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ABSTRACT
This paper provides a brief review of the different optimisation strategies used in mo-
bile robot simultaneous localisation and mapping (SLAM) problem. The focus is on
the optimisation based SLAM back end. The strategies are classified based on their
purposes such as reducing the computational complexity, improving the convergence
and improving the robustness. It is clearly pointed out that some approximations
are made in some of the methods and there is always a trade-off between the com-
putational complexity and the accuracy of the solution. The local submap joining
is a strategy that has been used to address both the computational complexity and
the convergence and is a flexible tool to be used in the SLAM back end. Although
more research is needed to further improve the SLAM back end, nowadays there
are quite a few relatively mature SLAM back end algorithms that can be used by
SLAM researchers and users.
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1. Introduction

Simultaneous Localisation and Mapping (SLAM) is the problem of using a mobile
robot/sensor to build a map of an unknown environment and at the same time lo-
cating the robot within the map (Cadena et al., 2016; Dissanayake et al., 2001). The
process of solving a SLAM problem includes SLAM front end and SLAM back end.
SLAM front end refers to the process of feature extraction, feature matching, and
data association for feature based SLAM, and scan matching, image matching and
loop closure detection for pose-graph SLAM. SLAM back end is to apply estimation
or optimisation techniques to find the optimal configuration of the robot poses and
the feature positions (for point feature-based SLAM).

Recently, nonlinear optimisation techniques have become popular for solving SLAM
back end due to its superior performance as compared with filter based SLAM tech-
niques. However, since SLAM is formulated as a high dimensional nonlinear optimisa-
tion problem, finding the global minimum efficiently is nontrivial. Different researchers
have used different strategies for addressing this issue. One common strategy is to
exploit the sparseness of the Jacobian and information matrix and apply different ap-
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proaches for solving the sparse linear equations to speed up the SLAM algorithms.
Other strategies include using different objective functions, approximating the prob-
lem, using the special nonlinear structure, applying submap joining idea, and using
different methods for handling outliers (incorrect data coming in to the SLAM back
end), etc.

This paper provides an overview of different strategies used in the optimisation
based SLAM back end. We classify the different strategies based on their purposes,
and provide example research papers for the different strategies. Due to the large
scope covered by SLAM research, this paper only focuses on the review of some of the
optimisation based SLAM back end. For a more comprehensive review of the SLAM
history, current state-of-the-art, and future, please read Cadena et al. (2016) and the
references therein.

This paper is organised as follows. Section 2 gives the formulations of two typical
SLAM optimisation problems, namely 2D point feature based SLAM and 2D pose-
graph SLAM. Section 3 classifies the different optimisation strategies based on their
purposes. Section 4 discusses some strategies for reducing the computational complex-
ity. Section 5 states the different methods for improving the convergence. Section 6
discusses the methods for improving the robustness to outliers. Some other interest-
ing strategies applied in SLAM are briefly mentioned in Section 7. Finally, Section 8
concludes the paper.

2. Feature based SLAM and Pose-graph SLAM

In this section, we introduce two kinds of SLAM optimisation problems. One is feature
based SLAM problem. The other is pose-graph SLAM problem. In the following, we
use 2D point feature based SLAM and 2D pose-graph SLAM as examples to explain
the problem formulations.

2.1. 2D point feature based SLAM

Assume that n 2D point features {fk}nk=1 are observed from a sequence of m + 1
2D robot poses {ri}mi=0. We use zik to denote the observation made from pose ri to
feature fk, and oi (1 ≤ i ≤ m) to denote the odometry measurement between pose
ri−1 and pose ri which includes both the relative translation measurement oxyi and

the relative rotation measurement oφi . The observations and the odometry are assumed
to be corrupted by zero-mean Gaussian noises with covariance matrices Pzik , Po

xy
i

and

poφi , respectively. xfk = [xfk yfk ]
T denotes the position of feature fk. xri = [xri yri ]

T

denotes the position of robot pose ri while φri denotes the orientation of robot pose
ri. R(φri) is the rotation matrix corresponding to φri defined by:

R(φri) ,

[
cosφri − sinφri
sinφri cosφri

]
. (1)

The state vector x contains all the robot poses (except pose r0 which defines the
coordinate frame and is called “anchor”) and all the feature positions that are to be
estimated,

x , [xTf1 · · · xTfn xTr1 φr1 · · · xTrm φrm ]T . (2)
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The nonlinear least squares (NLLS) SLAM formulation (Dellaert & Kaess, 2006)
uses the odometry and observation information to estimate the optimal state vector
x∗ that minimises the negative log-likelihood function

F1(x) =
∑
i,k

‖zik −Hzik(x)‖2
P−1

zi
k

+

m∑
i=1

‖oi −Hoi(x)‖2
P−1

oi

(3)

where Poi = diag{Poxyi , poφi } and ‖z‖2W , zTWz for vector z and positive definite
matrix W .

In the above least squares SLAM formulation, Hzik(x) and Hoi(x) are the corre-
sponding functions relating zik and oi to the state x. An odometry measurement is a
function of two poses (xTri−1

, φri−1
)T and (xTri , φri)

T and is given by

Hoi(x) =

[
R(φri−1

)T (xri − xri−1
)

φri − φri−1

]
. (4)

A single observation is a function of one pose (xTri , φri)
T and one feature position xfk

which is given by

Hzik(x) = R(φri)
T (xfk − xri). (5)

In particular, since r0 defines the coordinate frame, φr0 = 0 and xr0 = (0, 0)T , the
odometry function from robot pose r0 to r1 is given by

Ho1(x) =

[
xr1
φr1

]
(6)

and the observation function from robot pose r0 to fk is given by

Hz0
k(x) = xfk . (7)

2.2. 2D pose-graph SLAM

In pose-graph SLAM, the original sensor observation information is first transferred
into relative pose information through scan matching (Lu & Milios, 1997) or image
matching. Thus the pose-graph SLAM problem is to use the relative pose information
to estimate the best configuration of the robot poses.

In the 2D pose-graph SLAM back end, the state vector contains all the robot poses
(except pose r0)

x , [xTr1 φr1 · · · xTrm φrm ]T (8)

and the objective function to be minimised is given by

F2(x) =
∑
i,j

‖oij −Hoij (x)‖2
P−1

oij

(9)
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Table 1. Different kinds of optimisation strategies used in SLAM

Strategies

Purpose One Two Three

Reduce computational complexity Exploit the sparseness a Use the special nonlinear structure Use submaps b

Improve convergence Improve initialisation Use different parametrisation Approximate the problem c

Improve robustness to outliers M-estimator Select consistent measurements

a All the modern SLAM algorithms have used the sparseness.

b Using submaps is also a strategy for improving initialisation and approximating the problem (both are for improving convergence).

c The different ways of approximating the problem is given in Table 2.

where oij is the relative pose information between pose ri and pose rj , Poij is the
corresponding covariance matrix, and Hoij is the relative pose function. They have
the same format as oi, Poi and Hoi in Section 2.1.

Remark 1. The 3D point feature based SLAM and pose graph SLAM are similar
to the 2D problems defined above. For other feature based SLAM problem such as
line feature SLAM and plane feature SLAM, the feature parameters that define the
feature (instead of the position of point feature) will be estimated as part of the state
vector.

3. Classification of Optimisation Strategies used in SLAM

In the last decades, a lot of SLAM algorithms have been developed. Different strategies
have been proposed for the optimisation based SLAM back end. The different strategies
used in the SLAM optimisation process are roughly classified based on their purposes in
Table 1. The first important purpose is to reduce the computational complexity of the
optimisation process. The second important purpose is to improve the convergence of
the optimisation algorithm. The third important purpose is to improve the robustness
to the outliers. In the following sections, we will discuss them in more details.

4. Reduce Computational Complexity

In a typical SLAM problem, there are a large number of poses (and features) involved
thus the state vector is of very high dimension. There are also a lot of measurements
in SLAM (the number of measurements is at least as large as the number of variables
in a least squares problem). Hence the SLAM problem is a high dimensional opti-
misation problem. To solve this high dimensional optimisation problem efficiently is
an important issue because a real-time SLAM solution is needed for practical robot
applications.

4.1. Exploit the sparseness

Although the dimension of the state vector and the dimension of the measurement
vector in SLAM are both very high. There is one special property of the SLAM prob-
lem, that is, each measurement in SLAM is only associated with very limited number
of variables. For example, the odometry (or relative pose) measurement is only associ-
ated with two poses. The feature observation is only associated with one pose and one
feature. This fact results in a very sparse Jacobian matrix. Consequently, the linear
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systems that need to be solved in the iterative optimisation process are all sparse.
Because of the sparseness, the storage and computation in optimisation based SLAM
algorithms can be made very efficient by using sparse linear algebra.

The sparseness is exploited in all the modern SLAM algorithms. Examples include
g2o (Kummerle et al., 2011), Ceres (Agarwal & Mierle, 2016), iSAM2 (Kaess et al.,
2012), and SLAM++ (Ila et al., 2017) etc.

4.2. Use the special nonlinear structure

Some recent studies demonstrate that there are also some special nonlinear structures
involved in the SLAM optimisation problems. The motivation to this study is that the
convergence of some SLAM algorithms seems to be surprisingly good even starting
from very poor initial values (Grisetti et al., 2009; Huang et al., 2010; Olson et al.,
2006).

One important property of SLAM problem is that the functions involved are with
very special format. For example, when the robot orientation φri is fixed, the functions
Hzik(x) and Hoi(x) in (3) are both linear. Using this property, it can be proved that
the 2D point feature based SLAM problem (with 3m + 2n variables) is equivalent to
an optimisation problem with only m variables (the robot orientations) (Huang et al.,
2012; Wang et al., 2013). Using this dimension reduction result, the number of local
minima involved in the one-step and two-step SLAM problem can be analysed (Wang
et al., 2013, 2015).

However, when the number of poses involved is large, using the dimension reduction
result directly does not help to reduce the computational complexity of the SLAM algo-
rithms, because the sparseness is lost after the dimension reduction. On the other hand,
if the separability is exploited in combination with the traditional SLAM solver such
as Gauss-Newton, the efficiency of the solver can be significantly improved (Khosoussi
et al., 2016).

4.3. Use submaps

Using submaps is also a strategy to improve efficiency for building large-scale maps.
The idea is to first solve smaller scale SLAM problems to build small submaps in the
local coordinate frames, and then join the submaps together to obtain the large global
map.

There are different submap based strategies for SLAM. One strategy is to use the
results from the submaps to obtain a high quality initial value for the global SLAM op-
timisation (Ni & Dellaert, 2010). This will significantly reduce the number of iterations
needed for the optimisation algorithm thus achieve computational cost saving.

Another strategy is to treat the estimated state vector of each local map as an inte-
grated observation (the uncertainty is expressed by the local map covariance matrix)
in the map joining step (Grisetti et al., 2012; Huang et al., 2008, 2009). By sum-
marising the original data within the local map in this way, the SLAM problem can
be solved more efficiently. However, the map joining problem thus solved is slightly
different from the original global SLAM problem using the original data due to the
nonlinearity involved in the SLAM problems.

Using submaps reduces the computational complexity through improving the initial
value or approximating the original problem. They will be discussed more in the next
section.
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5. Improve the Convergence

As a high dimensional nonlinear optimisation problem, SLAM can have many local
minima. One important question to ask is how to make sure a SLAM algorithm can
converge to the global minimum.

5.1. Improve initialisation

For a nonlinear optimisation problem, a good initial value is required for the iterative
optimisation methods to converge to the globally optimal solution.

The easiest way to obtain the initial value for SLAM is to use the odometry infor-
mation to compute the initial value of all the robot poses, and use the first observation
to the feature and the computed initial robot pose to compute the initial feature posi-
tion (for feature based SLAM). However, when the robot trajectory is very long, this
initial value will be far from accurate due to the drift of the accumulated odometry
data.

For pose-graph SLAM, since other relative pose information is available apart from
the odometry, a better initial value for a robot pose can be obtained through a minimal
depth route from the anchor pose to the pose obtained from a spanning tree (Konolige
et al., 2010). However, this initial value could still be inaccurate for large-scale pose-
graph SLAM problems. Recently, researchers have proposed the strategy of initilising
the rotations first, and then initialising the translation (Carlone et al., 2015), which
could result in good quality initialisation for pose graph SLAM.

A high quality initial value could be obtained through incremental SLAM. That is,
solve the SLAM problem incrementally and use the SLAM result from the previous
step to compute the initial value for the SLAM problem in the current step. This is the
strategy used in (Kaess et al., 2008, 2012). Using a tree structure and approximating
the Jacobians in the new steps by reusing some of the previously computed Jacobians
make the algorithms very efficient.

As mentioned in Section 4.3, using submaps can also help to obtain a very good
initial value for the global SLAM optimisation. In fact, any solution of an approximated
SLAM problem can be used as a good quality initial value for the SLAM. One trade-off
is between the computational cost for obtaining the solution and the accuracy of the
solution to the approximated SLAM problem. This will be discussed a bit more in
Section 5.3.

Although iterative based SLAM optimisation algorithms appear to be able to
achieve high quality solutions with reasonably good initial values. There is still no
theoretical guarantee that an initial value is sufficiently accurate for the algorithm
to converge to the global minimum. For very special scenarios such as one-step and
two-step SLAM problems, some convergence results can be proved (Wang et al., 2013,
2015). In (Carlone, 2013), it is demonstrated that the size of the region of attrac-
tion of Gauss-Newton method depends on some key factors such as the measurement
uncertainty, the inter-nodal distances, and the graph structure.

5.2. Use different parametrisation

Use different parameters to represent the robot pose and feature positions can also
help to improve the convergence. One good example is the monocular SLAM problem
where the feature observation is obtained from a monocular camera. In that case,
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Table 2. Different ways to approximate the SLAM optimisation problems

Examples

Strategy One Two

Use different objective function Spherical covariance matrix Frobenius norm
Convex relaxation Semi-definite programming Lagrangian duality, Verification
Graph pruning and sparsification Reduce the number of nodes Reduce the number of edges
Submap joining Sparse map joining Linear SLAM

using traditional Euclidean XYZ to represent a 3D point can result in rank deficient
Jacobians and singular information matrix. If inverse depth feature parametrisation
(Montiel et al., 2006; Sola et al., 2012) is used, the convergence will be improved. If
parallax angle feature parametrisation (Zhao et al., 2015) is used, the convergence
will be improved even further. The reason why different feature parametrisations can
change the convergence is because the information content from the observations about
the different feature parameters is different. An important lesson learnt is that “we
should not try to estimate something when there is little or no information about it
from the measurements”. The research in (Zhang et al., 2016) addressed similar issues.

Recently, it is also demonstrated that using manifold representations (e.g. for 3D
robot pose), the convergence can be improved to some extent (Grisetti et al., 2010).
This is because the manifold representation keeps the structure of the problem better
than using some naive representations (such as Euler angle for 3D rotation). More
discussions on this point are given in (Zhang et al., 2017).

5.3. Approximate the problem

Another strategy is to formulate an approximate problem that is easier to solve, and
then use its solution as an approximate solution or an initial value for further improve-
ments. A number of methods fall into this category. Table 2 summarises some of these
methods.

5.3.1. Approximate the objective function

I: Use spherical covariance matrix
In the SLAM problem formulation (3), Pzik and Poi are the covariance matrices of

the Gaussian measurement noises. They can be arbitrary positive definite matrices.
Recently, it has been realised that if the covariance matrices Pzik and Poi are spherical,
then the optimisation problem can be solved more easily. The definition of spherical
matrix is given in (Wang et al., 2013).
Definition 1: A ∈ R2×2 is called spherical if it commutes with R(φ) (defined in (1))
for every φ. i.e. AR(φ) = R(φ)A for every φ. B ∈ R3×3 is called spherical if it has the
format of B = diag{A, a} where A ∈ R2×2 is spherical and a is a real number.
Remark 2. A 2× 2 positive definite spherical matrix has the format P1 = diag{a, a}
with a > 0. A 3×3 positive definite spherical matrix has the format P2 = diag{a, a, b}
with a > 0 and b > 0.

It has been proved in (Wang et al., 2012, 2013, 2015) that the number of local
minima is limited for one-step and two-step 2D SLAM problems, if the covariance
matrices are all spherical.

For 3D SLAM problems, the spherical matrix can be defined similarly. Simulation
and experimental results show that the convergence of the SLAM algorithms is much
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better when the covariance matrices of the measurement noises are all spherical (in
some papers, it is called “isotropic” measurement noise) (Carlone et al., 2016). In
fact, many efficient SLAM algorithms are using the spherical covariance assumption
(Dubbelman & Brownig, 2015; Grisetti et al., 2010; Rosen et al., 2016; Wang et al.,
2012, 2015).
II: Use Frobenius norm

In (Carlone et al., 2016; Rosen et al., 2015, 2016), the Frobenius norm is used to deal
with the orientation part of odometry in (3). It is proved in Wang et al. (2018) that for
one-step SLAM problem, the strong duality between primal SLAM and corresponding
convex programming problem always holds, that is, the optimal solution is guaranteed.
The convergence to the globally optimal solution for both using the objective function
with Frobenius norm and the objective function in (3) are compared and the results
show that using Frobenius norm results in much better convergence results.

Frobenius norm has also been used in other area such as computer vision (Hartley
et al., 2008). In (Carlone & Calafiore, 2018), unsquared l2 norm and l1 norm are also
proposed in the pose graph optimisation formulation.

5.3.2. Use convex relaxation

Since there is in general no guarantee on the convergence to the global minimum when
solving the nonlinear least squares problems using iterative methods such as Gauss-
Newton or Levenberg-Marquardt, another idea is to apply convex relaxation to the
problems and use convex optimisation tools to solve the problem. The first attempt
along this direction is done by Liu et al. (2012) using semi-definite programming and
later by Rosen et al. (2015). Furthermore, the work by Carlone et al. (2016) applies
Lagrangian duality and shows that when strong duality holds SLAM can be solved
globally. Moreover, a way to certify a given solution is optimal is also presented.

In (Rosen et al., 2016), very efficient convex relaxation method is applied to solve
the non-convex pose graph optimisation problem. Furthermore, it is demonstrated
that in many practical scenarios when the noise level is not too big, the solution via
convex relaxation is the exact solution of the original problem. The work by Briales
& Gonzalez-Jimenez (2017) further improves the algorithm efficiency.

5.3.3. Use graph pruning and sparsification

To further improve the efficiency of SLAM algorithms, some researchers proposed to
reduce the number of poses (and features) in the optimisation problem. One strategy
is use keyframes (Ila et al., 2010; Konolige & Agrawal, 2009) where only poses with
highly informative measurements are added. Another strategy is called “graph prun-
ing” where some of the nodes are marginalised out in the SLAM graph (Kretzschmar
et al., 2011). After marginalising the nodes, the graph becomes denser and sparsifica-
tion is applied to improve the sparseness (Carlevaris-Bianco & Eustice, 2013; Huang
et al., 2013; Mazuran et al., 2006).

Both graph pruning and sparsification introduce approximation to the original
SLAM problems and the efficiency is achieved by sacrificing the accuracy.

5.3.4. Use submap joining

When each local submap is treated as an integrated observation, the submap joining
problem is an approximation of the original SLAM problem.

Within each local map, we can also marginalise out some of the variables before
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joining the local maps together (e.g. only keep the features (Huang et al., 2009)). This
will make the dimension of the state vector of the map joining problem significantly
lower than that of the global SLAM problem.

Many submap joining problems are formulated as nonlinear least squares optimisa-
tion problems and solved using iterative techniques (Huang et al., 2008; Ni & Dellaert,
2010). Very recently, Linear SLAM (Zhao et al., 2013) is proposed that a sequence of
local maps can be joined together either sequentially or in a more efficient divide and
conquer manner in which only solving linear least squares and performing nonlinear
coordinate transformations are needed. There is no assumption on the structure of the
covariance matrices of the local maps (no need to be spherical as in Rosen et al. (2016);
Wang et al. (2015)). Since linear least squares problems have closed-form solutions,
there is no need of an initial guess and no need of iterations to solve the reformulated
map joining problems. Results using publicly available datasets show that the Linear
SLAM algorithm can provide accurate results (Zhao et al., 2013, 2014).

Although Linear SLAM guarantees that the map joining solution is correct, it is
an approximation of the full nonlinear least squares SLAM because: (i) Instead of
using the original odometry and observation information, the local map information
(represented as the local map state estimate together with its information matrix) is
used in the map joining. (ii) Instead of fusing all the local maps together in one go
using nonlinear optimisation as in Huang et al. (2008), only two maps are fused at a
time which resulting in a suboptimal solution.

6. Improve Robustness to Outliers

The problem formulations presented in Section 2 assume that the data association
is perfect (for feature based SLAM) and the relative pose information are all close
to the true values (for pose-graph SLAM). However, in reality, data association and
loop closure detection can both be wrong due to wrong feature/scan/image match-
ing. Although part of the SLAM front end is for removing such outliers, there is no
guarantee that the data inserted in to the SLAM back end is outlier free. When a
wrong observation or wrong relative pose constraint is inserted in the optimisation,
the optimisation result can be far from the ground truth.

One question to ask is whether the SLAM back end is able to detect the outliers
or not. If a SLAM back end can detect the outliers and ignore them when performing
optimisation, then it is called “Robust SLAM back end”.

6.1. M-estimator

The first interesting work along this line is by Sunderhauf & Protzel (2012), where
additional variables are added to indicate whether a measurement is outlier or not. An-
other strategy is to control the impact of outliers through changing the corresponding
covariance, such as in (Agarwal et al., 2013; Latif et al., 2013). All these methods can
be regarded as variants/extensions of M-estimators (Huber, 1964). The performance
of these methods highly depends on the initial value used.
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6.2. Consistent measurements

There are also methods for reasoning on the validity of loop closure constraints by
looking at the residual error induced by the constraints during optimisation (Carlone
et al., 2014; Graham et al., 2015; Olson & Agarwal, 2013). These methods aim to find
the maximal set of consistent measurements normally assuming that the set of odom-
etry measurements are reliable. In this way, the inconsistent loop closure constraints
are figured out.

7. Some other Strategies

There are some other interesting strategies for SLAM back end. Here we present two
of them as examples.

7.1. Constrained optimisation

One strategy is formulating the SLAM problem as a constrained optimisation problem
instead of an unconstrained optimisation problem as in Section 2. The idea is to use
all the relative information as variables and use all the loop closures as constraints.
In this way, no anchor is needed and the optimal solution is equivalent to that of the
nonlinear least squares problem (Bai et al., 2016).

It has been demonstrated that this new formulation also provides a good method
to handle outliers (Bai et al., 2017).

7.2. Continuous-time trajectory

Another strategy is using a continuous robot trajectory instead of discrete robot poses.
Using a continuous curve (e.g. a B-splines) to describe the robot trajectory requires
less number of variables to be included in the optimisation step. Along this direction,
many new SLAM formulations can be obtained and the SLAM problems are solved in
different ways. For more details, please refer to (Furgale et al., 2015).

8. Conclusion

This paper gives a brief review on the different strategies used in the optimisation based
SLAM back end. The strategies are used to reduce the computational complexity,
improve the convergence, and improve the robustness of the high dimension nonlinear
optimisation problem. It is pointed out that the sparseness, the objective function, the
parametrisation, and the nonlinear structure of the SLAM problem all play important
roles in the performance of the SLAM algorithms.

With these strategies, a lot of SLAM back end algorithms are now very efficient and
reliable. Some of the algorithms are presented as open source (e.g. OpenSLAM.org)
to benefit SLAM researchers and users. These open source algorithms are valuable
resources for the researchers and engineers who are interested in SLAM.

SLAM front end is also extremely important and is not covered in this review. It
is probably more challenging than SLAM back end since most of the SLAM front
end algorithms are application dependent. Recently, some nice integrations of SLAM
front end and SLAM back end have been developed for SLAM using different sensors.
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These together with the availability of a large number of benchmark SLAM datasets
are speeding up the practical applications of SLAM in different scenarios.
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