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Abstract

This paper presents a Gaussian mixture model
(GMM) based robust scan matching method
which implements GMM to represent 2D scan
points and improves the accuracy of scan
matching. The proposed method transfers each
new scan to GMM first, exploiting the covari-
ance of every GMM component to represent
scan points. Compared with the conventional
GMM based method of scan matching, our
technique implements GMM similarity compar-
ison to evaluate the overlaps between scans.
In order to get rid of the poor convergence
due to the inaccurate initial value given to
the iteration process, we proposed a geometry-
constraint-based GMM similarity calculation
method, which is one contribution of this pa-
per. Another contribution is we propose a dy-
namic scale factor making the cost function
more adapted to different initial value. Experi-
ments on simulated data are employed and the
results indicate that our method is able to en-
large the valid range of initial value and accu-
mulate small errors after sequential matchings.

1 Introduction

Scan matching is an important problem in the area of
mobile robot localization and mapping. The robot’s
poses can be estimated by means of matching consec-
tive scans collected from laser sensors integrated in the
robot system. Two classes of methods are adopted in re-
cent years research, namely, Iterated Closest Point (ICP)
[Besl and McKay, 1992] based method and GMM based
method [Jian and Vemuri, 2011]. The latter one can be
extended to a famous special case named Normal Distri-
bution Transform (NDT) [Stoyanov et al., 2012].

ICP is a method concentrates on point-to-point regis-
tration between scans pairwise (ICP has been extended
to optimize point-to-line and point-to-plane registra-
tion). The quality of the ICP results highly depends

on the initial value. In other words, if the initial value
is not near the ground truth, the result of ICP leads to
be unauthentic. On the other hand, ICP algorithm is
time comsuming when the number of points increases
and thus costs too much resources. GMM based method
(or NDT based method) is another way to estimate the
relative transformation between two scans. NDT meth-
ods can be characterized into two classes, one is so-called
point-to-distribution method (P2D) as used in [Biber
and Wolfgang, 2003; Takeuchi and Tsubouchi, 2006;
Magnusson, 2009]. Generally, P2D method registers
newly observed points to a reference NDT or NDTs. The
other one is usually called distribution-to-distribution
(D2D) method according to [Stoyanov et al., 2012],
which is, by definition, a method registering the new
NDT to the reference NDT.

Both methods try to calculate a metric distance be-
tween points and distribution or distribution and distri-
bution. In order to acquire a better performance, several
metric distances are introduced to measure the similar-
ity of GMMs. The well-know Kullback-Leibler (KL) di-
vergence is an important metric distance which can be
used to maximize the maximum likelihood [Myronenko
and Song, 2010], and L2 distance is imported as an Eu-
clidean distance measurement [Jian and Vemuri, 2011],
both of which will be discussed in Section 2. Also [Li et
al., 2018] implemented signature quadratic form distance
as the metric distance. However, calculating similarity
is still restricted to an initial value relatively close to
the true value, and most common situation is, unfortu-
nately, it is easy to converge to a local minima or even di-
verge. [Pu et al., 2018] proposed a dynamic uncertainty-
based Gaussian mixtrue alignment method, they exploit
Expectation-Maximization (EM) algorithm to estimate
transformation from a Mahalanobis distance-like metric.

The performance of GMM based scan matching de-
pends not only on the chosen of metric distance, but also
on the adjustment of covariance, cell size and number of
normal distributions. [Hong and Lee, 2017] proposed
a probabilistic normal distributions transform method.



They considered sensor’s uncertainty and joined it with
GMMs’ covariance, so as to make the algorithm easily
converged if the grid size is small. [Das and Waslan-
der, 2014] proposed a segmented region growing NDT
method which can improve convergence by means of
data segmentation and cluster. They first separated and
neglected ground points, then fit and merge the points
cloud following rules of distance limitation.

In this paper, we are focusing on GMM based algo-
rithm. We proposed a geometry-constraint-based GMM
similarity calculation method, and we also expanded the
model, introducing a dynamic scale factor to make the
cost function more adaptable to different initial values.
The idea of employing geometry constraints is inspired
by [Kunjin et al., 2016]. The distinction is that we
adopted geometry constraints to provide a criteria of cor-
responding distributions. Then a scale factor is adjusted
during every iteration to provide a more general descrip-
tion of cost function. Section 2 introduces background
of GMM based scan matching which is related to our
work. Section 3 presents our method and contributions.
Experimental results are presented in Section 4. Finally,
Section 5 summarizes the phenomenon and conclusion
demonstrated in Section 4 and gives a future directions
for this work.

2 GMM Based Registration

GMM based scan registration first replace discrete points
by a different representation, namely, GMMs. When a
new scan is obtained by a lidar, denoted as Zk, the data
is firstly fitted into GMM GZk

. By doing this, a large
number of discrete data points can be represented by
a limited number of Gaussian distributions. As shown
in Figure 1, the data collected from each scan is fitted
to form Gaussian distributions before continuing scan
matching. Then scan matching problem is related to
GMM’s similarity calculation. The GMM based repre-
sentation is able to represent the shape of different en-
vironment (2D or 3D) with an advantage of decreasing
complexity. In this paper, we mostly focus on 2D scan
matching.

A general GMM is defined as:

G (x) =

n∑
k=1

πdk
N (x | µk,Σk) (1)

where

N (x | µk,Σk) =
exp

(
− 1

2 (x− µk)
T

Σ−1
k (x− µk)

)
√

(2π)
d |Σk|

(2)
where πdk

is the weight parameters, d is the dimension
of estimated variables.

Figure 1: GMM based scan registration in 2-D. Data is
fitted into Gaussian distributions as a GMM.

If no prior information is given, we can fit consecu-
tive scans data into GMMs respectively by expectation-
maximization method and then calculate the similarity
of pairwise GMMs. A special case is Three-Dimensional
Normal Distributions Transform (3D-NDT) [Stoyanov
et al., 2012]. At this stage, two general directions are
adopted for the evaluation, namely, P2D and D2D. P2D
is aimed to maximize the likelihood of point set P in
distribution G, while D2D cares more on minimizing
distance metrics between two distributions. Both al-
gorithms can be solved by general non-linear optimiza-
tion approaches such as Newton method and Levenberg-
Marquardt method. The cost function of P2D is re-
viewed as follows:

fP2D

(
Pnew, Gref , Θ̃k

)
= −d1

n̂∑
i=1

exp

(
−d2

2(
T
(
Pi, Θ̃k

)
− µG

)T
Σ−1

G

(
T
(
Pi, Θ̃k

)
− µG

))
(3)

where T
(
Pi, Θ̃k

)
represents transformation relationship

from point set Pnew to GMM Gref abiding by

T
(
Pi, Θ̃k

)
= RPi + t (4)

Pnew is a point set of {Pi} with i = 1, 2, 3, · · · , n̂. Gref

is the reference GMM, Θ̃k is the kth estimated R and t
during the kth iteration. d1 and d2 are positive regular-
izing factors, µG and ΣG are the mean and covariance of
the reference distribution.

For D2D method, several methods have been adopted
to calculate the distance of distributions thus comparing
the similarity. One is KL divergence. As [Kunjin et al.,
2016] shows, the similarity of two Gaussians based on



KL divergence is calculated by

S
(
N
(
z̄new, Σ̄new

)
, N
(
z̄ref , Σ̄ref

))
= −DKL

(
N
(
z̄new, Σ̄new

)
|| N

(
z̄ref , Σ̄ref

))
= −1

2

{
tr
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−ln
det
(
Σ̄new
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(
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(5)

where λ is the dimension of the distributions,
N
(
z̄new, Σ̄new

)
and N

(
z̄ref , Σ̄ref

)
are the scan NDs and

reference NDs, respectively. The aim is to maximize the
similarity value.

However, KL divergence is not symmetric, that is
DKL [P (X) || Q (X)] 6= DKL [Q (X) || P (X)], which
means the performance is limited. [Jian and Vemuri,
2011] proposed a L2 distance based algorithm and [Stoy-
anov et al., 2012] expanded analyses on it. Assuming
two GMMs are defined by G1 =

∑m
i wiN (µi,Σi) and

G2 =
∑n

j wjN (µj ,Σj).

According to [Jian and Vemuri, 2011] and [Stoyanov et
al., 2012], the L2 distance between two GMMs is defined
as:

DL2
(G1, G2, p) =

∫
(pdf (x | G2)−

pdf (x | T ⊗ (G1, p)))
2
dx

(6)

where p is the transformation parameter to be estimated
and T ⊗ (G1, p) denotes the transformation correlation
of means and covariances from G1 to G2:

T ⊗ (µi, p) = RTµi + t

T ⊗ (Σi, p) = RT ΣiR
(7)

After expansion,

DL2
(G1, G2, p) =

∫
pdf (x | G2)

2
dx

+

∫
pdf (x | T ⊗ (G1, p))

2
dx

− 2

∫
pdf (x | G1) pdf (x | T ⊗ (G2, p)) dx

(8)
Noting that a GMM can be approximated as another

GMM after any arbitrary transformation, then we can
simplify equation (8) by neglecting the first two compo-
nents. And according to the following identity [Jian and
Vemuri, 2011]:∫

N (x | µi,Σi)N (x | µj ,Σj) dx

= N (0 | µi − µj ,Σi + Σj)

(9)

thus the distance function is derived as:

DL2 ∼
m∑
i=1

n∑
j=1

N (0 | T (µi, p)− µj , T ⊗ (Σi, p) + Σj)

(10)
where p is the transformation vector and is parameter-
ized by a vector p = (rx, ry, rz, tx, ty, tz). The cost func-
tion of D2D is derived as:

fD2D (p) =

m∑
i=1

n∑
j=1

−c1exp
(
−c2

2
µT
ijΣ

−1
ij µij

)
(11)

where

µij = T ⊗ (µi, p)− µj = RTµi + t− µj

Σij = T ⊗ (Σi, p) + Σj = RT ΣiR+ Σj

(12)

c1 and c2 are positive regularizing factors. Then the
gradient vector can be derived by equation (11) as:

∂fD2D

∂pa
=
c1c2

2

(
2µT

ijBja − µT
ijBZaBµij

)
exp

(
−c2

2
µT
ijBµij

) (13)

where pa means one element in vector p and

B =
(
RT ΣiR+ Σj

)−1

ja =
∂
(
RTµi + t− µj

)
∂pa

Za =
∂
(
RT ΣiR

)
∂pa

(14)

Similarly, we can obtain Hessian matrix as follows:

∂2fD2D

∂pa∂pb
=
c1c2

2

(
2jTb Bja − 2µT

ijBZbBja

+ 2µT
ijBHab − 2jTb BZaBµij

+ 2µT
ijBZbBZaBµij − µT

ijBZabBµij

−c2
2
qaqb

)
exp

(
−c2

2
µT
ijBµij

)
(15)

where

Hab =
∂2

∂papb

(
RTµi + t− µj

)
Zab =

∂2

∂papb

(
RT ΣiR

)
jb =

∂
(
RTµi + t− µj

)
∂pb

Zb =
∂
(
RT ΣiR

)
∂pb

qa = 2µT
ijBja − µT

ijBZaBµij

qb = 2µT
ijBjb − µT

ijBZbBµij

(16)

The gradient and Hessian are needed in Newton
method for optimization.



3 Proposed Method

3.1 Algorithm Overview

The pipeline of our proposed method is shown in Fig-
ure 2. Two scans are collected at time k and k + 1,
denoted as Zk and Zk+1 respectively, where Zk =
{zki | i = 1, 2, 3, ...,m}, m is the number of beams in each
scan at time k.

The first step is to fit the collected data into Gaus-
sian mixture model. In this paper, we separate each
scan into cells before generate GMM. Data points Mi =
{m1,m2,m3, ...,mn̂} in each cell i, where n̂ is the num-
ber of points in a cell, are fitted into one normal dis-
tribution N (µi,Σi) via EM method. It should be noted
that we consider points in a cell as one single distribution
even if these points are presented to be a corner feature.
Then in the following step, all of the distributions are
integrated as a GMM as in equation (1).

In the similarity calculation process, we choose L2 dis-
tance as the metric distance and adopt D2D algorithm.
The difference from [Stoyanov et al., 2012] is that we
consider the covariance of each distribution as a geome-
try constraint lies between scan pairs. Then by finding
the closest distribution during matching, the optimiza-
tion problem can be more adaptive to a large range of
initial value. During the process of iteration, we intro-
duce a so-called dynamic scale factor which is discussed
as follows.

After aforementioned procedure, the estimated trans-
formation vector T = [R, t] can be computed by gen-
eral non-linear optimization methods. In this paper, we
use Newton method to solve the non-linear optimization
problem.

Figure 2: Pipeline of proposed scan matching method.
When scans are collected from sensors, the points clouds
are first fitted into a GMM. The transformation vari-
ables can then be obtained by D2D method with geome-
try constraint and dynamic scale factor proposed in this
paper.

3.2 Geometry Constraint

In Section 2 we discussed the relationship of transformed
GMM pairs. In 2D case, it can be clearly written as
follows:

argmin
∑
i

∑
j

dist (N (µi,Σi)− T (N (µj ,Σj)))
2

(17)

where

T (N (µj ,Σj)) = N (µi,Σi)

⇒
{
µ̂j = Rµj + t = µi

Σ̂j = RT ΣjR = Σi

R =

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
t =

[
x
y

]
(18)

In this paper, we concentrate more on the geometry
relationship of covariance because we exploit covariance
of each distribution to represent the uncertainty of sen-
sor data. In other words, the shape of the covariance is
intended to describe possible range of real points’ posi-
tions. Hence we do not care about the accurate coor-
dinates of each single point but consider the potential
associations between pairwise distributions.

Another reason why we consider geometry constraint
is that for GMM registration, especially using L2 dis-
tance, one significant pre-requisite is the covariance of
two corresponding distributions should be similar, or it
will undoubtedly give rise to a bad convergence. This
deficiency exists in [Kunjin et al., 2016] because NDs are
fitted by each cell’s points, which cannot ensure that the
corresponding NDs have the same covariance. In order
to get over it, we use the long axis and short axis of the
covariance ellipse as a constraint.

As shown in Figure 3, denote the reference distribution
as Σi and the transformed distribution as Σj . After the
rotation of angle θ, it is derived according to (18) as
Σi = RT ΣjR. If define Σi and Σj as:

Σi =

[
Ci1 0
0 Ci2

]
=

[
σixx 0

0 σiyy

]
Σj =

[
Ĉj11 Ĉj12

Ĉj21 Ĉj22

]
=

[
σ̂jxx σ̂jxy
σ̂jyx σ̂jyy

] (19)

then the eigenvalues of Σj are calculated. The eigenval-
ues represent the spread in the direction of the eigenvec-
tors, which are the variances under a rotated coordinate
system. By definition a covariance matrix is positive
definite therefore all eigenvalues are positive and can be
seen as a linear transformation to the data.

The axes can be obtained from

[V,D] = eig (Σj) (20)



Figure 3: Transform of covariance ellipse. The ellipse
filled in red is denoted as Σi with axes Ci1 and Ci2, while
the ellipse with axes Cj1 amd Cj2 in blue dashed line Σj

is the corresponding observation of Σi after a rotation θ.

where D is a diagonal matrix with eigenvalue of Σj which
should be same as Σi representing the axes of covariance
ellipse, V is a transform matrix to rotate covariance el-
lipse from state i to state j. Then the rotation angle θ
can be derived by transferring V to angle.

Once we get θ, we can use the angle to judge the corre-
spondence of matched distributions and help update the
initial prior rotation. The flow chart is show as Figure
4. Attempts are taken to find the nearest correspond-
ing distributions when an initial rotation matrix R is
given as an input. Then we calculate θ of each corre-
sponding distribution pairs and compare the θ with a
threshold (in our work we choose an empirical value of
0.05 rad). It should be noted that the distributions are
transferred into one coordinate with initial R, hence θ
should be close to 0 if the new distributions are trans-
ferred correctly with rotation R. If θ is bigger than the
threshold, we just reject the corresponding distributions
as outliers. Conversely, the angle θ will be added to the
initial rotation matrix as a supplement value.

3.3 Dynamic scale factor

As is introduced in (11), c1 and c2 are supposed to be
positive regularizing factors. However, it is not accurate
enough to keep c1 as a constant factor during iteration.
Actually c1 is a value in relation with estimated variable
R according to its definition:

c1 =
1√

(2π)
k |Σij |

=
1√

(2π)
k |RT ΣiR+ Σj |

(21)

Figure 4: Flow chart of implementing geometry con-
straint. The correspondence of distributions can be de-
rived when an initial rotation R is given. Then the ro-
tation angle θ is to be calculated by eigenvalue decom-
pression. Once we get θ, a criteria of judging outlier is
adopted to remove outliers or update initial rotation R.

Here R is rotation matrix and k is the dimensions of the
mean. Equation (11) is always reasonable, but getting
the derivative of c1 is difficult for the sake of determinant,
which is the reason why we need to approximate Gra-
dient and Hessian matrix. Different from other meth-
ods such as [Stoyanov et al., 2012; Hong and Lee, 2017;
Jian and Vemuri, 2011], we calculate the value of c1 in
each iteration and multiple it with a ratio coefficient ω to
limit the value range of cost function, then the optimiza-
tion problem can be adapted for iterating and changing
of estimated variables, which is so-called dynamic scale
factor as ĉ1 = ωc1.

Algorithm 1 presents the proposed GMM based scan
matching method with dynamic scale factor. g(i, j, Init)
is the expression of (21). During mapping among every
components in both GMMs, we calculate changeable ĉ1
in each iteration and revise the cost function, then using
non-linear optimization method to obtain the optimized
transformation R, t.

4 Experiment

A general indoor environment contains many chairs and
tables. It’s hard to acquire regular geometry shapes in
2D laser scanning as well as in 3D environment. For
example in Figure 5, in some real indoor world chair
legs and table legs are mostly common seen by a laser.
The data shown in the below image is of irregular shape.
Then the data is divided by cells and fitted into Gaussian



Data: Two GMMs G1, G2

Result: Estimated transformation R, t

while (DError < Threshold ) do
initR, initT;
for i < G1.Ncomponents do

for j < G2.Ncomponents do
[id,Error]=FindNearest(G1i,G2j ,initR,initT);
ĉ1 = g(i,j,Init);

end

end
[R,T] = min(CostFunction);
#defined in equation (17);
DError = abs(preError-Error);
preEror=Error;
[initR,initT]=[R,t];
if NumIter < MaxIter then

return
end

end

Algorithm 1: GMM Based Matching with Dynamic
Scale Factor

Table 1: Four tests settings
Method Settings

GMM uC uD Conventional GMM

GMM uC yD

√
Dynamic Scalar Factor

× Geometry Constraint

GMM yC uD
× Dynamic Scalar Factor

× Geometry Constraint

GMM yC yD Our method

distributions in each cell.

Our method is compared with conventional GMM
methods and implemented on core i7 CPU without
GPU. At this stage we only experiment on simulation
data. We first test the performance of four different set-
tings of GMM based methods in a four-steps simulation
environment, as shown in Table 1, namely GMM uC uD
(Conventional GMM method, [Jian and Vemuri, 2011;
Stoyanov et al., 2012]), GMM uC yD (GMM
method with Dynamic Scalar Factor, without
Geometry Constraint), GMM yC uD (GMM
method with Geometry Constraint, without Dy-
namic Scalar Factor), and GMM yC yD (Our
method) with four different transformations
[2, 3, π/4] , [−1, 5,−π/5] , [−2, 1, π/6] , [2.5, 2.1,−π/10].
As shown in Figure 6, the position 1 is the initial
position. The ellipses are one GMM fitted from the
scans. Arrows represent the direction of robot’s heading.
At this stage we assume observations in each step are

Figure 5: 2D scanning of chairs and tables. The data
collected from 2D laser is generally presented as shown
in the below image. The data is irregular compared with
that of flat walls, boxes or pillars.

Table 2: Relative Errors (m) of different methods

Transform GMM yC yD GMM uC yD GMM uC uD GMM yC uD

Step 1 1.0e-03 * 0.8822 0.0001 0.0003 0.0024

Step 2 1.0e-03 * 0.8525 0.0028 0.0003 0.0053

Step 3 1.0e-03 * 0.3996 0.0053 0.0022 0.0093

Step 4 1.0e-03 * 0.4261 0.0051 0.0020 0.0090

precise corresponding and no missing data exists.

Table 2 gives the relative errors in each steps
of transformation. It is clear that our method
(GMM yC yD) provide a more accurate result compared
with other three GMM methods. Dramatically the re-
sult of GMM uC yD performs a little bit worse than
GMM uC uD. The reason is that in this experiment we
set the factor c1 to 0.1, which is suitable for this model.
If we set the factor c1 to 10, however, we get an opposite
result. Hence it is an evidence that dynamic scale factor
plays a positive role in GMM based scan matching.

A circular trajectory motion is simulated to further
compare the performance. Figure 7 illustrates the sim-
ulation of robot movement. The robot moves around a
circle with the center at point (3, 3) and a radius of 6m.
Three points clouds are considered as features existed in
the environment.

First we need to fit the points clouds into one Gaussian
mixture model with the assumption of knowing compo-
nents number. Then we test four GMM based methods
as well as ICP method.

As shown in Figure 8, all of the methods can obtain
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Figure 6: The four step simulation for comparing the
performance of different GMM based methods. The po-
sition 1 is the initial position. The ellipses are one GMM
fitted from the scans collected at the initial position. Ar-
rows represent the direction of robot’s heading.

Table 3: RMSE (m) of different methods

ICP GMM yC yD GMM uC yD GMM uC uD GMM yC uD

0.1318 0.1317 0.1322 0.1727 0.1573

relatively good estimation compared with ground truth.
Then we calculate the root-mean-squared-error (RMSE)
and the results are listed in Table 3.

From the results of RMSE, it is clear that although all
of the RMSE are small enough, our method (GMM with
Geometry Constraint and Dynamic Scale Factor) arrives
in a tiny win compared with ICP method. The rea-
son may lie on the approximated ellipses in calculation.
Then compared in pairwise, for example, GMM yC yD
vs. GMM yC uD and GMM yC yD vs. GMM uC yD,
it can be concluded that both Geometry Constraint and
Dynamic Scale Factor can increase the accuracy slightly
and Dynamic Scale Factor makes more contribution on
the improvement of performance.

Figure 9 depicts the range of convergence. From the
upper two pictures we can conclude that Dynamic Scale
Factor is able to improve the efficiency of convergence
because the cost function with Dynamic Scale Factor
have a smaller minimum, as is noted with red lines in-
tersection. But the convergence ranges (red circle on the
surface with projection to x-y plane) of both situations
are nearly the same. From the left two graphs we come
to the conclusion that Geometry Constraint is able to
enlarge the range of descend area, which is more robust
responding to a relatively bad initial value.
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Simulation of Robot Movement
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Figure 7: Simulation scenario. The position of robot
is represented by a black circle while the orientation is
represented by an arrow. The colored triangles are scan
points describing features in the environment. Three
different colors means the points cloud are divided into
three normal distributions and fitted as one Gaussian
mixture model, which is depicted as colored ellipses in-
tuitively.

5 Conclusion

In this paper, we proposed a GMM based scan match-
ing method with geometry constraint and dynamic scale
factor. Geometry constraint can provide a prior infor-
mation for selecting nearest distribution and help update
the initial rotation, while dynamic scale factor makes the
cost function more accurate to describe the model. Sim-
ulation experiments demonstrate that our method can
improve the accuracy of the result. In future research
we will concentrate on extend the method to 3D making
it more general and use more experimental datasets to
evaluate the performance.
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