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ABSTRACT 13 

Landslides are natural disasters that cause environmental and infrastructure damage 14 

worldwide. They are difficult to be recognized, particularly in densely vegetated regions of the 15 
tropical forest areas. Consequently, an accurate inventory map is required to analyze landslides 16 

susceptibility, hazard, and risk. Several studies were done to differentiate between different 17 
types of landslide (i.e. shallow and deep-seated); however, none of them utilized any feature 18 

selection techniques. Thus, in this study, three feature selection techniques were used (i.e. 19 
correlation-based feature selection (CFS), random forest (RF), and ant colony optimization 20 

(ACO)). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the 21 
segmentation parameters. Random forest (RF) was used to evaluate the performance of each 22 
feature selection algorithms. The overall accuracies of the RF classifier revealed that CFS 23 

algorithm exhibited higher ranks in differentiation landslide types. Moreover, the results of the 24 
transferability showed that this method is easy, accurate, and highly suitable for differentiating 25 

between types of landslides (shallow and deep-seated). In summary, the study recommends 26 
that the outlined approaches are significant to improve in distinguishing between shallow and 27 
deep-seated landslide in the tropical areas, such as; Malaysia. 28 

 29 
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  31 

 32 

1. Introduction 33 

  34 

Cameron Highlands in Malaysia has been frequently affected due to geo-hazards such as 35 

landslides and floods. The effects include great economic damage, loss of lives and negative 36 

environmental impact (Hong et al., 2018). Landslide as one of the geo-hazards is considered 37 
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as a geological phenomenon under the influence of gravity, which can occur in both onshore, 38 

offshore, and coastal environments (Pradhan et al., 2010). The Cameron Highlands is a steep 39 

hillside landscape with heavy vegetation cover that obscures and subdues morphologic features 40 

which are indicative of landslides (Pradhan and Mezaal, 2017). Such landscapes pose a great 41 

challenge to landslides identification using synthetic aperture radar (SAR) images, optical and 42 

aerial photographs, high spatial resolution multispectral images, very high resolution (VHR) 43 

satellite images and moderate resolution digital terrain models (DTMs) (Ardizzone et al., 2007; 44 

Chen et al., 2014; Pradhan et al., 2016; Li et al., 2015; Mezaal et al., 2017a; Bordoni et al., 45 

2018; Sameen and Pradhan 2018; Mezaal and Pradhan 2018; Fanos and Pradhan 2018).  46 

 47 

2. Previous Work 48 

Compared with the traditional techniques, elevation data are acquired rapidly and accurately 49 

using active laser transmitters and receivers light-detection and ranging (LiDAR) data ( 50 

Pradhan et al., 2016; Tarolli et al., 2009). Generally, LiDAR can penetrate dense vegetation 51 

making it a better alterative compared with other remote sensing data. In addition, other 52 

information regarding high point density terrain is provided in Mezaal et al., (2017b). Ground 53 

surface and useful information about topographic features are provided using High-resolution 54 

LiDAR-derived DEM  even in landslides covered under dense vegetation (McKean and 55 

Roering, 2004). Furthermore, LiDAR imagery is capable revealing present and historic 56 

landslides and its effectiveness/ vulnerability in mapping naked slopes that are formed 57 

primarily by landslides (Schulz, 2007).  58 

Based on the depth of the surface rupture and movement features, landslides can be classified 59 

as deep-seated or shallow (Brunetti et al,. 2009; Guzzetti et al., 2012). These two classifications 60 

differ in terms of damage influence, size and volume (Zêzere et al., 2005). Also, evaluation of 61 

landslide mass volume is difficult (Brunetti et al., 2009). Deep-seated landslides are usually 62 
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occurred due to interaction between natural denudation process and long-term rainfall, 63 

whereas, shallow landslides are associated with short high-intensity rainfall (Zêzere et al., 64 

2005). In literature many studies can be found which are aimed in identifying different types 65 

of landslides using LiDAR data (Chen et al., 2015; Deng et al., 2014; Lin et al., 2013; Rau et 66 

al., 2012; Kasai et al., 2009; Van Den Eeckhaut et al., 2005; Lashermes et al. 2007; Tarolli and 67 

Dalla Fontana 2009; Passalacqua et al. 2010). The different types of landslides provide 68 

significant and valuable information for the geological process. Therefore, for the purpose of 69 

investigating hillsides geomorphological development is to mitigate landslide hazards, thus, it 70 

is necessary to differentiate between the different types of landslides for better efficiency (Dou 71 

et al., 2015; Lin et al., 2013). 72 

Object-based and pixel-based methods are the two general image analysis approaches for 73 

terrain evaluation. But object-based image analysis is becoming the most basic means of 74 

processing very high-resolution imagery. This is due to wide utilization of sub-meter imagery 75 

and availability. Furthermore, this approach is a well-known technique resulting from the 76 

recent advances in machine intelligence and computer vision, with the main purpose of 77 

automatically extracting both man-made and natural objects from remote sensing images 78 

(Akcay and Aksoy, 2008). Also, the object-based approach is a step toward replicating human 79 

interpretation process because the information content of an object is used to classify 80 

landscapes (Navulur 2006). Finally, with the use of object-based approach, the landslides can 81 

be accurately detected by integrating contextual information to image analysis (Martha et al., 82 

2011). This will help in reducing time and cost for developing a decent landslide inventory 83 

map especially in large areas.  84 

Over-fitting is generally caused by processing a large number of irrelevant features (Chen et 85 

al., 2014). By contrast, in order to avoid over-fitting, the most relevant feature should be 86 

selected for best classification results (Kursa et al., 2010). Therefore, landslide identification 87 
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in any environment can be improved by selecting the most significant features (Chen et al., 88 

2014). As shown in a study conducted by (Van Westen et al., 2008), selecting the most 89 

significant feature helps in differentiating between non-landslides and landslides. The 90 

efficiency of selecting the most significant feature for detecting landslides was proven in a 91 

study conducted by (Stumpf and Kerle, 2011). But the use LiDAR data to handle the feature 92 

selection for landslide detection is studied by few researchers ( Dou et al., 2015; Li et al., 93 

2015). Another option for feature selection is a random forest (RF) (Chen et al., 2014). More 94 

of recent, (Sameen et al., 2017) utilized the use of ant colony optimization (ACO) for feature 95 

selection. While Pradhan and Mezaal (2017) demonstrated the significance of feature selection 96 

in differentiating between the types of landslides by using correlation-based feature selection 97 

(CFS) algorithm. Although, these feature selection methods were applied in remote sensing 98 

data classification successfully. However, it was observed that there is a lack of studies on 99 

integration of correlation-based feature selection (CFS), random forest (RF), and ant colony 100 

optimization (ACO) with the object-based approach (OBA) carried out to aid in differentiating 101 

between the different types of landslides (i.e. shallow and deep-seated). 102 

      This study aims at investigating the most optimal algorithms for feature selection in 103 

order to differentiate between two types of the landslide (i.e. shallow and deep-seated) using 104 

airborne laser scanning data. To achieve this aim, it was imperative to accomplish the 105 

following objectives; 1) to optimize the multiresolution segmentation parameters, 2) to 106 

applying the three algorithms to feature selection from high-resolution airborne laser 107 

scanning data, and 3) to determine the appropriate algorithms for selecting feature by using 108 

random forest (RF) classifier. The studied algorithms have not been tested in previous 109 

studies, particularly for types of landslides detection. The advantages of novel optimization 110 

techniques may have contributed to the improvement of the differentiation between the types 111 

of landslide through a high-resolution LiDAR data and supervised random forest. 112 
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3. Study Area  113 

The area under investigation is located in Cameron Highlands and it’s characterized as tropical, 114 

densely vegetated and rainforest area. The location was chosen because of the high frequency 115 

of landslide occurrences in the area.  Geographically, Cameron Highlands is situated on latitude 116 

4° 26' 3” to 4° 26' 18" and longitudes 101° 23' 48 to 101° 24' 4" and covers 26.7 km2 on the 117 

northern part of Malaysian Peninsular. The region record an annual average rainfall of about 118 

2,660 mm and average temperature of approximately 24 °C and 14 °C during the day and night 119 

respectively.  About 80 % of the total land mass is a thick forest and the landform ranges from 120 

flat terrain to hilly area (80 degrees). Two sites were selected to study the proposed method as 121 

seen in (Fig. 1), with analysis area labelled (A) and test area labelled (B). The analysis area 122 

was utilized to develop the methodology for differentiating between the two types of the 123 

landslides. Whilst, the test area was used for testing the methodology. Considerations were 124 

taken for selecting the test site to avoid missing in a number of classes. In addition, the training 125 

sample size was evaluated through stratified random sample method in order to enhance the 126 

accuracy of aforementioned areas (i.e. Analysis area and Test site).  127 

 128 

Fig. 1. here 129 

 130 

4. Methodology  131 

This study begins with pre-processing of LiDAR data and landslide inventories. This stage is 132 

very crucial before the commencement of the other subsequent steps. Specifically, pre-133 

processing step will help to reduce outliers and noise from the data.  Subsequently, the high-134 

resolution DEM (0.5 m) was derived from LiDAR point clouds and was utilized to generate 135 

other LiDAR-derived products and landslide conditioning factors (i.e. aspect, slope, height 136 
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(nDSM), intensity and hillshade). In the next stage, the geometric distortions of the LiDAR-137 

derived products and orthophtos were corrected and combined together in one coordinate 138 

system and prepared in GIS for feature extraction. The parameters such as shape, scale, and 139 

compactness were obtained in different levels of segmentation using Fuzzy-based 140 

Segmentation Parameter optimizer (FbSP optimizer) proposed by (Zhang et al., 2010). The 141 

evaluation was done using stratified random scheme and the training sample were as per the 142 

outlined procedure carried out by (Ma et al., 2016). Relevant features were selected using three 143 

algorithms namely random forest (RF), correlation-based feature selection (CFS) and ant 144 

colony optimization (ACO) to rank the feature from the most important to the less important. 145 

Random Forest (RF) classifier was used to evaluate the performance of aforementioned 146 

algorithms in differentiating between two landslide types namely deep-seated and shallow. 147 

Transferability was tested in another part of the study area (i.e. Test site). At the end, the results 148 

were validated and compared based on confusion matrix. Other landslides characteristics such 149 

as length, width, direction and run off were identified by overlaying the results with slope and 150 

aspect which were derived from LiDAR DEM data. The flowchart of the proposed method is 151 

depicted in (Fig. 2). 152 

Fig. 2. here 153 

4. 1 Data Used  154 

The LiDAR point cloud data was taken on January 15, 2015, over the proposed area (26.7 km2) 155 

of the Ringlet around Cameron Highlands an altitude of 1510 m. The point density and the 156 

pulse rate frequency for the LiDAR data is 8 points per square meter and 25,000 Hz, 157 

respectively. The absolute accuracy of the LiDAR data was restricted to the root-mean-square 158 

errors of 0.3 and 0.15 m as standardized by Department of Survey and Mapping Malaysia 159 

(JUPEM) for the horizontal and vertical axes, respectively. A similar approach for the 160 
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acquisition of LiDAR point cloud data was adopted to collect the orthophotos. A DEM with 161 

0.5 m spatial resolution was interpolated from the LiDAR point clouds after the non-ground 162 

points were removed using inverse distance weighting, with GDM2000/ Peninsula RSO as the 163 

spatial reference. Subsequently, the identification of the characteristics and location of the 164 

landslides was facilitated with the aid derived layers which were generated using LiDAR-based 165 

DEM (Miner et al., 2010). One of the significant factors that affect land stability is the slope 166 

and this is due to its direct impact on landslide phenomenology (Martha et al., 2011). The slope 167 

is also considered as a principal factor that affects landslide occurrences (Pradhan and Lee, 168 

2010). Landslide mapping can be facilitated by hillshade map which indicates relative slope 169 

and provides a good image showing terrain movement (Olaya, 2009). It is important to note 170 

that texture features and geometric feature are significant in improving the classification 171 

accuracy of landslide mapping (Chen et al., 2014). In the recent times, (Mezaal et al., 2017a) 172 

shows that the intensity feature derived from LiDAR point cloud is highly effective towards 173 

differentiating between the landslide and other classes of land cover. The accuracy of  DEM 174 

and its capability to represent the surface are affected by interpolation algorithm in addition to 175 

sampling density and terrain morphology (Barbarella et al.,. 2013). (Fig. 3) shows the features 176 

used in the current study which were derived from LiDAR data. They include hillshade, 177 

intensity, height (nDSM), slope, and aspect. Others are orthophotos, and texture based features. 178 

Fig. 3. here 179 

 180 

4. 2 Multiresolution Segmentation Algorithm 181 

Image segmentation is a process of partitioning image into multiple parts and is prerequisites 182 

and necessary. The reason is being that the delineation qualities of the target objects such as 183 

size and shape have a direct influence on the subsequent image classification (Duro et al., 2012; 184 

Chen et al., 2017). Multiresolution segmentation is most frequently used among other methods 185 
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used in landslide studies, hence, was chosen in this study. In this approach, image pixels having 186 

homogeneous spatial and spectral (textural characteristics) are grouped together (Dou et al., 187 

2015). The smaller objects are replaced with the larger ones based on certain criteria obtained 188 

from parameters such as color, scale, and shape (smoothness and compactness) (Benz et al., 189 

2004). These three (3) parameters (scale, shape, and compactness) are obtained in this 190 

algorithm. One of the methods to determine the values of these parameters is to use a 191 

conventional trial-and-error method, but this method takes too long and are considered tedious 192 

(Pradhan et al., 2016). Therefore, various semi-automatic and automatic methods for the 193 

optimization of the parameters segmentation have been attempted (Martha et al., 2011; Belgiu 194 

and Drǎguţ, 2014; Drǎguţ et al., 2010). However, their optimization approach is limited to 195 

optimization of scale, but, the relationship between the parameters are not investigated 196 

(Pradhan et al., 2016). Some of the advanced methods for the automatic combination of 197 

segmentation parameters are Taguchi optimization method proposed by (Pradhan et al., 2016) 198 

and fuzzy logic supervised approach proposed by (Zhang et al., 2010). However, differentiating 199 

image objects of variable scales still remain a challenge and not all features selection are fully 200 

exploited using a particular segmentation scale. So, an automatic approach should be attempted 201 

and implemented for better results.  202 

 203 

4.3 Object Feature Calculation  204 

In object-based approach, classification is carried out on segments rather than on single pixels. 205 

The classification is done by including a more information such as texture, shape, and context 206 

related to the image objects (Martha et al., 2011). The useful object features are selected using 207 

subjective or objective methods of the object-based classification. Feature selection algorithm 208 
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to an extent is an objective method (Genuer et al., 2010). While the subjective methods are 209 

based on experience and knowledge of the user (Laliberte et al., 2007). 210 

       As aforementioned, in this study three (3) algorithms (CFS, ACO and RF) are used for the 211 

purpose of obtaining the most optimal algorithm for differentiating between landslide types 212 

(deep-seated and shallow). Also, four object-features; Mean and StdDev visible band, LiDAR 213 

data, texture, and geometry were used. The eCognition software was used to extract the 86 214 

features (Mean and StdDev) from airborne laser scanning data. This was detailed in Table 1 as 215 

recommended by previous researchers (Pradhan and Mezaal, 2017; Li et al., 2015; Rau et al., 216 

2014; Chen et al. 2014).  217 

Table 1 here 218 

4.3.1 Ant colony optimization (ACO) 219 

The ant colony optimization (ACO) is a metaheuristic optimization technique whose 220 

applications is growing significantly in many fields. ACO is a powerful technique for 221 

parameter optimization, and the influence of the expert subjectivity is eliminated. The key 222 

parameters of this algorithm i.e. crossover, mutation, and survival of chromosomes are the key 223 

factor of its superior performance. In addition, there is no need for step size calculation in ACO 224 

and also the derivative information is not required (Ladha and Deepa, 2011). Pheromone 225 

evaporation could inhibit speedy convergence of the algorithm toward suboptimal region 226 

(Dorigo and Stützle, 2003). Furthermore, ACO algorithm can improve rule discovery by 227 

achieving a flexible and robust search for an ideal combination of terms that involve values of 228 

the predictor attributes (Parpinelli et al., 2002). This algorithm has been successfully applied 229 

in many applications in remote sensing, such as image segmentation (Cao and Xia, 2007), 230 

feature extraction (Li et al., 2012), parameter selection (Alwan and Ku-Mahamud, 2012), and 231 

feature selection (Sameen et al., 2017). 232 
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The overall flowchart of ACO-based feature selection is depicted in (Fig. 4). The workflow 233 

process commences with the generation of a number of ants. These ants were then placed 234 

randomly on a graph, i.e., each ant starts with one random attribute. This means that the number 235 

of ants is set to be equals to the number of attributes within the data. Therefore, with this 236 

equality, each ant can initiate path construction at a different attribute. Different ants may 237 

choose a different path for initial position and traverse nodes probabilistically until a traversal 238 

stopping criterion is satisfied. The resulting subsets are gathered and evaluated. If the algorithm 239 

has executed a certain number of cycles or optimal subset has been found then the process will 240 

stop. And the best attribute subset that is encountered is written as output. In a situation where 241 

none of these conditions holds, then the process is reiterated by updating the pheromone and 242 

creating a new set of ants. 243 

Fig. 4. here 244 

4.3.2 Correlation based feature selection (CFS)  245 

The Correlation-based Feature Selection (CFS) assesses subset in feature by using filter 246 

algorithm. The CFS assessed the capability of a set in features using heuristic evaluation 247 

function based on the correlation of features. Hall and Holmes (2003) claimed that a superior 248 

subset of features should interrelate with classes highly uncorrelated to each other. Thus, the 249 

criterion of a subset can be evaluated using the following formula (1) 250 

𝑟𝑐𝑧=

𝐾𝑟𝑧𝑖

√𝐾 + 𝐾(𝐾 − 1)𝑟𝑖𝑖

                                     (1) 251 

Where rzc represent correlation between the summation of class variable and feature, k denotes 252 

number of subset features, rzi denotes average of the correlations between the subset features 253 

the class variable, and rii is the average inter-correlation between subset features. In addition, 254 

the best search was used to discover the feature space, and the five consecutive fully expanded 255 
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non-improving subsets were set to a stopping criterion to avoid searching the entire feature 256 

subset space. In this study, the WEKA package was used to implement this feature selection 257 

algorithm. 258 

 259 

4.3.3 Random Forest (RF) 260 

The use of random forest for feature evaluation is referred to as embedded method (Pal and 261 

Foody, 2010). This method provides criterion for variable importance in each feature achieved 262 

by calculating mean reduction in the classification accuracy for the out of bag (OOB) data from 263 

bootstrap sampling (Verikas and Gelzinis, 2011). Let assume bootstrap samples b = 1, ... , B, 264 

then for  variable 𝑥𝑗, the mean decrease in classification accuracy 𝐷𝑗   as important measure is 265 

given by formula (2) 266 

𝐷𝑗 =
1

𝐵
 ∑(𝑅𝑏

𝑂𝑂𝑏 − 

𝐵

𝑏=1

𝑅𝑏𝑗
𝑂𝑂𝑏)                                 (2) 267 

Where 𝑅𝑏
𝑂𝑂𝑏 denotes the classification accuracy for OOB data ℓ𝑏

𝑂𝑂𝑏 using the classification 268 

model 𝑇𝑗; and 𝑅𝑏
𝑂𝑂𝑏 is the classification accuracy for OOB data 𝑅𝑏

𝑂𝑂𝑏 permuted the values of 269 

variable 𝑥𝑗   in ℓ𝑏
𝑂𝑂𝑏 (j = 1, ... , N). Finally, a z-score of variable 𝑥𝑗  which represents the variable 270 

importance criterion could be computed using the formula 𝑧𝑗 =
𝐷𝑗

𝑆𝑗√𝐵
 , after the standard 271 

deviation 𝑠𝑗  of the classification accuracy decrease is calculated. In this study, the feature 272 

evaluation procedure was performed automatically using the R package ‘RRF’. 273 

 274 

4.4 RF Classifier 275 
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The RF algorithm was proposed by Breiman et al. (2001) and is based on several decision trees 276 

designed for classification or regression and this algorithm is a nonparametric ensemble 277 

learning. Using various types of remote sensing data, this supervised method has been 278 

successfully applied in the detecting landslides (Stumpf and Kerle, 2011; Chen et al., 2014; 279 

Chen et al., 2017). The algorithm constructs multiple decision trees on the bases of randomly 280 

chosen subsets of the training dataset (Chen et al., 2018). In a classification problem, the RF 281 

takes the advantages of high variance of each tree assigned to the respective classes in 282 

accordance with the majority votes (Stumpf and Kerle, 2011). The major advantage of this 283 

method lies in its performance in complex datasets and negligible efforts required for fine-284 

tuning (Stumpf and Kerle, 2011). Unlike classification and regression tree where the method 285 

considered all variable in each node, RF is considered a random subset of the original set of 286 

features.  The number of the variables per node can be estimated by the users using square root 287 

of the total number of variables. These two mechanisms of sampling and random variables in 288 

each node, yield dissimilar uncorrelated trees. To take care of the variability in the training 289 

data, large number of trees are required to improve the accuracy of the process of classification. 290 

When a feature is assign to a class, it considers all the trees in the forest as its vote. Then, the 291 

class will be allocated based on majority vote.  292 

     In this study, the RF package (Liaw and Wiener, 2002) for the open-source statistical 293 

language R (R Development Core Team 2013) was used. Two parameters were considered 294 

here these are: number of trees in the forest and number of variables in the random subset at 295 

each node. A total of 500 trees were selected for this study and according to Stumpf and Kerle 296 

(2011), this number is considered to be a regular value for the RF classifier.  To make the grow 297 

one single randomly split variable was used. The 70% of the inventory map was selected as 298 

training sets which comprise all the features and the features subsets to train the RF model. 299 
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While the remaining 30% of inventory map was used for the evaluation of the classification 300 

accuracies. 301 

 302 

5. Results and Discussion  303 

5.1 Results of Multiresolution Segmentation Parameters using FbSP optimizer  304 

The multiresolution segmentation parameters (shape, scale and compactness) were optimized 305 

using FbSP optimizer. This optimizer is capable of separating different types of landslides and 306 

other types of land cover classes such as cut slope and vegetation. In this study, the values of 307 

the initial segmentation parameters trained in the FbSP optimizer in analysis area were 50, 0.1, 308 

and 0.1 for scale, shape, and compactness, respectively. The analysis begins with these three 309 

initial values and pass through three iterations cycle. The best values obtained by the FbSP 310 

optimizer were 75.52, 0.4, and 0.5 for scale, shape, and compactness, respectively and are 311 

shown in Table 2. In addition, Fig. 5 illustrates the initial and optimal segmentation process. 312 

Based on these optimized parameters, the accuracy classification can be improved faster to the 313 

highest level by demarcating the segmentation boundaries of landslide types. The separations 314 

between different types landslides (deep-seated and shallow) and non-landslides (vegetation, 315 

cut-slope, man-made and bare soil) was carried out with the aid of these optimized 316 

segmentation parameters by exploiting the spatial and textural feature. In this proposed method, 317 

it is necessary to carry out the subsequent steps in other to obtain more accurate result. Both 318 

landslide and non-landslide classes were used in the training samples to obtain optimal values 319 

of the segmentation parameters.  320 

Table 2 here 321 

Fig. 5. Here 322 

 323 
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5.2 Relevant Features Selected based on three algorithms (CFS, ACO and RF) 324 

Three (3) algorithms were used to select the most relevant features in the feature selection 325 

process in other to improve differentiate between landslide types (shallow and deep-seated). 326 

The three (3) feature selection algorithms applied in this research are; Correlation-based 327 

Feature selection (CFS), Random forest (RF) and Ant colony optimization (ACO). In the 328 

process, eighty-six (86) features were selected in the model to differentiate between landslide 329 

types. The features include; mean and StdDev of LiDAR derived data (DSM, DTM, slope, 330 

intensity, height and aspect) and orthophoto (red, blue, green, diff, Max. and brightness). 331 

Furthermore, texture features with all directions (GLCM Dissimilarity, Gray-level co-332 

occurrence matrix (GLCM) correlation, GLCM angular second moment, GLCM Mean, GLCM 333 

StdDev, GLCM Entropy, GLCM Contrast, GLCM Homogeneity, Grey level difference vector 334 

(GLDV) Mean, GLDV angular second moment, GLDV Entropy and GLDV Contrast) and 335 

Geometry features (length/width, area, shape and density).  336 

Additionally, the two defined algorithms (ACO and RF) were taken into consideration based 337 

on preliminary examinations (Sameen et al., 2017; Gao et al., 2015; Connell et al., 2015; Kumar 338 

et al., 2006; Abbaspour et al., 2001). The parameters such as crossover probability, the 339 

mutation probability size, the number of generations, and the population of 0.84, 0.09, 500 and 340 

500 respectively were used in the ACO algorithm. In the RF algorithm, the number of the trees 341 

and the number of split variables were set to 1000 and 10 respectively at 100 iterations. While 342 

the CFS work automatically and require no threshold to be pre-defined (Hall et al., 1999). It 343 

also enable integration with search strategy such as best- first search, bi-directional search etc 344 

for more efficiency (Ladha et al., 2011). Therefore, best-first search strategy was adopted in 345 

the CFS in the important feature selection, while, Statistica Trail and Weka 3.8 software and R 346 

statistical programming were used in this work. 347 
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     The selection of optimal combination was carried out based on many experiments in this 348 

work. The selection started from 2- 100% of the 86 features and the optimal features were 349 

achieved after 100 iterations in every experiments. The technique proposed by Sameen et al. 350 

(2017) was implemented and showed that applying 9 features indicated the best accuracy. 351 

However, other features showed no significant effect in differentiating between landslide types. 352 

Thus, comparison between these algorithms indicated that features selection result to different 353 

ranks and different accuracies in differentiating between landslides as shown in Table 3. 354 

Consequently, the RF classifier result indicated a high differentiation accuracy of 89.28%, 355 

using the features selected from CFS method. Also, better accuracies were achieved in ACO 356 

and RF feature selection methods. But, the ACO algorithm yield better result compared with 357 

RF algorithm.   358 

 359 

Table 3 here 360 

 361 

       The results of feature selection algorithms showed that the best combination was achieved 362 

by CFS which improved the differentiation between two types of landslides; shallow and deep-363 

seated in the analysis area. Meanwhile, ACO and RF showed high accuracy but slightly less 364 

than the CFS. Subsequently, the CFS algorithm showed that mean slope, mean intensity, and 365 

GLCM homogeneity were the best features. While GLCM angular second moment, StdDev 366 

Red, and StdDev intensity showed the best features in RF algorithm and in ACO method, 367 

GLCM Homogeneity, ranked mean DTM and Brightness as best features. These results 368 

obtained in CFS, RF, and ACO methods indicated improved accuracy in the landslide 369 

differentiation.  Conversely, the Grey level difference vector such as GLDV Entropy, GLDV 370 

Mean, and GLDV Contrast were not considered as shown in the results. These changes can be 371 

attributed to the landslide materials types in the area under consideration. Generally, selection 372 

of the most significant feature can reduce computation time, avoid the subjective requirement 373 



16 
 

of expert-knowledge, eliminated the irrelevant feature, improved the classifier process and 374 

simplify the rules developed.   375 

 376 

5.3 Supervised Random Forest for Distinguishing Shallow and Deep Seated Landslide 377 

 378 
The random forest (RF) in the qualitative assessment results were observed to be poor and the 379 

overall accuracies in shallow and deep-seated were recorded to be 70.44% and 73.54% 380 

respectively.  These results were achieved when 70% of the training data set and all features 381 

were used to train the RF classifier. It was observed that misclassification exist between the 382 

types of landslide (shallow and deep-seated) and several landscape objects (bare soil, man-383 

made, and cut-slope). On the other hand, high-quality results were achieved in the RF classifier 384 

that uses the optimal feature in the qualitative assessment and successfully differentiate 385 

between the landslides types as shown in Fig. 6. In the quantitative assessment result, the 386 

shallow landslide showed accuracy of about 87.54% using CFS method. While accuracy of 387 

89.9% for 70% training data was recorded for the deep-seated. This enhancement can improve 388 

the quality of inventory maps and specific details like run-out can be accurately revealed. The 389 

user’s accuracies result reveals the highest misclassification in the shallow compared with the 390 

deep-seated classes due to characteristics such as depth, deposit and orientation.   391 

 392 

Fig. 6. here 393 

 394 

The characteristics of deep-seated and shallow landslides in terms of size, slope, depth and run 395 

out in Cameron Highland are illustrated in Fig. 7.  This will aid in differentiating between the 396 

two landslide types. The use of feature selection like very high-resolution LiDAR data, 397 

orthophoto, texture and geometric features could go a long way to aid differentiating the 398 

landslide types. 399 
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Fig. 7. here 400 

      There exist some misclassifications in differentiating between landslides (shallow and 401 

deep-seated) and non-landslide (cut-slope, man-made and bare-soil) due to similarities in their 402 

shape characteristics (Mezaal et al., 2017a). In addition, shadow is another issue commonly 403 

present in hilly areas (Rau et al., 2014). According to Stumpf and Kerle, (2011), amongst 404 

different regions, important features may differ and could affect its transferability. Therefore, 405 

in other to resolve this issue, a 10-fold cross-validation approach was used and is expected to 406 

guide the accuracy of the prediction in the search (Bartels and Wei, 2010). The intensity feature 407 

resulting from LiDAR point cloud contributed to the distinguishing between shallow and deep-408 

seated landslides. The accuracy in differentiating deep-seated landslides was observed to be 409 

higher than the shallow landslides. According to Pradhan and Mezaal (2017), the LiDAR 410 

derived data could contribute significantly in separating deep-seated landslides from other 411 

land-cover classes most especially around hilly and densely vegetated areas like Cameron 412 

Highlands. 413 

     The better results achieved in the classification indicated that optimization techniques could 414 

be used in feature selection and segmentation parameters from orthophotos, very high-415 

resolution LiDAR data, texture and geometric features can enhanced the accuracy of landslide 416 

types detection as shown in Figure 6. 417 

 418 

5.6 Transferability of the Relevant Features 419 

Transferability is another important aspect of feature selection that was evaluated at another 420 

part of the study area refer to as (Test site). The segmentation parameters were optimized in 421 

the test site by considering all features and generalization capability of the important features 422 

were considered for transferable features. Accordingly, the full subsets of features selection 423 
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were tested on another site (Test site) which result to low quality of qualitative assessment of 424 

about 70% of the inventory data. It was observed that misclassification exist between landslide 425 

types with other types of landscape (man-made, cut-slope, and bare soil). However, when 426 

optimal features selection only were applied, the overall accuracies of the RF classifier of 427 

shallow and deep-seated were 86.77% and 88.59%, respectively. Although, this study reveals 428 

that the optimal scale aid in exploiting the features selection fully and simplifies its 429 

transferability classifier. Although, RF results show a declining accuracy, but, still realistic for 430 

this type of application. The decreased in the results accuracy due to several limitations such 431 

as complex terrain, characteristics of landslide types (shallow and deep-seated) and an 432 

extension of the former types. Furthermore, some objects like man-made cut slope and bare 433 

soil have same characteristics with all the features aforementioned. The results of 434 

transferability model showed the importance of each feature in the high-resolution LiDAR data, 435 

textures, orthophoto, geometric features. Fig. 8 shows the defining parameters of RF classifier 436 

used to differentiate between shallow and deep-seated landslides.   437 

Fig. 8. here 438 

 439 

It challenging to differentiate between landslide types (shallow and deep-seated) in densely 440 

vegetated region like Cameron Highlands due to the presence of similarity in dense vegetation, 441 

hilly areas and shadow. This research proposes a method for differentiating between landslide 442 

types by using high-resolution airborne laser scanning data (LiDAR) and features such as 443 

texture, visible band and geometric features. Also, it was revealed that optimization of the 444 

segmentation parameters like scale, shape and compactness using FbSP optimizer was 445 

satisfactory in differentiating between types of landslide and non-landslide. Optimized 446 

segmentation parameters allows development of more accurate objects segment and uses 447 

texture, spatial and geometric features to differentiate between the classes aforementioned. 448 
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Since the landslides can be classified according to their features, accurate segmentation is 449 

necessary for differentiating between the classes.  450 

The level of experience of analyst play a vital role in the selection of relevant optimal features 451 

for landslide. Hence, it is important to create a feature selection method that distinguishes 452 

between landslides and non-landslide types. Relevant features are simplifying with the aid of 453 

ACO, RF and CFS algorithms when assessing and separating landslides between the 454 

aforementioned classes and are transferable to another site (site A). The optimized features 455 

applied to distinguish between the classes aforementioned are LiDAR-DEM data (slope, 456 

height, and intensity), texture features (GLCM StdDev and GLCM homogeneity), visible band 457 

and geometric features. The results indicate the impact of the features such as LiDAR data 458 

(intensity, slope and height), geometric features (length/width and area), spectral features (red, 459 

green and blue) and texture feature (GLCM Homogeneity) in distinguishing between the types 460 

of landslides. The over-reliance on the analyst experience and computation time is minimized 461 

in this proposed method compared with the existing complex technique.  462 

The use of classification techniques guarantees significantly improve the differentiation 463 

accuracies. Each of the various classification algorithms in existence has its own advantages 464 

and disadvantages. Therefore, the proposed supervised random forest used in this research 465 

indicated better accuracy. Moreover, optimized approach for segmentation parameters and 466 

relevant features with the aid of very high-resolution LiDAR, visible bands, texture and 467 

geometric feature contributed to the simplification in the development of the proposed method 468 

and improve the transferability model. The proposed method was developed based on analysis 469 

area and validated in another part of the study area (Test area), and high accuracy was achieved.  470 

 471 

6. Accuracy Assessment   472 

Evaluation of the training samples was carried out with 70% of the training sets with the aid of 473 

stratified random sampling approach. The training set (70%) was applied to train the RF 474 
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classifier using full or relevant optimal features. The overall accuracies of the RF classifier in 475 

the analysis area in the presence of all the features were 70.44 and 73.54% for shallow and 476 

deep-seated, respectively. Also, the overall accuracies (RF classifier) obtained for the Test site 477 

were 66.63% and 68.38% for shallow and deep-seated, respectively as shown in Table 4. When 478 

highest-ranking features only are used in the analysis area, the accuracies of the RF classifier 479 

increased to 87.54% and 89.90% for shallow and deep-seated landslides, respectively. The 480 

corresponding test site record accuracies of 86.77% for shallow landslide and 88.59% for a 481 

deep-seated landslide.  482 

The total number of the landslides occurrence in the analysis and test site were 43 and 61 483 

respectively. Out of the total, 32 and 35 were shallow landslides occurred in the analysis area 484 

and Test site respectively. While the number of the deep-seated landslide were 11 and 26, for 485 

analysis area and test site respectively. The results showed high performance in respect of the 486 

two types of landslides: the numbers 30 and 31 were detected for analysis area and Test site, 487 

respectively, for shallow landslide. The number 10 out of 11 deep seated landslides were 488 

detected in the analysis area, whereas, 23 out of 26 were obtained in the Test area. 489 

Table 4 here 490 

 491 

 492 

Tables 5 shows the results of the user’s and producer’s accuracies of RF classifier along with 493 

important and full features for the aforementioned sites.  The results showed that the user’s and 494 

producer’s accuracies of deep-seated exhibited higher accuracies for all the above-mentioned 495 

areas.  496 

Table 5 here 497 

 498 

The results clearly showed that significant features were used in the proposed model and has 499 

yielded high accuracy compared with the model that employs all the features. This finding is 500 
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in agreement the observations of other authors (Mezaal and Pradhan, 2018; Li et al., 2015). 501 

Furthermore, it was observed that selection of the most important features lead to decreased 502 

dimensionality of the object feature and the classification accuracy was improved. Evaluation 503 

of the training data immensely reduced the training time and improve the transferability 504 

performance.  However, the RF classifier was insensitive to the procedure of the feature 505 

selection.  506 

7. Field investigation 507 

Field investigation was carried out to identify types of landslides using handheld GPS device 508 

(GeoExplorer 6000) as shown in Fig. 9 and the result was used to validate the proposed method. 509 

Information such as landslide extent, pattern, run out, deposition, source area and volume were 510 

obtained from filed measurements and are used to assess the reliability of the inventory map 511 

produced. The field investigation showed that the type of landslides are delineated using the 512 

proposed method and was accurate. Thus, it can be inferred that the current method can identify 513 

landslide locations, separate landslide types, and produce a reasonable and acceptable landslide 514 

inventory map for Cameron Highlands in Malaysia. 515 

Fig. 9. here 516 

 517 

8. Conclusion 518 

The proposed method employs three feature selection techniques within the object-based 519 

method to improve the identification process between shallow and deep-seated landslide 520 

types in Cameron Highland Malaysia. The research was carried out using very high-resolution 521 

airborne laser scanning data and the optimized parameters of multiresolution segmentation 522 

enhances the overall accuracy of the system. These factors improve the accuracy of delineated 523 

boundaries of landslide types. The feature selection methods adopted enhances the accuracy of 524 
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the classification significantly, reduced the computational time and enhance transferability. 525 

The high accuracy recorded is due to the CFS used in the important features selection. It was 526 

discovered that orthophoto, high-resolution LiDAR data, geometric and texture features 527 

improve the differentiation between shallow and deep-seated landslides. Also, the 528 

transferability reveals that features selection with CFS and supervised approach based on RF 529 

classifier give reliable results with improve cost-effectiveness and efficiency in the developed 530 

landslide inventory maps. The improvement in the accuracies of differentiation the landslide 531 

types showed that it can be used as a valid inventory map to be used in planning and disaster 532 

management policies in urban areas.  533 

 534 
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