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Abstract: Asynchronous switching differing from asynchronous consensus may hinder the system to reach a con-
sensus. This receives very limited attention, especially when the multi-agent systems have a controller fault. In
order to analyze the consensus in this situation, this paper studies the consensus of the second-order multi-agent
systems under asynchronous switching with a controller fault. We convert the consensus problems under asyn-
chronous switching into stability problems and obtain important results for consensus with the aid of linear matrix
inequalities. An example is given to illustrate the effect of asynchronous switching on the consensus, and to validate
the analytical results in this paper.
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1. INTRODUCTION

Multi-agent systems, as a class of complicated dy-
namic systems, are composed of multiple interactive intel-
ligences. Such systems appear in many applications, such
as robot communication networks [1, 2], and unmanned
vehicles [3]. Therefore multi-agent systems have drawn
considerable attention in recent years [4–8]. In multi-
agent systems, all agents coordinate to solve a global com-
mon problem, such as consensus [4], containment control
[9, 10], and vehicle formations.

Consensus, as the most basic problem of the coordina-
tion in multi-agent systems, is to design or analyze a dis-
tributed control law to make all agents reach a common
value [11]. Whenever the nodes of a network are all in
agreement, this common value is called the group deci-
sion value. Reaching the group decision value needs to
apply inputs that only depend on the states of every node
and its own neighbours in a distributed way [4].

The consensus problem has been extensively studied.
Some basic concepts on consensus and topologies were
introduced in [4,12]. In [13], results for second-order con-
sensus under fixed topologies are presented. Second-order
consensus under switched topologies was studied in [14].
The paper [11] studied the consensus problem for a class
of uncertain multi-agent systems under directed switch-

ing networks with uncertainty. The papers [15,16] studied
the consensus problem for a class of general second-order
multi-agent systems and presented some results about
the necessary and sufficient condition for the consensus.
Fixed-time consensus tracking control for second-order
multi-agent systems with bounded input uncertainties was
introduced in [17]. A distributed protocol was proposed in
[18] based on the information of second-order neighbours
for the robust consensus problem of fractional-order linear
multi-agent systems with positive real uncertainty under a
fixed undirected topology.

So far, almost all the research efforts on the con-
sensus of multi-agent under switched topologies are de-
voted to networks without feedback control or with only
synchronous switching despite the great importance of
the consensus under asynchronous switching control in
both theoretical and practical aspects [19]. According to
the definition in [20–22], the consensus is called asyn-
chronous consensus if the individuals in systems respond
to the new information from their neighbours at differ-
ent update times. This is different to the consensus under
asynchronous switching, which means that the switching
between the candidate controllers and topologies are asyn-
chronous [19]. For switched systems, the asynchronous
switching often means that the switching of the controllers
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to be designed has a lag to the switching of the system
models [23] and the switching between the candidate con-
trollers and system modes is asynchronous [24]. There-
fore, although asynchronous consensus and consensus un-
der asynchronous switching sound similar in their names,
their definitions are different and asynchronous switching
may hinder the way to a consensus.

Asynchronous switching has been studied for switched
systems in the past few years and the research results on
switched systems have advanced the study on switched
topologies [23–25]. Due to link failures or reconnec-
tion, the topologies of multi-agent systems often change.
When the changing is modelled in a switched way, the
multi-agent systems under switching topologies can be
described and analyzed by switched systems theorems
[24]. However, the consensus problem for asynchronous
switching is yet to be solved. Since asynchronous switch-
ing widely exists in switched topologies, the consensus of
multi-agent systems under asynchronous switching needs
to be investigated urgently, especially for the systems with
a controller fault.

The main purpose of this paper is to study the consen-
sus of the second-order multi-agent systems under asyn-
chronous switching with a controller fault. We will tackle
the problem via converting the consensus problems under
asynchronous switching into stability problems. The rest
of the paper is organized as follows. In Section 2, some
basic concepts and algebraic graph theories are given.
Main results about asynchronous switching are presented
in Section 3. The simulation results are presented in Sec-
tion 4. Finally, conclusions are provided in Section 5.

Notations: The superscript “T" stands for matrix trans-
position. The mathematical symbols In−1 and 0n−1 mean
an identity matrix and a zero matrix with (n−1)× (n−1)
dimension, respectively. The sign diag{· · ·} represents a
block-diagonal matrix with proper dimension. If P is a
given matrix, P > (or <) 0 signifies a symmetric and
positive (or negative) definite matrix P. For a function
γ , it is said to be of a class K∞ function if the function
γ : [0,∞)→ [0,∞), γ(0) = 0, is strictly increasing, contin-
uous, and unbounded. Scalar multiplication of matrices is
defined as a regular number( called a "scalar" ) multiply-
ing every element in the matrix [26].

2. PRELIMINARIES

In this section, some basic concepts and algebraic graph
theories are introduced.

The network of multi-agent systems is often modelled
by graph theories. For the multi-agent systems with n
agents and the node indexes set I = {1,2, . . . ,n} , the
digraph can be denoted by G = (V,E ,A), where V =
{v1,v2, . . . ,vn}, E ⊆ V ×V , A= [ai j] are the set of nodes,
the set of edges and the adjacency matrix. The edge be-
tween nodes i and j can be described as ei j = (vi,v j). This

method can represent any edge of the graph G. We assume
i 6= j for any edge. The set of neighbours of node vi is
denoted by Ni = {v j ∈ V : (vi,v j) ∈ E , j 6= i}. The Lapla-
cian matrix L is defined as: li j = ∑

n
k=1,k 6=i aik for i = j, and

li j = −ai j, for i 6= j, i, j ∈ I. A Laplacian-like matrix H
is defined as H = [hi j], where hi j = li j − ln j. The func-
tion σ(t) : [0,+∞)→M = {1,2, · · · ,m} stands for the
switching signal of the switching topologies, where m is
the total amount of topologies. The function σ ′(t) denotes
the asynchronous switching of σ(t).

For the switched topologies, t1, t2, t3, · · · , tl , tl+1, · · ·
stand for the switching times of the topologies of the
multi-agent systems. Let ∆σ(tl) (tl , tl+1) ( or Oσ(tl) (tl , tl+1)
) represent the asynchronous (or synchronous) time be-
tween the time slots [tl , tl+1). The symbol Tp(0, t) denotes
the running time of the pth topology between the time slots
[0, t).

For a group of n agents systems, every agent is mod-
elled by the second-order dynamics as

ẋi(t) = vi(t),
v̇i(t) = ui(t),

(1)

where xi(t) is the state of the ith agent, ui is the control
input.

For asynchronous switching, there exists a time lag ∆

between the topologies switching signal σ(t) and the feed-
back controller coefficients switching σ ′(t). When the lag
is small enough, the models tend to be synchronous. Us-
ing one of the many algorithms for synchronous switching
[27,28] as an example, the corresponding consensus algo-
rithm with asynchronous switching can be represented as

ui(t)

= f β0σ(t−∆) ∑
j∈Ni(t)

ai jσ(t)(x j(t)−xi(t))− f β1σ(t−∆)
vi(t), (2)

where ai jσ(t) , i, j ∈ I are the elements in the adjacency ma-
trix A(G). The topology G and σ(t) change at the switch-
ing times t1, t2, t3, · · · , tl , tl+1, · · · . The positive parameters
β0,β1 are the coefficients, and f is defined as

f ,
measured value

actual value
.

The fault considered in this model is uncertain and{
0 < fd ≤ f ≤ fu,

fd ≤ 1≤ fu,
(3)

where fd and fu are known constants. In this paper, we
only assume the range of the deviation is known.

Remark 1: When the positive constants fd 6= 1 or
fu 6= 1 are known, it is implied that consensus feedback
has an uncertain parameter f . It may originate from inac-
curate coefficient β or other factors and results in a con-
troller fault.
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Remark 2: Because of ∆ in the system (2), the switch-
ing time of topologies and controllers is different and the
system (2) is under asynchronous switching. Since all
agents update their states at the same time t, it is also a
synchronous system. Therefore, the system (2) is a syn-
chronous system with asynchronous switching. For asyn-
chronous consensus, every agent has its own update time
ti, which is different from agent to agent. For the sys-
tem (2), the controller could be at fault and the parameters
could be uncertain and mismatched. How to reach a con-
sensus in this situation is challenging.

For all initial conditions, the multi-agent systems (1) are
said to reach a consensus if

lim
t→+∞

[xi− x j] = 0, lim
t→+∞

[vi− v j] = 0,∀i, j ∈M, i 6= j.

For a switching σ(t) at any time tk > tl ≥ 0, the switch-
ing number in the pth subsystem is denoted by Nσ p(tl , tk),
and the total running time of pth subsystem is denoted
by Tp(tl , tk) over the interval [tl , tk). In [29], it is shown
that the system has a mode-dependent average dwell time
(MDADT) τap if there exist positive numbers N0p(tl , tk)
and τap such that

Nσ p(tl , tk)≤ N0p(tl , tk)+
Tp(tl , tk)

τap
(4)

Based on the concept on MDADT, we can get the fol-
lowing Lemma 1.

Lemma 1: Consider a system żt = Aσ(t−∆)zt , σ(t −
∆) ∈M with give constants λp > 0, µp > 1, αp > 0, p ∈
M. For ∀p ∈M, ∀t ∈ [tl , tl+1), and ∀(σ(tl) = p,σ(t−l ) =
q) ∈ M×M, p 6= q, if there exist symmetric matrices
Pp > 0, such that

AT
q Pp +PpAq ≤ αpPp,∀t ∈ [tl , tl +∆l), (5)

AT
p Pp +PpAp ≤−λpPp,∀t ∈ [tl +∆l , tl+1) (6)

and Pp(z(tl))≤ µpPq(z(t−l )), (7)

then the system is globally uniformly asymptotically sta-
ble with MDADT

τap > τ
∗
ap ,

∆p_max(λP +αp)+ ln µp

λp
, (8)

where ∆p_max , maxl,σ(tl)=p∆σ(tl) [tl , tl+1), for ∀l ∈ N.

Proof: For any t > 0, ∀t ∈ (tl , tl+1).
From (8), one has

ln µp +(λp +αp)∆p_max

τap
−λp < 0, (9)

and

max
p∈M
{ ln µp +(λp +αp)∆p_max

τap
−λp}< 0. (10)

A multiple Lyapunov function is constructed as

Vp(z(t)) = z(t)T Ppz(t). (11)

According to (5), (6) and (7), it holds that

Vσ(t)(x(t))

≤ exp
{

ασ(tl)∆σ(tl)(tl , t)−λσ(tl)Oσ(tl)(tl , t)
}

Vσ(tl)(x(tl))

≤ exp
{

ασ(tl)∆σ(tl)(tl , t)−λσ(tl)Oσ(tl)(tl , t)
}

×µσ(tl)Vσ(tl)(x(tl
−))

......

≤

{
l

∏
p=1

µσ(tp)

}
× exp

{
ασ(tl)∆σ(tl)(tl , t)+ · · ·+ασ(t0)∆σ(t0)(tl−1, tl)

}
× exp

{
−λσ(tl)Oσ(tl)(tl , t)−·· ·−λσ(t0)Oσ(t0)(t0, t1)

}
×Vσ(t0)(x(t0)).

(12)

Because of the total switching numbers N(0, t) =
m
∑

p=1
Nσ p(0, t) and t0 = 0, one can get

Vσ(t)(x(t))

≤

{
m

∏
p=1

µ
Nσ p(0,t)
p

}
exp

{
m

∑
p=1

αp∆p(0, t)−λpOp(0, t)

}
×Vσ(0)(x(0)).

(13)

According to (4), one has

m

∏
p=1

µ
Nσ p(0,t)
p =

m

∏
p=1

µ
N0p+

Tp(0,t)
τap

p

=exp

{
m

∑
p=1

{
N0p ln µp +

Tp(0, t)
τap

ln µp

}} (14)

and

Vσ(t)(x(t))

≤ exp

{
m

∑
p=1

{
N0p ln µp +

Tp(0, t)
τap

ln µp

}}

× exp

{
m

∑
p=1
{αp∆p(0, t)−λpTp(0, t)+λp∆p(0, t)}

}
×Vσ(0)(x(0))

≤ exp

{
m

∑
p=1

N0p ln µp +(
ln µp

τap
−λp)Tp(0, t)

}

× exp

{
m

∑
p=1

(λp +αp)∆p(0, t)

}
Vσ(0)(x(0)).

(15)

From the definition of ∆p_max one can get

∆p(0, t)≤ Nσ p(0, t)∆p_max ≤ N0p +
Tp(0, t)

τap
. (16)
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Then, based on (4), one can get

Vσ(t)(x(t))

≤ exp

{
m

∑
p=1
{N0p ln µp +(λp +αp)N0p∆p_max)}

}

×exp

{
m

∑
p=1
{( ln µp+(λp+αp)τap

τap
−λp)}Tp(0, t)

}
×Vσ(0)(x(0)).

(17)

From (9), we can conclude that Vσ(t)(x(t)) conver-
gences to zero, as t → +∞, if the dwell time satisfies
τap > (λp +αp)∆p_max + ln µp)/λp.

Therefore, we can see that the asymptotic stability is
reduced. This completes the proof. �

In order to solve the problems with an uncertain param-
eter, the following Lemma 2 is introduced.

Lemma 2: [30] Given matrices Q, R, E and H with
proper dimensions, and Q = QT , R = RT > 0, the inequal-
ity

Q+HFE +ET FT HT < 0

holds for all F satisfying FT F ≤ R, if and only if there
exists some ε > 0, such that

Q+ εHHT + ε
−1ET RE < 0.

3. MAIN RESULTS

In this section, we mainly complete the following three
objectives:

Firstly, we design a transformation from consensus un-
der asynchronous switching to stability. For asynchronous
switching, the states of agents may go to divergences
when some necessary and sufficient conditions cannot
be met [15] in the asynchronous switching time slots.
We analyze the relationship between consensus under
asynchronous switching and the asynchronous stability of
switched systems and then present the conversion between
them. Based on the conversion and the relationship be-
tween energy functions and stability, the divergences will
cause the increase of the energy functions. That is, asyn-
chronous switching may result in the divergences of states,
which are marked by the increasing of the energy function.

Secondly, we analyze the consensus with a controller
fault. We rewrite the formation of f and analyze the con-
ditions for reaching a consensus when the multi-agent sys-
tems are switching with a controller fault based on the
method of the mode-dependent average dwell time. Using
this method, we can decrease the overall energy function
by adjusting the dwell time of topologies, and hence force
the system to reach a consensus.

Thirdly, we extend the results on asynchronous switch-
ing to the synchronous switching.

3.1. Transformation from Consensus to Asyn-
chronous Switching

By the following Theorem 1, the problem of the consen-
sus under asynchronous switching is converted into that of
the asynchronous stability of switched systems.

Theorem 1: For the multi-agent systems with directed
network G (t), if the system

ż(t) = FKσ(t−∆)Baσ(t)z(t),z(t0) = z(0), (18)

is globally uniformly asymptotically stable, then the
multi-agent systems with the dynamic system (1) will
reach a consensus with the consensus algorithm (2), where

F =

[
In−1 0n−1

0n−1 fdiag

]
, (19)

Kσ(t−∆) =

[
0n−1 In−1

−β0In−1 −β1In−1

]
σ(t−∆)

, (20)

Baσ(t) =

[
H 0n−1

0n−1 In−1

]
σ(t)

, (21)

fdiag = diag{ f , · · · , f︸ ︷︷ ︸
n−1

}. (22)

Proof: Firstly, we define z(t) , [x1 − xn, . . . ,xn−1 −
xn,v1− vn, . . . ,vn−1− vn]

T (t).
According to the definition of the consensus, if

lim
t→+∞

z(t) = 0, the multi-agent systems will reach a con-
sensus.

From (2), one can get

ui−un

= f β0σ(t−∆) ∑
j∈Ni(t)

ai jσ(t)(x j(t)−xi(t))− f β1σ(t−∆)
vi(t)

− f β0σ(t−∆) ∑
k∈Nn(t)

ankσ(t)(xk(t)−xn(t))+ f β1σ(t−∆)
vn(t)

=− f β0σ(t−∆)
Li(t)x(t)−β1σ(t−∆)

f vi(t)

+ f β0σ(t−∆)
Ln(t)x(t)+β1σ(t−∆)

f vn(t)

=− f β0σ(t−∆)
(Li(t)−Ln(t))x(t)− f β1σ(t−∆)

(vi(t)−vn(t))

=− f β0σ(t−∆)
Hi(t)[x1− xn, . . . ,xn−1− xn]

T

− f β1σ(t−∆)
(vi(t)− vn(t))

(23)

and

[v̇1− v̇n, . . . , v̇n−1− v̇n]
T (t)

=[u1−un, . . . ,un−1−un]
T

=− f β0σ(t−∆)
H(t)[x1− xn, . . . ,xn−1− xn]

T (t)

− f β1σ(t−∆)
[v1− vn, . . . ,vn−1− vn]

T (t)

=[− f β0σ(t−∆)
H(t),− f β1σ(t−∆)

I]z(t).

(24)



consensus of the second-order multi-agent systems under asynchronous switching with a controller fault 5

where Li ( or Hi ) is the ith row vector of the Laplacian ( or
H ) matrix.

From (1), one can get

[ẋ1− ẋn, . . . , ẋn−1− ẋn]
T

=[v1− vn, . . . ,vn−1− vn]
T

=[0n−1, In−1]z.

(25)

Now, combining (24) and (25), we can get

ż(t)=
[

0n−1 In−1
−f β0σ(t−∆)

H(t) −f β1σ(t−∆)
In−1

]
z(t),z(t0)=z(0).

(26)

We further have[
0n−1 In−1

− f β0σ(t−∆)
H(t) − f β1σ(t−∆)

In−1

]
=

[
In−1 0n−1
0n−1 f In−1

][
0n−1 In−1
−β0In−1 −β1In−1

]
σ(t−∆)

×
[

H 0n−1
0n−1 In−1

]
σ(t)

,FKσ(t−∆)Baσ(t),

(27)

where f is a scalar, and fdiag denotes the diagonal ma-
trix with diagonal elements. The equation (18) can now
be proved.

According to the definition of z(t), the consensus prob-
lem can be solved if the system (18) is globally uniformly
asymptotically stable. This completes the proof of this
theorem. �

Remark 3: For the case without a controller fault or
an uncertain parameter, it can be denoted by f = 1. From
the proof of Theorem 1, we can see that Theorem 1 is also
applicable to the situations without a controller fault.

3.2. Consensus with a controller fault
For the multi-agent systems with a controller fault rep-

resented by the uncertain parameter, we only know the
range of f . In order to solve the asynchronous switching
with an uncertain parameter f , we rewrite the formation
of f .

We define Fu , diag(1, · · · ,1, fu, · · · fu), Fd ,
diag(1, · · · ,1, fd , · · · fd), F0 , 1

2 (Fu+Fd), F1 , 1
2 (Fu−Fd),

then

F = F0 +EF1, (28)

where E = diag(1 · · ·1,e, · · · ,e), and −16 e6 1.
Systems (18) can be replaced with

ż(t) = FKσ(t−∆)Baσ(t)z(t)

= (F0 +EF1)Kσ(t−∆)Baσ(t)z(t)

= F0Kσ(t−∆)Baσ(t)z(t)+EF1Kσ(t−∆)Baσ(t)z(t)

= Āσ(t−∆)z(t),

(29)

where Āσ(t−∆) =F0Kσ(t−∆)Baσ(t)z(t)+EF1Kσ(t−∆)Baσ(t)z(t).
From (29) and the inequality in Lemma 2, we now have

the following theorem:

Theorem 2: For the given constants λp > 0, µp > 1,
and the multi-agent systems with switched topologies Gp,
p∈M, ∀(σ(ti) = p,σ(t−i ) = q)∈M×M, p 6= q, if there
exist symmetric matrices Pp > 0, positive constants εp, and
εpq, ∀p ∈M, such that Dp εpF1 Pp(KpBap)

T

εpF1
T −εpIn−1 0n−1

KpBapPp 0n−1 −εpIn−1

< 0, (30)

where Dp = (F0KpBap)Pp +Pp(F0KpBap)
T +λpPp, and

P−1
p ≤ µpP−1

q , (31)

 D̄p εpqF1 Pp(KqBap)
T

εpqF1
T −εpqIn−1 0n−1

KqBapPp 0n−1 −εpqIn−1

< 0, (32)

where D̄p = (F0KqBap)Pp +Pp(F0KqBap)
T −αpPp, then

the multi-agent systems (1) under consensus algorithm (2)
with the fault tolerance (3) will reach a consensus with
MDADT

τap > τ
∗
ap =

∆p_max(λP +αp)+ ln µp

λp
.

Proof: Based on the Schur complement lemma, one
can see that the system (30) is equivalent to

Dp−ST
p

[
−εpIn−1 0n−1

0n−1 −εpIn−1

]−1

Sp < 0, (33)

where Sp =

[
εpF1

T

(KpBap)Pp

]
. This can be further written

as

Dp−ST
p

[
−εpIn−1 0n−1

0n−1 −εpIn−1

]−1

Sp

= Dp +ST
p

[
εp
−1In−1 0n−1

0n−1 εp
−1In−1

]
Sp

= Dp +
[

F1 εp
−1Pp(KpBap)

T
]

Sp

= Dp + εpF1F1
T + εp

−1Pp(KpBap)
T (KpBap)Pp

< 0.

(34)

According to Lemma 2, one can get

Dp +F1E(KpBap)Pp +Pp(KpBap)
T ET F1

T < 0. (35)

This can also be further represented as

Dp +F1E(KpBap)Pp +Pp(KpBap)
T ET F1

T

=(F0KpBap +F1EKpBap)Pp

+Pp(F0KpBap +F1E(KpBap))
T +λpPp

<0.

(36)
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Using diag{Pp
−1} to pre- and post-multiply both sides

of systems (36), one has

Pp
−1(F0KpBap +F1EKpBap)

+(F0KpBap +F1EKpBap)
T Pp

−1 +λpPp
−1

< 0.

(37)

Denote P̄p = Pp
−1. We can also see that P̄p > 0 and

systems (37) are equivalent to

P̄p(F0KpBap+F1EKpBap)+(F0KpBap+F1EKpBap)P̄p
+λpP̄p < 0. (38)

Based on systems (29) and (38), one has

P̄p(FKpBap)+(FKpBap)
T P̄p <−λpP̄p. (39)

Similarly, we can have

P̄p(FKqBap)+(FKqBap)
T P̄p < αpP̄p. (40)

From (31), one has

P̄p ≤ µpP̄q. (41)

Combining the results in (39), (40) and (41) and Lemma
1, we can then establish the results in Theorem 2. The
proof is completed. �

Remark 4: Theorem 2 is based on Lemma 1 and on
the idea that the topologies changing replaces subsystem
switching. Hence the results on MDADT and switched
systems are also applicable to the multi-agent systems un-
der switched topologies.

Using a similar process, we can establish and prove
Corollary 1 below when using a common P to replace Pp.

Corollary 1: For the multi-agent systems with
switched topologies Gp, p∈M, ∀(σ(ti)= p,σ(t−i )= q)∈
M×M, p 6= q, if there exist a symmetric matrix P > 0,
positive constants εp, ∀p ∈M, such that Dp εpF1 P(KpBap)

T

εpF1
T −εpIn−1 0n−1

(KpBap)P 0n−1 −εpIn−1

< 0, (42)

where Dp = (F0KpBap)P+P(F0KpBap)
T +λpP, D̄p εpqF1 P(KqBap)

T

εpqF1
T −εpqI 0n−1

KqBapP 0n−1 −εpqIn−1

< 0, (43)

where D̄p = (F0KqBap)P+P(F0KqBap)
T −αpP, then the

multi-agent systems (1) under consensus algorithm (2)
with the fault tolerance (3) will reach the consensus finally
with MDADT

τap > τ
∗
ap =

∆p_max(λP +αp)

λp
. (44)

Remark 5: MDADT is used in the proof for reaching
a consensus when the multi-agent systems are switching.
In order to guarantee the condition of MDADT, the statis-
tical information on the dwell time under each topology is
required to confirm that the average dwell time is longer
than the offset.

3.3. Extension to Synchronous Switching
One can see that if the time lag ∆(t) = 0, the asyn-

chronous switching is replaced with synchronous switch-
ing in the algorithm (2).

In the synchronous switching situation, systems (2)
change to

ui(t) = f β0σ(t) ∑
j∈Ni(t)

ai jσ(t)(x j(t)−xi(t))− f β1σ(t)vi(t). (45)

Likewise, the following corollaries can be obtained for
the case of synchronous switching multi-agent systems.

Corollary 2: For the given constants λp > 0, µp > 1,
and the switched topologies Gp of the multi-agent systems,
p∈M, ∀(σ(ti) = p,σ(t−i ) = q)∈M×M, p 6= q, if there
exist symmetric matrices Pp > 0, positive constants εp,
∀p ∈M, such that Dp εpF1 Pp(KpBap)

T

εpF1
T −εpIn−1 0n−1

KpBapPp 0n−1 −εpIn−1

< 0, (46)

where Dp = (F0KpBap)Pp +Pp(F0KpBap)
T +λpPp,

P−1
p ≤ µpP−1

q , (47)

then the multi-agent systems (1) under consensus algo-
rithm (45) with the fault tolerance (3) reach the consensus
when

τap > τ
∗
ap =

ln µp

λp
, (48)

Corollary 3: For the switched topologies Gp of the
multi-agent systems, p ∈ M, if there exist a symmetric
matrix P > 0, positive constants εp, ∀p ∈M, such that Dp εpF1 P(KpBap)

T

εpF1
T −εpIn−1 0n−1

(KpBap)P 0n−1 −εpIn−1

< 0, (49)

where Dp = (F0KpBap)P+P(F0KpBap)
T + λpP, then the

multi-agent systems (1) under consensus algorithm (45)
with the fault tolerance (3) will reach the consensus fi-
nally.

Remark 6: LMIs toolbox in MATLAB is often used
to find proper matrices P and constants ε . Although the
existence of proper matrices and constants is the sufficient
condition, the results in this paper provide a guarantee on
the consensus under asynchronous switching, especially
when the systems are with an uncertain parameter.
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Since there are many nonlinear cases and Takagi-
Sugeno (T-S) fuzzy model has been popularly utilized in
representing nonlinear systems [31–33], one of our future
works is to investigate the coordination of the nonlinear
multi-agent systems under asynchronous switching.

4. NUMERICAL EXAMPLE

In this section, numerical results are presented to
demonstrate the potential and validity of our developed
theoretical results. For this example, the second-order
multi-agent systems are with 4 agents and the topologies
are switched. Through this numerical example, the asyn-
chronous switching’s reaction to a consensus can also be
seen clearly. In the same set-up, the corresponding vali-
dation can be done for the common P case and the syn-
chronous switching cases. This is omitted due to space
limitations.

Consider the adjacency matrices of the two considered
topologies described by

0 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0

 , and


0 0 1 0
1 0 0 0
0 1 0 1
1 0 0 0

 . (50)

The two-level signal values (low and high) of switching
signals σ(t) stand for these two topologies. The purpose
here is to show the influence of asynchronous switching
and present the tendency of states and velocities of agents
when the dwell times satisfy the corresponding conditions
(8). In order to achieve this, the changing of energy func-
tion (Lyapunov function) is shown in Fig.1, and states
and velocities are shown in Fig.2., when switching signals
σ(t) and σ ′(t) change.

Selection of the parameters for the system model and
the controller is based on the physical meanings of param-
eters. The sign µ stands for the jumping strength when
topologies change. The symbols λ and α denote the con-
vergence rate and the divergence speed. Changing these
parameters will affect constrained conditions which re-
sults in the changing of the average dwell time. The looser
the constrained conditions are, the lager the average dwell
time is.

The maximal delay of asynchronous switching of the
first topology is 0, and the maximal delay of asynchronous
switching of the second topology is 6 seconds. In this ex-
ample, we just know the range 0.9≤ f ≤ 1.1, i.e., fd = 0.9
and fu = 1.1. By providing proper constants λ1 = 0.020,
µ1 = 1.88, α1 = 0, λ2 = 0.183, µ2 = 2.47, α2 = 0.845, the
LMIs toolbox can find proper solutions and get the proper
dwell time satisfying conditions (8). The simulation re-
sults are shown in Fig.1. and Fig.2.

At the running time slots [0,1.730), [8.04,9.77),
[15.65,19.74) and [25.47,34.58), the network is syn-
chronous, the energy function in Fig.1. drops down

quickly except for at the topologies switching time spot,
the states and velocities of agents in Fig.2. are reach-
ing a consensus. At the running time slots [1.73,8.04),
[9.77,15.65), [19.74,25.47) and [34.58, 40.37), the net-
work is asynchronous, the energy function in Fig.1. in-
creases quickly, the states and velocities of agents in Fig.2.
tend to diverge. When the dwell times meet the conditions
(8), the consensus is reached.
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Fig. 1. The changing of the Lyapunov function and
switched signals
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Fig. 2. The changing of the states, velocities and switched
signals

5. CONCLUSIONS

The consensus of the second-order multi-agent systems
under asynchronous switching with a controller fault is in-
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vestigated. We analyzed the relationship between consen-
sus and steadiness, and prove the consensus, and provided
conditions for the consensus, and also extended the re-
sults to the synchronous switching multi-agent systems.
Simulation results clearly demonstrate the asynchronous
switching’s reaction to a consensus. With both analyti-
cal and numerical results, we show that a consensus under
asynchronous switching with a controller fault can also
be reached under proper conditions despite the reaction of
asynchronous switching. The methods developed in this
paper can also be potentially applied to study other prob-
lems such as containment control and vehicle formations
in the presence of asynchronous switching for the under-
lying systems.
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