the realistic environments of the typical office,
workstation room and laboratory scenarios in a university
campus during business hours, given both synchronization and
asynchronization of the distributed microphones. The resulting
localization accuracy obtained by our proposed algorithm and
its computational cost outperform those obtained by the well-
known state-of-the-art techniques including SRP-PHAT and
SRC. The proposed approach will be advanced to localize
multiple sound sources in our future works.
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