
1

A Generic and Tailorable Cloud Migration Process

Model

Abstract

Cloud computing literature provides a variety of perspectives towards the migration process, each with a

different focus and mostly adopting heterogeneous technical-centric terminologies. Little, if any, studies have

focused on developing an integrated and abstract process models which captures core domain constructs

relevant to the cloud migration. By applying the metamodeling theoretical foundation, this article develops a

generic process metamodel, as a domain language, for cloud migration. The metamodel is evaluated and refined

through a three step approach including three case studies, domain expert review, and prototype system test.

This research benefits academics and practitioners alike by underpinning a substrate for constructing,

standardising, maintaining, and sharing bespoke cloud migration processes that suit given migration scenarios.

Keywords: Cloud Migration, Legacy Systems, Metamodel, Domain Language, Process Model

2

Introduction

Cloud computing technology brings many advantages to the IT-based organizations

including: (i) providing wide ranges of services such as processing, data storage, and

infrastructure which are universally accessible, can be acquired and released on the fly, and

be paid for actual usage, (ii) reducing upgrading cost of IT infrastructure by shifting this

responsibility from the organisation to the service provider, and (iii) allowing for on-demand

resource elasticity based on computing needs (Armbrust, Fox et al. 2010). These benefits

motivate organisations to enable their legacy systems to utilise cloud services. Accounted by

(Ried S 2011), the global cloud computing market will likely to grow from $40.7 billion in

2011 to $241 billion in 2020.

A sheer volume of research has been proposed by both academia and industrial communities

providing solutions for moving legacy systems to cloud environments (Fahmideh, Daneshgar

et al. 2016). Some examples of well-known models, mainly originated from the software

engineering literature, are Chauhan’s Method (Chauhan and Babar 2012), REMICS

(Mohagheghi 2011), Tran’s Method (Tran, Keung et al. 2011), Cloud-RMM (Jamshidi,

Ahmad et al. 2013), Strauch’s Method (S. Strauch 2014), Zhang’s Methodology (Zhang,

Chung et al. 2004), Oracle Method (Laszewski and Nauduri 2011), ARTIST Method

(Menychtas, Santzaridou et al. 2013), Amazon Method (Varia 2010), Legacy-to-Cloud

Migration Horseshoe (Ahmad and Babar 2014), IVI Cloud Computing Life Cycle (Conway

and Curry 2013), and MILAS (Huru 2009). Each narrows in focus and presents a different

viewpoint of the same migration process. For instance, Tran’s method has a cost-oriented

view defining a taxonomy of the migration activities and cost factors related to these

activities (Tran, Keung et al. 2011). REMICS proposed by (Mohagheghi 2011) is an agile

and model-driven approach to integrate legacies with cloud services. The method suggested

by (Ahmad and Babar 2014) is an architecture-centric software evolution for the migration of

legacies to the cloud. There is a logical link between the above process models as they all

define the same collection of activities for planning, cloud service selection, re-engineering,

testing, and deploying legacies to utilise cloud services, but from different viewpoints.

Nevertheless, till now, these links have not been explicitly established and integrated.

Additionally, experts in the cloud computing community who may come from different IT

backgrounds use different terminologies and phrases to refer to same concepts. It is hard to

find any two migration methods that adopt the same definition of migration process and

associated activities. For example, the IVI Cloud Computing Life Cycle, Chauhan’s Method,

and MILAS define an activity related to the selecting cloud platform. IVI Cloud Computing

Life Cycle defines it “as this step will select the best supplier based on value, sustainability,

and quality”; Chauhan’s Method define this activity as “identify a set of potential cloud

computing platforms based on a project’s nature, data confidentiality and sensitivity

requirements, budget constraints and long-term organisational objectives”; and MILAS (Huru

2009) defines it as “selecting appropriate technology for the modernised system and

technology that can run alongside and communicate with the legacy system”. IVI Cloud

Computing Life Cycle and Chauhan’s method take into account some criteria for a cloud

platform selection. However, IVI Cloud Computing Life Cycle’s definition emphasises the

non-functional qualities of a cloud platform whereas Chanhan’s definition emphasises aspects

of project constraints. On the other hand, MILAS’s definition takes into account the

interoperability of legacy assets with the cloud services. The above definitions are similar in

meaning and context, but they have been expressed by different terms. In other words, when

they are viewed collectively, the common theme among all of these definitions is the notion

of proper cloud platform/service selection. While such variety and having multiple and

3

disparate sources of cloud migration is useful, it impedes audience to comprehend, digest,

and grasp an overarching view of the cloud migration process. Regardless of operational

details of cloud migration, the one question remains which is how IS researcher and

practitioners grasp an abstract and overarching view of what the cloud migration process

entails under such chaotic universe of cloud? The absence of a platform-independent model

of cloud migration introduces communication barriers and obstructs information exchange

among participating developers and organisations in a cloud migration project (Hamdaqa and

Tahvildari 2012; Zimmermann, Miksovic et al. 2012). In this spirit Hamdaqa et. al. mention:

“there is a need to detach the cloud application development process from specific cloud

platforms” (Hamdaqa, Livogiannis et al. 2011).

Furthermore, while for some cloud migration scenarios one of the existing process models

may be an appropriate fit, for many others a method engineer needs to combine concepts

from two or more models to meet requirements of a given migration scenario. For example, a

process model might be suitable for moving large and distributed workloads from legacy data

centres to public IaaS whilst another process model might be best suited to reengineer

legacies to serve as a SaaS. This essence is captured well by Mahmood (Z.Mahmood 2013) in

his Book, p.64: “One solution can never fit all problems; likewise, there is a need of

customised cloud for individual businesses and dynamically changed requirements of

clients”. In situations like this, the method engineering is suggested as a way to construct

customised methods by assembling reusable method fragments obtained from existing

migration methods (Ralyté, Deneckère et al. 2003).

While there are merits in adopting technical-centric existing process models, an integrated

overarching view of cloud migration process comprises that can facilitate interoperability and

knowledge sharing across the cloud community is still non extant in the available literature.

Such model currently does not exist, and the current study can be regarded as a small step

towards achieving this goal. The fact that each year a considerable number of research papers

are published in the cloud computing field, each reporting different solutions, experience

reports, and recommendations, itself is an evidence that the field has reached a maturity point

where the development of one such generic reference model becomes mandatory. Prior

research acknowledges that although variety of models for any given domain is profitable at

the beginning of a research filed, a consensual picture of what the bunch of these models

looks is eventually more efficacious (Harmsen, Brinkkemper et al. 1994; Rossi, Ramesh et al.

2004; Beydoun, Low et al. 2009). According to this account, it is helpful if common concepts

in the cloud migration process such as phases, activities, and work-products could be factored

out into a generic and unified process model at a convenient abstraction level. Adequately

crafted, it can present a complete vision of the cloud migration process which is independent

of any cloud platform, fine-tuneable according to characteristics of a migration scenario, and

facilitator for consistent communication and efficient knowledge sharing and exchange across

cloud computing domain. Such a generic model that, unifies the access and describes the

domain can facilitate design, representation, maintenance, and sharing various cloud

migration processes. Methods that are instantiated from such a generic model are expected to

describe the domain concepts needed to be performed by developers in any specific scenarios

of legacy to cloud migration.

In addressing the abovementioned issue, metamodels are suggested for achieving an

integrated view of a domain of interest and to describe it (Atkinson and Kuhne 2003;

Gonzalez-Perez and Henderson-Sellers 2008). Metamodels capture common concepts and

their relationships describing a domain and the way it works. A metamodel provides a

language infrastructure to freely describe a domain in a way that stakeholders can better

understand the domain along with guidelines to specialize this language for a particular

4

context (Rossi and Brinkkemper 1996). Development of metamodels has been a common

practice in various themes in information systems and software engineering domains. The

significance of metamodels, as a way to abstract cloud computing concepts, has been a top

priority in the cloud community (Leymann 2011; Loutas, Kamateri et al. 2011; Hamdaqa and

Tahvildari 2012). This paper continues this track from the perspective of cloud migration

process. Thus, the objective of this paper is to develop and evaluate a metamodel that

captures and harmonises common activities of cloud migration process and can be used to

create, standardise, and share situation-specific cloud migration methods. The metamodel

produced is domain-specific (i.e., cloud computing) but is generic, context agnostic, and can

be grounded and extended to suite a given cloud migration context. The proposed model

contributes to the cloud computing field by identifying and distilling common activities and

key features of extant cloud migration literature. Based on our knowledge, such a model does

not exist in the literature.

The paper is structured as follows. The next section reviews prior literature on applying

metamodels. Section Research method presents the adopted research approach. Section

delineates the approach undertaken to develop the metamodel, following with the section

Demonstration that shows how the metamodel can be used to describe real-world cloud

migration processes. Next, section Evaluation presents the evaluation of the metamodel. The

paper goes on discussion on implications, limitations, and conclusion of this study.

Theoretical foundations and related work

A domain specific language provides core concepts, relationships, notations, and semantic to

simply understanding and representation of a particular domain. A key feature of such

languages is that they allow domain experts construct models of their applications which can

be later translated into low level representations. As suggested by (Atkinson and Kuhne

2003), one effective way to create domain languages is the use of metamodels. A metamodel

is “a model of a model or a model of a collection of models” (Atkinson and Kuhne 2003).

The literature pertinent to develop metamodels to demystify the multi-faceted and yet

ambiguous cloud computing technology varies between different streams. We found that the

majority of themes are suggested in software engineering literature with a technical-centric

focus on implementation of cloud applications. We also found a few work in IS literature of

application of metamodels. The following provides a synopsis of notable research works and

shows how the current study situates itself in the context of the existing literature.

The first stream of metamodeling studies concentrates on abstracting the technical

architecture of cloud computing. Academic research such (Zhang and Zhou 2009; Hamdaqa

2011; Liu, Tong et al. 2011; Zimmermann, Pretz et al. 2013) and white papers published by

major players of cloud computing such IBM, HP, Oracle, and Cisco are subsumed under this

classification.

The second stream is about distilling and sharing knowledge practice for the green cloud

computing (Procaccianti, Lago et al. 2014). Herein, the application of the metamodel is to

formalize a picture of how cloud data centres address the problem of reducing their energy

footprint and carbon emission. Another work proposes a metamodel of the green practice for

all aspects of cloud-based business processes such as environmental impact, pollution, and

waste in class of patterns (Nowak, Breitenbücher et al. 2014). Dougherty et al. have proposed

a metamodel-based auto-scaling resource management to reduce unnecessary idle cloud

infrastructures (Dougherty, White et al. 2012).

5

The third stream is concerned with quality aspects of cloud services. As an example, the

metamodel developed by cloud accountability project (A4Cloud) is to formulate the

knowledge about non-functional properties of cloud services, and in particular, those that

influence accountability of cloud providers (Nunez, Fernandez-Gago et al. 2013). The

purported goal of this metamodel is to act as a language to describe cloud service

accountability in terms of transparency, verifiability, observability, liability. It allows

derivation of metrics from a high-level model to a tangible and measurable one, enabling

consumers to monitor the quality of cloud service providers. Developing a metamodel to

represent and share domain concepts of cloud services certification process has been the

goals of European FP7 project as a response to how a certificate is produced, what its content

is, and how it is managed (Cimato, Damiani et al. 2013). It conceptualizes the concepts

involved during certification phases and allows for defining different instances of

certification models.

A number of scholars report that the adoption of metamodels eases code refactoring of cloud

applications. The common feature of these studies (Ardagna, Di Nitto et al. 2012; Kopp, Binz

et al. 2012; Wettinger, Behrendt et al. 2013) is to address the interoperability and portability

of applications across different cloud providers for supporting instantiation of application

description into multiple cloud environments using metamodel transformation techniques.

This stream of studies uses feature models to model application variability and retransform

them for a given target cloud platform.

Capturing the common knowledge of designing of cloud architecture has been the topic of

discussions in (Fehling and Retter 2011; Fehling, Leymann et al. 2012) where researchers

propose a catalogue of patterns for legacy source code refactoring to enable them to use cloud

services.

As the last stream in the software engineering literature, researchers have incorporated

domain-specific languages (DSLs) for developing cloud applications. Research in this

direction have resulted in several DSLs such as cloud risk modelling (Zech, Felderer et al.

2012), cloud service compliance management (Brandic, Dustdar et al. 2010), cryptographic

cloud computing (Bain, Mitchell et al. 2011), distributed data-parallel computing (Isard and

Yu 2009), cloud-mobile hybrid applications (Ranabahu, Maximilien et al. 2011), describing

big data analytic algorithms for data analytics in the cloud (Weimer, Condie et al. 2011), and

automatically code generation for cloud applications (Sledziewski, Bordbar et al. 2010), to

maximize SaaS application reusability (La and Kim 2009). The central claim of these

technical studies is on the seamless transformation of application codes to various cloud-

specific platforms by using model transformation techniques.

Finally, the metamodel creation has also received attention from IS scholars. The work

presented in (Martens and Teuteberg 2011; Keller and König 2014) proposes reference

models to support organizations in managing and reducing risk and compliance efforts for

cloud computing as a socio-technical artefact.

The current research posits that metamodeling is a legitimate and well-suited theoretical lens

for understanding the cloud computing domain. However, due to the different viewpoints of

metamodel creation in the literature, when it comes to design a process metamodel to

establish a methodological foundation for moving legacy systems to the cloud, the research is

less common. In this paper, we describe our effort to design and evaluate a generic process

metamodel to standardize, tailor, and share cloud migration processes.

Research method

6

Overview

In the current study the proposed metamodel is viewed as a specific artefact and is developed

according to the design science paradigm (Peffers, Tuunanen et al. 2008; Gregor and Hevner

2013) using an iterative cycle of design and evaluation. More specifically, we adopted the

DSR process model suggested by (Peffers, Tuunanen et al. 2008) that includes the following

phases:

Problem identification. This phase has been already described in the Introduction section of

this article. That is, the cloud migration literature narrows in focus and present heterogeneous

viewpoints of the same cloud migration process while there is no established correspondence

among them. As such, it is hard to get an overall understanding of what activities are

comprised in a typical cloud migration process. Furthermore, there is a dearth of research that

suffices the method tailoring to create bespoke methods to suit a given cloud migration

scenario.

Objective definition. The quality of a proposed metamodel is an integrated part of a

metamodeling process. The model quality is “the totality of features and characteristics of a

conceptual model that bear on its ability to satisfy stated or implied needs” (Moody 2005).

Thus, the development process of the proposed metamodel of the current study was informed

by design principles (DP) pertinent to design of domain languages. There are a few

commonly used frameworks for examining the quality of conceptual models, which are

applicable to different modelling paradigms (Lindland, Sindre et al. 1994), (Stamper 1996),

(Moody 1998), and (Paige, Brooke et al. 2007). From these frameworks we identified the

following common design principles (DP) that are expected to be satisfied by a proposed

metamodel: Completeness (DP1): the metamodel should capture all important and relevant

methodological constructs that cloud migration process entails, Understandability (DP2): the

definitions and names of constructs in the metamodel should be comprehensible by domain

experts, Correctness (DP3): the notation and relationships among the constructs in the

metamodel should be correct and meaningful, and finally Tailorability/or flexibility (DP4):

the metamodel should enable method engineers to standardise, share, and tailor cloud

migration methods according to characteristics of given scenarios. These generic design

principles are further specialized during the remaining phases.

Design and development. A consolidated metamodel was derived from the extant literature

on cloud migration, which comprised all frequently occurring constructs in any process of

legacy system migration to cloud environments and relationships among them. We first

identified all relevant studies (process models, approaches, experience reports) on moving

legacy systems to the cloud. Next, constructs were extracted from these studies, grouped, and

refined based on their similarities and context. This step resulted in producing a set of

essential constructs of the metamodel. Following harmonised constructs’ definitions, they

were organised into phases and relationships among them were specified.

Demonstration. The purpose of this phase was to show the expressivity of the metamodel to

represent real-world enacted cloud migration processes. Three case studies were purposefully

selected on the basis of (i) having clear goals for the cloud migration, (ii) reflecting various

migration types such as IaaS, SaaS, and PaaS, and (iii) having available supportive

documentation of performed cloud migration scenario for a detailed analysis. Three selected

cases were: InformaIT in Sweden, TOAS in Finland, and Spring Trader in the United State.

The unit of analysis was the legacy system that was planned for migration. Adherence to DP1

and DP3 were examined by tracing the origin of the metamodel constructs and their

relationships to these real-world migration models.

7

Evaluation. This phase was to evaluate the efficacy of the metamodel version 1.1, which had

been resulted after applying refinements in the demonstration phase. Firstly, the metamodel

adherence to DP1, DP2, and DP3 were examined by a panel of experts in the cloud

computing field. The choice of domain experts were based on either having at least one year

of experience in legacy system migration to cloud environments or extensive academic

knowledge of cloud migration as evidenced by publications. Four experts, denoted by E1 to

E4, who were geographically dispersed and had an overall 7.5 years of experience in the area

of cloud migration, were selected and provided with the textual document of the metamodel

(twenty-five pages long) along with a list of open-ended questions related to the metamodel’s

support of DP1, DP2, and DP3. Each expert individually was asked to review and challenge

the metamodel version 1.1. Neither expert was aware of the identity of other experts to avoid

possible communication between them. An advantage of receiving feedback from experts

with different cloud migration experience was that their expertise complemented each other

by addressing different parts of the metamodel.

The deadline for receiving feedback was negotiated with each expert. Feedback received

from experts was analysed and relevant refinements were applied to the metamodel. To

prevent possible misinterpretation of comments made by experts, an email-based

communication was established to clarify comments whenever required.

Secondly, a prototype system was implemented by the authors to show how the metamodel

can be specialised for given migration scenarios and be used for standardisation of migration

processes across the cloud community. The prototype system uses the metamodel as a

repository of method fragments and provides interactive forms for constructing, configuring,

standardising, and sharing situation-specific cloud migration methods for a scenario at hand.

Qualitative feedback from two experts, denoted by E5 and E6, about the adherence of the

metamodel to all design principles were sought in this evaluation step. The feedback

collected from each step of evaluation was used to refine the metamodel to its next version.

Communication. The document of the metamodel in sufficient detail and its actual

implementation (prototype) are also available in (MLSAC 2016).

As shown in Figure 1, this research was conducted in four consecutive iterations. In this

figure, down arrows and back arrows show, respectively, the output of each phase and the

metamodel refinement through design phase engine. Each iteration used the refined

metamodel resulted from the predecessor iteration as the input. Starting from version 1.0, the

metamodel refinements throughout iterations was labelled with an increasing version number.

The first iteration resulted in the initial design of the metamodel version 1.0. The second

iteration appraised the completeness and correctness of the initial metamodel through three

case studies. By analysing results from these cases, the metamodel version 1.0 was refined to

version 1.1 by adding new constructs which had not been captured by the metamodel version

1.0. Later, in the third iteration, a panel of domain experts individually evaluated the

metamodel version 1.1 and subsequently their feedback was applied to the metamodel,

yielding to the next version of the metamodel, i.e. version 1.2. Finally, in the fourth iteration,

the evaluation was conducted by examining a prototype system of the metamodel version 1.2.

This iteration did not result in further refinement of the metamodel.

8

Figure 1 Design science research process specialized for this research

Design Phase

Developing Design Principles for the Metamodel

The quality of a designed metamodel is an integrated part of a metamodeling process, “the

act and science of creating meta-models, which are a qualified variant of models”

(Gonzalez-Perez and Henderson-Sellers 2008) (p. 32). The (meta)model quality, defined in

(Moody 2005), is “the totality of features and characteristics of a conceptual model that

bear on its ability to satisfy stated or implied needs” (p. 2). Accordingly, this section

synthesises a few design principles as fundamental requirements that are expected to be

addressed during the development and evaluation of the proposed metamodel. Results of

the demonstration and evaluation shows the proposed metamodel based on these principles

provides a methodological foundation for moving legacy systems to cloud platforms

including support for creating, configuring, and sharing customised methods for different

scenarios.

Completeness (Design principle 1). The development of the design principles are

originated from the existing mainstream metamodeling frameworks and recurring concerns

during a cloud migration process. Design principles that are proposed in this section are

testable propositions and further are employed to develop and evaluate the metamodel. For

instance, researchers can evaluate the adherence of a metamodel to design principles using

case studies (Antkiewicz, Czarnecki et al. 2009; Cuadrado and Molina 2009; Karlsson and

Ågerfalk 2012). Design principles and their connection with the context of this research are

discussed in the following.

One concern during creating a metamodel is the level of its completeness, that is, the

extent to which the metamodel can make different kinds of statements required in the

domain (Lindland, Sindre et al. 1994). Mitchell states that a language designer should

discover key constructs in the problem and ensure they are modelled and representable

during system development lifecycle (Bain, Mitchell et al. 2011). A designer may tend to

9

include many domain constructs in a metamodel. However, achieving valid completeness

may not be feasible. In addition, the domain may contain many constructs that are

irrelevant and, hence, out of the scope of the domain language purpose. Overemphasising

on a domain language with many constructs is a worth practice.

Completeness can be considered in terms of an appropriate balance between generality and

specificity is an important factor in the successful development of a domain language. A

language can be either too generic or too specific to the domain and in some cases both.

Steven et al. (Kelly and Pohjonen 2009) suggest to include common core constructs in the

domain. They mention, “Domain language isn’t about achieving perfection, just something

that works in practice. It will always be possible to imagine a case that the language can’t

handle. The important questions are how often such cases occur in practice, and how well

the language deals with common cases” (p. 23). They further advise that in order to avoid

analysis paralysis, one should concentrate on the core cases and build a prototype language

for them. Defining a threshold for a metamodel completeness depends on the application

context and, although is not easy to quantify, it can be when the model is detailed enough

according to the purpose of modelling and further modelling is less beneficial (Lindland,

Sindre et al. 1994). This can be examined, for example, by tracing proposed metamodel

constructs to real word models (Othman, Beydoun et al. 2014) or existing counterpart

models (Beydoun, Low et al. 2009).

When viewing the cloud migration from the process perspective, a good coverage on core

activities and expected work-products incorporating into the migration process is

important. The key concerns initially introduced (S. Strauch 2014) in and then enriched

and validated in (Fahmideh, Daneshgar et al. 2016) were found good yardstick to get a

feasible completeness of functional and non-functional methodological requirements to be

addressed by an ideal cloud migration process model. The concerns are Analysing

Organisational Context, Understanding Cloud Migration Objectives and Requirements,

Proper Cloud Migration Planning, Understanding Legacy Applications, Target Cloud

Platform/Service Selection, Re-Architecting Legacy Applications, Environment

Configuration, Testing, and Tailoring. This leads defining the first design principle:

The proposed metamodel should capture all important and sound methodological

constructs that are relevant for the incorporation into a typical process of the

legacy system to the cloud.

Understandability (Design principle 2). Developing a domain language needs a good

knowledge of the domain. This implies that a language designer should think abstract and

take his/her noise above the system code level, programming, and technical-oriented

notions in the domain (Kelly and Pohjonen 2009). He/she should be able to produce good

vocabularies for the domain that are understandable and interpretable by the audience of

the language as referred to it as Audience-domain appropriateness (Lindland, Sindre et al.

1994). An adequate domain language allows for minimum multiple interpretations by

audiences. Ambler (Ambler 2005) states that for better understandability of a model, it

should be kept simple and avoids details not necessary for modelling. Excessive emphasis

on incorporating technical or programming concepts into a domain language, although, is

useful they should not be defined as core constructs otherwise they impede the expressivity

power of the metamodel and lead to a poor abstraction level (Kelly and Pohjonen 2009).

The understandability of a domain language is determined by many properties such as

quality of diagrams or text, icons and names, and the layout and closeness of the model to

the domain (Lindland, Sindre et al. 1994). In the context of this research, an

understandable can clarify the meaning of activities in order to understand what cloud

service is supposed to provide and what service consumer need to consider or implement to

10

utilize advantages of cloud computing such as availability and scalability. Thus, naming

and terminologies that proposed for the metamodel are results of synthesising the content

in the cloud computing literature. The second design principle is formulated as the

following:

The definitions and names of constructs in the metamodel should be

comprehensible by domain experts.

Correctness (Design principle 3). A domain language contains names, definitions, and

relationships among constructs, which are relative to the domain, and they are interpretable

by human and computer for the purpose of generation and analysis (Moody 1998; Paige,

Brooke et al. 2007). The correctness can be checked either by examining the language

against existing domain models or domain experts. A metamodel for cloud migration

process needs to specify relationships among operations, which can be in the form of a

sequence, input/output, association, or aggregation. An example may illustrate this point.

According to (Fahmideh, Daneshgar et al. 2016), a key concern in a cloud migration

scenario is potential incompatibilities (e.g. APIs) between legacy systems and cloud

services. This implies a sequence in the migration process in the sense that once a decision

on the cloud platform selection is made, the next step is to identify and analyse

incompatibilities between these two platforms. In this research, the relationships defined in

the framework are based on the recommendations in the cloud computing literature. The

second design principle is defined as the following:

The notation and relationships among the constructs in the framework should be

correct and meaningful.

Tailorability (Design principle 3). A domain language should support configuration and

extension so that it can be specialized into a new domain and continuously evolved

according to upcoming domain requirements. The more a domain language is close to the

problem domain, the more simple its customisation, maintenance, and evolution (Jonkers,

Stroucken et al. 2006). A domain language includes a set of generic constructs, which are

abstract enough and common to represent the domain. Customised models from a domain

language can then be used to generate software systems. Converting the above point to the

context of this research, the proposed metamodel, which is supposed to a representation for

the cloud migration process, should be tailorable to meet requirements of migration

scenarios. This is due to the fact that each cloud migration scenario may have different

characteristics such as system workload for moving to the cloud, chose of migration type

and cloud services. Hence, there is no single applicable method for all scenarios. In

situations like this, designing customisable methods or configuring existing one that fit

characteristics of migration scenarios is pivotal for successful adoption of the cloud

computing (Fahmideh, Daneshgar et al. 2016). With respect to this, the fourth design

principle is defined as follow.

The framework should enable method designers in standardising, sharing, and

tailoring migration methods for specific scenarios.

Metamodel development

The steps that were undertaken to develop initial metamodel in the design phase are

explained below.

Identifying studies. The development of the proposed metamodel was started by identifying

all constructs relevant to the cloud migration process. We utilized past researches in the cloud

migration literature as the main knowledge source for the creation of the metamodel. Due to a

large volume of published researches, a systematic literature review was conducted to

identify important and meaningful constructs stated in the literature for inclusion in the

11

metamodel. Recommendations proposed by (Kitchenham, Pearl Brereton et al. 2009) were

used to identify, characterise, and assess studies suggesting solutions for moving legacy

systems to the cloud. The keywords for search were Cloud, Cloud Computing, Service

Computing, Legacy, Methodology, Process Model, Reference Model, and Migration were set

as the main keywords and based upon them, the different search strings were defined using

the logical operator OR to include synonyms for each search string as well as the logical

operator AND to link together each set of synonyms. Seventy five relevant studies were

identified from the cloud migration literature. The details this are presented in the

Supplementary Material Appendix A.

Extracting constructs. All relevant constructs related to the cloud migration process were

extracted from all the identified studies. In this study a construct refers to a (i) Task: a

discrete and small unit of migration work that developers may perform to achieve one or

more specified goals, (ii) Work-product: a tangible artefact that is produced during the

migration process and used by other tasks, (iii) Principle: a consideration that should be taken

into account during cloud application design, and (iv) Phase: a logical concept to manage the

complexity of migration process and classify tasks and work-product constructs. A phase

represents a particular period of a cloud migration process.

Derivation of the metamodel was based on the DP1 and DP3 as defined earlier. More

exactly, for the DP1 we leveraged the identified the key common occurring concerns during

legacy system migration to cloud environment as discussed in (Fahmideh, Daneshgar et al.

2016). This includes eight concerns such as understanding organisational context,

understanding cloud migration objective and requirements, proper cloud migration planning,

understanding legacy systems, target cloud platform selection, re-architecting legacy

systems, environment configuration, and testing. There was a tendency in selection of

constructs that were (i) sufficiently generic to a variety of cloud migration scenarios and (ii)

also were platform and application independent. Constructs that were too general or belonged

to general software engineering were not extracted as they were deemed out of the scope of

this research. These included constructs related to the process governance and umbrella

activities such as risk management, project management, quality assurance, configuration

management, and measurement. For each construct its definition from the studies was also

extracted. The full list of all constructs and their definitions are presented in the

Supplementary Material Appendices B and C, respectively.

Creating overarching constructs. Through a bottom-up approach, all identified constructs

from the previous step were grouped based on their similarities and definitions to derive a set

of high-level overarching constructs. Classification of constructs and creating overarching

constructs were undertaken on the basis of the key concerns such as understanding

organisational context, re-architecting legacy system, and understanding legacy system

during moving legacy systems to the cloud as discussed in (Fahmideh, Daneshgar et al.

2016).

Harmonizing and reconciliation of constructs. Various definitions of overarching

constructs were reconciled to reach a set of internally consistent set of metamodel constructs.

When there were several definitions for a constructs, a hybrid definition which encompassed

all definitions was chosen. Back to the example mentioned earlier, selecting cloud platform

has been defined as “this step will select the best supplier based on value, sustainability, and

quality” in IVI Cloud Computing Life Cycle (Conway and Curry 2013); as “identify a set of

potential cloud computing platforms based on a project’s nature, data confidentiality and

sensitivity requirements, budget constraints and long-term organisational objectives” in

Chauhan’s method (Chauhan and Babar 2012); and as “selecting appropriate technology for

the modernised system and technology that can run alongside and communicate with the

12

legacy system” in MILAS (Huru 2009). The definition decided for the metamodel is “Define

a set of suitability criteria that characterise desirable features of cloud platforms. The criteria

include provider profile (pricing model, constraints, offered QoS, electricity costs, power, and

cooling costs), organisation migration characteristics (migration goals, available budget), and

application requirements. Based on the criteria identify and select suitable cloud providers”

which is a hybrid definition that encompasses all interpretations from these models.

Classification and organising constructs into phases. Constructs were organised in terms

of migration phases. The identified studies in the first step were analysed to identify generic

phases of the cloud migration process. For instance, IVI Cloud Computing Life Cycle

(Conway and Curry 2013) include four phases namely Architect, Engage, Operate, and

Refresh. Strauch’s Method (S. Strauch 2014) includes three phases as Assessment, Analysis

and Design, Migration, Deployment, and Support. Similarly, Cloud-RMM (Jamshidi, Ahmad

et al. 2013) has three phases including Migration Planning, Migration Execution, and

Migration Evaluation. Synthesised the similarity of phases in these studies, we defined three

phases including Plan, Design, and Enable that are described in the next section.

Defining relationships among constructs. The relationships among constructs such as

sequence, association, specialization, and aggregation were defined based on the identified

studies in the step one and the output from the previous step. All relationships are presented

in the Supplementary Material Appendix E. To represent the metamodel in a clear and well-

structured manner, a simple version of UML notation (UML 2004) was used, which is a

semi-formal and de-facto standard for information modelling.

Resultant Metamodel
The objective of the metamodel is to provide a generic representation of the cloud migration

process that facilitates domain understanding, standardising, creating, and sharing customised

migration methods. The metamodel includes a set constructs which are common comprised in

the cloud migration. The constructs are organised into three phases namely Plan, Design, and

Enable. Operationalisation details are left to each individual instantiation of the metamodel

using available techniques in the cloud computing literature and/or tools in marketplace.

Figure 1 shows the developed metamodel. A brief definition of the metamodel constructs is

presented in Table 1.

The Plan phase starts with a feasibility analysis of cloud adoption. This analysis can be

related to potential changes in organisation structure, local network, and cost saving as the

outcome of cloud migration. Moreover, an understanding of the current state of legacies is

required to know their architecture, functional and none-functional requirements that might

either be addressed by cloud services or be threatened by moving them to the cloud. This also

gets estimation of required reengineering effort for making legacy systems cloud-enabled. A

model of legacies including their components and their deployment relations is produced as

the output of this activity. Legacy systems may have certain requirements that can be

satisfied by utilising cloud services. These requirements may be related to computational,

storage space, security, and system interoperability. A cloud migration also includes

preparing a plan which organises the sequence of activities in the course of migration

process.

In the Design phase a new architecture model is designed which enables legacies to utilise

cloud services. The re-architecting process includes identifying suitable legacies or

components for moving to and their new deployment in the cloud environment in order to

satisfy non-functional requirements. Examples include data security, expected workload, and

acceptable network and scaling latency, selecting cloud services which fit requirements of

13

these legacies as identified in previous phase, and identifying inconsistencies between

underlying legacy technologies and selected cloud services’ APIs. In some situations,

organisation’s regulations and policies do not allow for a full legacy system migration and

hence some legacy components are moved to the cloud and others are kept in the local

network utilising cloud services that are offered to them. In re-architecting of legacies to

cloud environments, design principles play central role. For instance, in order to support the

dynamic deployability, handling with failures, and independent scalability in cloud

environment, system components should be designed stateless in order to minimise storing

the contextual data during their execution. An important consideration during cloud

architecture design is the performance variability of cloud servers and network latency

between local network and the cloud which can have a negative impact on the QoS of a

migrated system. Developers should implement mechanisms in legacies to detect and handle

transient faults that occur in cloud environments. A key work-product of this phase is

architecture model which specifies an optimum distribution of legacy components on the

cloud servers and takes into account data privacy, acceptable network latency and

performance variability of cloud services, the availability zone of cloud servers, the affinity

of system components in the cloud, and the geographical location of servers.

The Enable phase consists of a set of reengineering activities to enable legacies for utilising

cloud services. This will result in the realisation of the cloud architecture designed in the

previous phase. Often, legacy systems have been implemented with technologies which are

not compatible with cloud services (e.g. API incompatibilities or proprietary). If occurs, such

incompatibilities between the legacy and cloud services should be identified and accordingly

resolved through adaptation mechanisms. This can be in form refactoring legacy source

codes, modifying data, or implementing wrappers code refactoring. For example, resolving

inconsistencies between legacy database and a selected cloud database solution may imply a

need for the data type conversion, query transformation, database schema transformation, and

developing runtime emulators. Legacy systems might not have been implemented with a

support for dynamic resource acquisition and release under input workload. High workloads

are often addressed by adding new physical servers. Mechanisms for system elasticity in

cloud environments need to be implemented in legacies for continuous system monitoring

and performing actions for resource acquisition and release regarding scaling rules triggered

in a specific workload threshold, event, or metric. Reengineering legacies may entail either

adding new components to legacies or separately hosted in cloud servers. Local network

setting is reconfigured to provide access to cloud services. In addition, legacy components

and any required third party tools are installed in the cloud. Finally, in the metamodel, the test

activity includes testing both functional and non-functional aspects of the migrated system. In

particular, various cloud-specific tests should be performed including security test,

interoperability test, and workload test.

It is important to note that adopting different service delivery models may entail

incorporating different constructs of the metamodel during the migration process. The

metamodel includes guidelines for the connection between a chosen service delivery model

and the metamodel constructs. Situations in which a construct should be incorporated into the

migration process can be mandatory, situational, and unnecessary.

14

Figure 2 Metamodel for cloud migration process

15

Table 1. Definitions of constructs in the metamodel

Phase Activity Definition
P

la
n

 P
h

as
e

Analyse Business

Requirements

Provide an understanding of what an organisation wants to achieve and goals

and expectations are to be met by cloud migration.

Analyse Migration

Cost

Analyse migration to cloud with respect to the cost of application modification,

installation, training, administration, license management, developing cloud

skills, pricing models of the service providers, and infrastructure procurement

imposed by the migration.

Analyse Migration

Feasibility

Identify potential organisational constraints regarding the adoption of a

particular cloud model, based on information available in the organisation

profile and then perform a feasibility study to evaluate the benefits and the

consequences of migrating legacies to the cloud.

Analyse Network

Change

Perform an impact analysis of potential changes in organisation network due to

migration in order to identify any side effect on communication between local

and cloud components and the required bandwidth.

Analyse

Organisational

Changes

Analyse the impact of cloud migration on the structure and resources of

organisation.

Analyse Technical

Requirements

Acquire a set of legacy requirements such as computational requirements,

servers, data storage and security, networking and response time, and elasticity

requirements from multiple stakeholders about the target application according

to the current configuration setting of the legacy application. This helps to gain

a good understanding of different kinds of architectural changes that needed to

be made in the legacy application.

Define Plan

Define a correct and safe sequence of tasks that guide the migration process by

analysis feedback from stakeholders. A plan may a procedure for (i) notifying

legacy application users about the cloud migration and temporal unavailability

of legacies during the migration period and activating them after the migration,

(ii) rollback to an in-house version of the legacy in the case of occurrence of

any significant risk during the migration process, (iii) retiring legacy

components and infrastructure that are no longer needed, after a pre-defined

period of monitoring and successful migration from original environment to the

cloud.

Recover Legacy

Application

Knowledge

Produce a complete representation of legacy architecture application including

its data, components, dependencies among components and infrastructure,

application data usage and resource utilisation model (e.g. CPU, Network,

storage).

D
es

ig
n

 P
h

as
e

Choose Cloud

Platform/Provider

Define a set of suitability criteria that characterise desirable features of cloud

providers. The criteria include provider profile (pricing model, constraints,

offered QoS, electricity costs, power, and cooling costs), organisation migration

characteristics (migration goals, available budget), and application

requirements. Based on the criteria, identify and select suitable cloud providers.

Design Cloud

Solution

Identify legacy components which are appropriate for the migration to the cloud

regarding identified requirements (e.g. workload, data privacy, confidentiality,

latency, dependencies between application components, and migration goals)

and then define their deployment and distribution in the cloud environment on

the basis of organisation profile, cost saving, expected workload, performance,

transaction delay, availability, security, and constraints.

Identify

Incompatibilities

Identify and assess the list of potential incompatibilities between existing

application components and selected cloud service. Different sources of

incompatibilities should be checked including library, database, interface,

behavioural, code style, communication protocol, offered QoS, and policy

mismatches.

Make Application

Stateless

Provide support in the application to the handle safety and traceability of

tenant’s session when various application instances are hosted in the cloud.

E
n

ab

le

P
h

as e Adapt Data

Refine the current database schema for making it compliant with the schema of

cloud database solution. Enhance the data access layer by adaptors and

convertors so as to fulfil functionalities and necessary optimised query

16

transformations which are not supported by a chosen cloud database solution.

Also, convert database data type to the target cloud database solution.

Develop Integrators

Develop a mediator component that resolves mismatches between legacy and

cloud services that are plugged to the legacy. This component wraps/transforms

incompatibility (e.g. message format, interaction protocols) between the legacy

and cloud services.

Enable Elasticity
Define scaling rules and provide support for dynamic acquisition and release of

cloud resources.

Handle Transient

Faults

Detect and handle transient faults may occur in the cloud.

Isolate Tenant

Availability

Detect and handle faults that may incur in a tenant in a way that it cannot be

propagated to other tenants.

Isolate Tenant

Customisability

Analyse commonality and variability in the target domain and provide support

for the customisation of application components on the basis of particular needs

and situations of tenants before and during running application in the cloud.

Isolate Tenant Data
Protect tenants' data from to be accessed by other tenants. Each tenant should be

authorised and able to access to its own data.

Encrypt/Decrypt

Messages

Secure messages transmission between the local components and those hosted

in the cloud or distributed across multiple clouds using an encryption

mechanism.

Refactor Codes

Refine (or re-implement) the source code for being compatible and able to

interact with the selected cloud platform programming language. Also, refine

(or re-implement) component interface operations, signature, messages, and

data type for being able to interact with the selected cloud platform.

Re-configure Network

Re-configure the running environment of the application including reachability

policies to resources and network, connection to storages, setting ports and

firewalls, and load balancer.

Synchronise

Application

Components

Provide a support in the application to synchronise multiple components (e.g.

database replica) hosted legacy network and clouds.

Test Interoperability

Test the compatibility of components with different cloud environments

specifically, when components can be switched between different

infrastructures.

Test Multi-tenancy
Test if tenants can easily configure the application components, i.e. user

interfaces, business logic and workflows, and functional services.

Test Network

Connectivity

Test the network connectivity between local components and components in the

cloud.

Test Performance

Test the performance (e.g. process speed, response time, throughput, latency,

and etc.) of the application when subjected to increased load from multiple

tenants.

Test Scalability
Test to assure the application acquire and release the computing resources in an

efficient manner.

Test Security
Test application components and reachability policies to access these

components against the security requirements.

W
o

rk
-p

ro
d

u
ct

s

Application

Templates

A set of models allowing tenants/application users to customise variation points

and features in the application components. These allow tenants/users to

configure application components.

Cloud Solution

Architecture

A complete high-level architecture document that will serve in later stages as a

guidebook for the implementation

Legacy Application

Model

A model of legacy application including its components and their deployment

relations.

Migration Plan
A document that defines the execution of the migration process and sequence

with which legacy application is to be moved to the cloud.

Migration

Requirements

A set of requirements as a result of task Analyse Migration Requirements.

Virtual Model

Specification

Virtual images of the application that are associated with the application

components.

17

Demonstration
This phase shows the metamodel adherence to the DP1 and DP2. More exactly, as the

proposed metamodel is sufficiently generic and abstracts domain constructs being

incorporated during the cloud migration process, it is anticipated that real-world migration

processes including development activities, their relationships, and work-products can be

represented by the metamodel. Three case studies were analysed to examine the conformance

of the real-world scenarios to the metamodel and corresponding between constructs in the

metamodel and these cases. These are shown in Table 2. Due to space constraint, a detail

analysis is presented for the first case (InformIT) only and results from two other cases are

presented in the following (A full detailed of the case analysis is in the Supplementary

material Appendix F).

Adherence to DP1 and DP3 were appraised by tracing the origin of metamodel constructs and

their relationships to real-world migration models. Using the tracing technique (Sargent

2005) in this section is similar to the research by (Othman and Beydoun 2013), which used an

analysis of existing disaster scenarios to show the capability of their suggested metamodel in

expressing key domain constructs. It is also consistent with (Beydoun, Low et al. 2009) in

examining an agent-oriented metamodel in the coverage of design-time and run-time

constructs in the agent-oriented software development. Furthermore, the tracing technique

has been also used in (Antkiewicz, Czarnecki et al. 2009) in representing the domain

knowledge of application code understanding through reverse/forward engineering and

software code evolution. Using the tracing technique, constructs that were incorporated in the

migration scenarios were categorised and mapped into the proposed metamodel constructs

according to their relevance. Some of the leading questions that were used during case review

for identification of the seed cloud-specific activities enacted by the developers in each phase

of migration process were as follow: (i) what activities, including techniques, were performed

and deliverables were produced during each phase of your migration project?, (ii) what

cloud-specific challenges were faced in each phase? Inspired by previous studies suggesting

the worthiness of secondary data in the assessment of metamodels (Antkiewicz, Czarnecki et

al. 2009; Beydoun, Low et al. 2009; Othman and Beydoun 2013), the secondary data for

conducting the tracing technique was used during the case study analysis. Project documents

from a variety of sources (e.g. project sequence, application architecture, and user histories)

was used to obtain a better understanding of the enacted migration process model by

developers.

Table 2 description of case studies

Case 1: InformaIT (Sweden) Case 2: TOAS (Finland) Case 3: SpringTrader (US)

InformaIT is a small independent

software vendor involved in

development of document

management systems. The

Document Comparison (DC)

system, developed by InformaIT,

is a Web-based enterprise

solution for enhancing document

management processes. DC

provided a fast and easy way to

compare textual and graphical

contents of different digital

documents. DC was originally

designed to offer services to

medium and large organisations

which had enough resources,

own infrastructure, and

TietoOyj is an IT service company

that had built an open source

platform called Tieto Open

Application Suite (TOAS) based on

J2EE technology. This platform

was used for developing and

running business applications in

cloud environments. The TOAS

platform aims to increase the

development speed, automation,

and the integrity of cloud

applications through providing an

integrated set of middle-wares,

tools, and services according to

service models IaaS, PaaS, and

SaaS. A cloud migration project

was launched by Tieto to migrate a

SpringTrader is an open-source

Web-based system that has been

originally developed by Pivotal

company and maintained by many

contributors over time. The

system allows users to establish

an account to view and manage a

portfolio of stocks, lookup stock

quotes, and buy and sell stock

shares. Pivotal company had

launched its own private cloud

platform, which named Pivotal

Cloud Foundry. The platform is

an open-source platform for

developing and deploying

portable cloud-native enterprise

systems. Pivotal decided to move

18

technicians to install and run the

system. InformaIT considered

promoting its competitiveness

power via expanding DC’s

services around small

companies. However, small

companies couldn't afford DC as

they would be confronted with a

high financial commitment such

as high cost of installation as

well as the usage cost of users. A

cloud model could facilitate an

efficient and agile maintenance

environment for the DC.

legacy system from the current

Tieto’s infrastructure to this new

TOAS platform. The system had

was processing batch tasks. Due to

the outdated hardware

infrastructure and software

platform, moving this system to

TOAS IaaS was a promising way to

enhance the system performance

and reduce infrastructure cost.

SpringTrader to this new cloud

platform because it will enable (i)

users to access real-time stock

market data and more interactivity

with the system, and (ii) the

individual scaling up/down of

SpringTrader’s components

(called micro services) and their

maintainability.

Within-case analysis: InformIt case

The following paragraphs describe how the constructs in the process model are instantiated to

represent activities, carried out by a development team in InformaIT project (Rabetski 2012).

The 43-page secondary document of this project was carefully reviewed. Figure 2 represent

the instance of the enacted process in InformIT.

As one of the first tasks, the developers performed Preliminary Analysis to identify benefits

and challenges of migration to the cloud in terms of privacy, vendor lock-in, and

environmental limitations. This activity is an instantiation of the Analyse Migration

Feasibility in the metamodel. Additionally, a task which was called Current DC

Implementation was performed to identify the current deployment model of DC. The model

revealed that DC’s customers have to take care of the infrastructure and provision of

technical expertise to maintain it locally. The process model supports this activity through an

instantiation of the Recover Legacy Application Knowledge defined in the Plan Phase.

The developers estimated the cost of DC migration to the cloud on the basis of server

instances, storage, data transfer, storage transaction, cache, and database. They realised that

the cost of DC could be down by 40 percent; that is $764.99 in the cloud model compared to

$1264.99 in the legacy model when leveraging elastic scalability. The abovementioned cost

analysis in InformaIT can be derived from the Analyse Migration Cost in the metamodel

which is a subclass of Analyse Context.

Once the cloud migration was perceived as a viable solution to empower DC, the developers

performed a task named Choosing a Cloud Provider in order to analyse three existing public

cloud platforms, Amazon Web Services, Google App Engine, and Microsoft Azure. Each of

these platforms could affect the cost, the quality of the architecture solution, and the required

legacy code changes. The developers found that Google App Engine could not be a suitable

candidate for DC since it did not support .NET applications as opposed to the Amazon AWS

and Microsoft Azure that both provided such a support. Given a further analysis, the

developers preferred Windows Azure platform to Amazon AWS for three reasons: (i) it

would require less configuration effort, (ii) it would offer a faster deployment model, and (iii)

developers had a consistent development experience for systems that were based on

Microsoft technologies. Choosing a Cloud Provider in InformaIT conforms to the

metamodel’s construct of Choose Cloud Platform/Provider in the Design Phase.

In InformaIT scenario the development team performed a task called Cloud DC Architecture

indicating how the existing legacy application components are mapped to the Microsoft

Azure platform. For example, the legacy version of DC’s database, which was a Microsoft

SQL Server database, was replaced with SQL Azure. In the metamodel, Cloud DC

19

Architecture in InformaIT can be instantiated from the construct Design Cloud Solution in

Design Phase of the metamodel.

Although Microsoft Azure was well suited as a target platform for the migration, the

developers identified some incompatibility issues that implicated required changes in the

current legacy implementation, referred to as Identified Compatibility Issues. Subsequently,

the migration process proceeded with some changes in the legacy DC. As an example, the

available Blob Storage and Queue Storage by Microsoft Azure were not compatible with

regular APIs that were currently used by DC. Accordingly, legacy codes were changed for

access Microsoft Azure database. As another example, DC had been developed using

Microsoft .Net 2.0 that was not supported by Microsoft Azure. The action to resolve this was

to update DC’s framework to Microsoft .Net 3.5/4. Other incompatibility issues were session

management and registration of legacy components in the cloud. The classes Identify

Incompatibilities and Refactor Codes in the metamodel represent the above modifications to

the DC in InformaIT case.

Some changes to DC were in the form of applying design principles proposed by the

construct Apply Design Principles in the metamodel. For instance, DC was required to be

portable between the local network and the cloud. To address this, the data and business

layers of DC were decoupled by adding a new intermediate data assess layer in order to

increase the portability of DC. That is, instead of directly data access, the business logic layer

calls a data access layer interface. In InformaIT project, this construct was referred to as

Separate Data Layer from Business Logic Layer which can be derived from the construct

Decouple Application Parts as a subclass of the Apply Design Principles in the metamodel.

As another example, DC stored megabytes of data per session which was a big overhead.

Such a session size required more time for serialisation and de-serialisation. Developers

applied a principle called Becoming as Stateless as Possible to make DC cloud-enabled. This

construct is an instantiation of the principle Make Application Stateless in the metamodel.

It was likely that the performance of DC in the cloud was going to decrease due to latencies

and unknown hardware infrastructure. In InformaIT project the task Performance Experiment

was performed to execute CPU heavy code for the document processing in order to compare

the execution and response time of running DC in the cloud (using a small Azure compute

instance) and on-premise environment (using a local server). This experiment could identify

potential performance bottlenecks in the cloud when heavy computational jobs such as digital

document rendering are running. This activity was conducted in North Europe deployment

location of Microsoft Azure because it was the closest geographical location to the project

testing environment, located in Gothenburg, Sweden. The experiment illustrated that a proper

deployment location can reduce interaction latencies and consequently, the performance. In

addition, the experiment revealed that the performance of DC in the cloud is less than the

local server and nine more instances of DC in the cloud are required to achieve the expected

throughput. The abovementioned test in this scenario, i.e. Performance Experiment, conforms

to the construct Test Performance in the Enable Phase of the metamodel. In InformaIT

project, the developers felt there is no need for running other kinds of tests.

The suitability of the DC migration to the cloud also was analysed from a cost perspective.

Developers built a prototype to analyse three real life scenarios that could describe how DC

could benefit from the cloud services. The cost of each migration scenario was estimated on

the basis of the pricing model of Microsoft Azure and cost parameters such as compute

instance, relational database, storage, storage transaction, data transfer, and cache. The

prototyping helped developers to make a final decision regarding the DC cloud enablement.

Prototyping in this scenario can be generated as a result of performing the task Make

Prototype in the metamodel. Regarding DP3, the analysing InformaIT confirmed some

20

relationships between the constructs defined in the metamodel. Table 3 shows the list of

relationships among the metamodel’s constructs that were instantiated in this migration

scenario.

With-in case analysis confirmed that almost all of its accommodated constructs can be

derived from the metamodel constructs, except for a new construct Extensively Use Logging

which was not covered by any constructs in the metamodel. It was found that the metamodel

has a deficiency to support this construct. According to the finding in this migration exercise,

since cloud environments are a-synchronous, debugging and tracing an application in the

cloud might be problematic (Rabetski 2012). Applying a logging mechanism in the

architecture of the application facilitates tracing of the behaviour of the application, resource

utilisation, and identifying reasons for failures in the cloud. Therefore, the InformaIT case

refined the metamodel construct Apply Design Principles by adding a new subclass construct

and was named by Use Logging. In Figure 2, this new construct is the class Apply Design

Principles. The following definition was used to define this new construct: Use the logging

mechanism to facilitate the application debug and resource monitoring when running in the

cloud.

21

Figure 3 InformIT model as an instantiation of the metamodel

22

Cross analysis
Next, our cross-analysis compares and contrasts three cases of cloud migration process in

terms of the metamodel adherence to DP1 and DP3. Table 3 shows results related to the

metamodel completeness and its expressivity for producing constructs of InformIT, TOAS and

SpringTrader migration scenarios and Table 4 shows the instantiations of some relationships

in the metamodel in these cases. According to these tables, only a slice of the metamodel is

required to represent domain-specific constructs which is described in the following.

As for DP1, the review of the cases InformIT, TOAS, and SpringTrader shows that four

metamodel constructs Recover Legacy Application Knowledge, Design Cloud Solution,

Identify Incompatibilities, and Decouple Application Parts were commonly instantiated in

their mainstream process, to make legacy systems cloud-enabled. For example, the construct

Design Cloud Solution defined in the Design phase of the metamodel was instantiated in

three different ways in the scenarios. In InformIT, the decision on the selection and

deployment of legacy system components on cloud servers was basically a mapping between

Microsoft-based legacy components into their counterparts in Microsoft Azure cloud

platforms. In TOAS, the legacy components were classified into two logical groups of

platforms on the basis of similar functional behaviours. In SpringTrader, those components

that provided financial and market functionalities/data were selected for the migration

purpose. These are an instance of Design Cloud Solution defined in the Design phase of the

metamodel.

Migration scenarios were performed very differently and therefore they were not same in the

instantiation of the metamodel constructs. Except for InformIT, in both TOAS and

SpringTrader scenarios activities related to handling incompatibility issues are performed. In

TOAS case, developers implemented run-time adaptors to hide incompatibilities of message

formats and API's support between the legacy and TOAS platform. Comparably, in

SpringTrader case, developers implemented wrappers to separate incompatibilities between

micro service and the legacy system. These techniques are subsumed under the construct

Develop Integrators defined in the Enable phase of the metamodel. Additionally, unlike the

instantiation occurrence of the construct Choose Cloud Provider in the scenario InformIT

where developers decided to use Windows Azure cloud platform due to their experience with

Microsoft-based programming platforms, the target cloud platform in both scenario TOAS

and SpringTrader was a pre-chosen private cloud platform and therefore there was no need

for the instantiation of the construct Choose Cloud Provider.

Furthermore, as for DP3, the case studies confirmed some relationships between the

constructs defined in the metamodel. With respect to DP3, Error! Reference source not

found. shows the list of relationships among the metamodel’s constructs that were

instantiated in the cases. As shown in Error! Reference source not found. in each case

reviewed, only a slice of the metamodel was required to instantiate to represent relationships.

Error! Reference source not found. shows the list of relationships that were identified

during the case analysis.

The second and third case studies did not lead any refinements to the metamodel and all their

constructs were producible using the metamodel constructs. As we progress through the case

analysis, the coverage of the metamodel on enacted process models is a strong indicator of

the metamodel adherence to DP1 and DP3. Nevertheless, the metamodel adherence to DP1

and DP3 cannot be statistically generalized based on the results of case analysis and hence

there is a possibility of extending the metamodel to new constructs or relationships if more

case studies are performed. This will be discussed further in this paper.

23

Table 3 Support of constructs in the migration scenarios by the metamodel

Metamod

el

Construct

InformaIT TOAS SpringTrader

Recover

Legacy

Application

Knowledge

A distributed deployment model

of DC was identified. DC

included five components namely

frontend web, application,

backend engine, distributed

cache, database, and v) shared

file store. InformaIT rents several

virtual private servers. However,

the servers could not be scaled

dynamically and they became

underutilized most of the time.

The legacy system

architecture recovered and

documented in order to

identify its hardware

requirements, running

components on middle

wares and servers, their

settings and computational

requirements. In addition,

legacy dependencies,

features such as hardware

requirements, running

components on middle

wares and servers, their

settings and computational

requirements were

identified.

It was found that the legacy

system architecture was

fairly simple with a front

end that includes the Web

layer talking to a set of

HTTP/JSON-based services

where stock quotes and

portfolios could be viewed,

and stock trade orders may

be submitted, and a back end

that fulfils orders. The

communication between the

front and back ends was

asynchronous with the front

end delivering orders to a

message queue and the back

end consuming from that

queue. Both the front end

services and the back end

also access a shared

relational database.

Choose

Cloud

Provider

Three existing public cloud

platforms namely Amazon Web

Services, Google App Engine,

and Microsoft Azure compared

on the basis of required cost for

changing in DC and architecture

quality. Standard rate of cloud

platform alternatives such as

price for computation, virtual

network, storage, content

delivery network, caching,

service bus, data transfer, and

access control were identified

and analysed. Windows Azure

was chosen as it needed less

configuration effort, faster

deployment model, less training

effort.

Not instantiated (pre-chosen

private cloud, i.e. TOAS

platform)

Not instantiated (pre-chosen

private cloud, i.e. Pivotal

Cloud Foundry)

Design

Cloud

Solution

Microsoft-based DC’s

components (e.g. database) were

mapped to their counterpart in

Microsoft Azure platform and

accordingly modified to Azure

cloud services.

The legacy components

were classified on the basis

of their similar functional

behaviours into two logical

groups of platforms.

Those components that

provided financial and

market functionalities/data

were selected for the

migration purpose. Also,

micro service architecture

was used to distribute legacy

components in Cloud

Foundry.

Identify

Incompatibil

ities

There were some

incompatibilities between current

technologies used in DC and

legacy and Microsoft Azure such

as different versioning between

platforms, APIs, and session

management.

Legacy components were

based on the technologies

belonging to middle of 2000

and constitute a lot of legacy

codes. It was identified that

are different versioning in

legacy APIs and TOAS.

As SpringTrader was written

for JDK6 and Spring 3 and

the current version of Cloud

Foundry PaaS was JDK8

and Spring 4, there were

some incompatibilities in the

libraries of these two

environments. These include

24

the bytecode manipulation

used by the annotation

processing, and the use of

some obsolete JSON

libraries. To resolve

incompatibilities, developers

upgraded the application’s

libraries.

Decouple

Application

Parts

The legacy was needed to be

portable across on premise and

cloud platform, it was decided to

separate the business logic and

data layer of DC. Decoupling

also facilitated using on premise

file system and Azure Storage

depending on the chosen

deployment environment.

Loose coupling was

performed to facilitate

component scaling up/down

and fault management.

Decoupling was applied by

replacing all remote method

invocation (RMI) based

communications in the

legacy with XML-based

service in TOAS cloud.

Micro-service architecture

design was used to decouple

legacy components. In

addition, a service discovery

mechanism was

implemented to enable the

legacy system and

developers to locate micro

services by name at a known

catalogue endpoint and look

them up dynamically at

runtime.

Adapt Data

DC used a Microsoft SQL Server

database. It was replaced with

SQL Azure. In most cases

switching to SQL Azure was not

a big task but it was required to

update connection setting to the

new database.

Not instantiated. Different types of cloud

database solutions were used

in this project such as

MySQL, MongoDB, and

relational SQL database. In

order to address

incompatibilities between

these cloud services, the

notion of boundary context

was used in the sense that

transition data were packed

and unpacked during

executing transactions.

Develop

Integrators

Not instantiated. Different kinds of run time

adaptors were developed to

hide incompatibilities of

message formats and API's

support between the legacy

and TOAS platform.

Warpers were implemented

to hide incompatibilities

between micro service and

the legacy system.

Refactor

Codes

Not instantiated. Not instantiated. Quote simulation

functionality was refactored

from the SpringTrader

legacy in order to be

exposed as a new micro

service, i.e. Quote Web-

Service. It was a simple

service that used the public

Yahoo Finance APIs to

provide real-time market

data. Such refactoring freed

the developers to choose any

technologies that could

make sense on basis of

requirements regardless of

ripple effect in the existing

legacy codes. To refactor the

legacy code some steps such

as locate the code, identify a

service interface, use the

proxy pattern, create an

25

implementation of the

interface, and point the

monolith to the new service

were performed.

Re-

configure

Network

Not instantiated. Firewall rules and

subsequently application

endpoints were

reconfigured.

Firewall configuration was a

burdening task and included

finding, setting up, testing,

and maintaining the required

firewall rules.

Not instantiated.

Table 4 instantiations of metamodel relationships in the scenarios

Relationship

Name
Construct 1 Construct 2

Migration scenario

InformaIT TOAS SpringTrader

Uses Design Cloud

Solution

Analyse Migration

Requirements

Not

instantiated
√

Not

instantiated

Uses Design Cloud

Solution

Identify

Incompatibilities
√ √ √

Uses Design Cloud

Solution

Choose Cloud Provider
√ √ √

Uses
Refactor Codes

Identify

Incompatibilities
√ - √

Uses Design Cloud

Solution

Recover Legacy

Application Knowledge

Not

instantiated

Not

instantiated
√

Uses
Refactor Codes

Design Cloud Solution
√

Not

instantiated
√

Uses Migrate Database Refactor Codes √ - -
Uses Test Application Design Cloud Solution √ √

Follows Plan Migration Design Phase √ √ √

Follows Design Phase Enable Phase √ √ √

Follows Choose Cloud

Provider

Identify

Incompatibilities
√ √ √

Evaluation

kkkk

Step 1. Domain experts feedback
The metamodel was qualitatively examined by a panel of four domain experts regarding DP1,

DP2, and DP3. The experts are denoted by E1, E2, E3, and E4 in this study. The overall

experts’ feedback was promising and valuable. The list of questionnaire form and details of

the feedback from the experts are available in the Supplementary document Appendix G and

H, respectively. The usefulness of the metamodel was stated by the words such as “education

and high-level guidance” (E1), “good communication vehicle” and “more comprehensive list

of concerns” (E2). E2 stated that “the model is clearly valuable in conveying the important

concerns of a migration and how they are related. The detailed semantics help to clearly

understand dependencies and possibly resulting decisions and trade-offs to be considered”. A

similar opinion was expressed by E3. He said “this model can make a good impact to

increase the confidence of success factor of the migration process and decrease some

uncertainty. Also, this model can be used as a checklist of success migration and this

reference model makes an overall picture of migration phase and clears the roadmap for

26

audiences to do the migration with less stress and concerns”. The advantage of the

metamodel against existing migration process models was stated by E4 “I have mostly used

the classical reengineering model for legacy migration. In comparison to the model by SEI,

the proposed model is more detailed in terms of underlying process and activities for

migration”. Experts provided some suggestions for the improvement of the metamodel in

relation to the design principles. The following is an explanation of the metamodel

refinements as a consequence of each expert’s feedback.

Regarding DP1, an area of concern raised by E2 was that he believed “determining licensing

issues of legacies should be made more visible in the metamodel as it can turn out to be a

major task in the migration process”. In cloud environments, multiple instances of a system,

which is encapsulated into a virtual machine, might be created by a server based on the

workload or rules are triggered to run resource scaling. This may cause an unintended

violation of the licensing agreement that has been made between the owner and user of the

system. The above comment by E2’s has been partially covered in the definition of the

construct Analyse Migration Cost in the initial metamodel. However, it has not been

considered as an individual construct in the metamodel. Utilising the knowledge source

prepared in the phase one of design science process, a new construct named Resolve

Licensing Issues as a special construct was added in Design Phase of the metamodel to

explicitly represent this construct (Figure 2). It is defined as follow: Define and monitor a

pay-as-you-go licensing model to handle unintended license agreement violations due to

automatic scaling.

E3 explained that the metamodel lacks a construct called “roll-back: I have observed that

migration process model should contain a construct to show rollback for the migration

process”. To address this concern, the metamodel was refined by extending the construct

Define Plan to Define Roll-Back Plan and defining a new relationship in the metamodel

(Figure 2). A definition for this construct regarding the knowledge source was decided as

“Define roll-back, as a B plan, to an in-house version of the legacy application in the case of

occurrence of any significant risk or new application fails during the migration process. This

reduces the risk and exposure to the business”.

The experts provided some comments related to DP2. From E2’s point of view, the notations

and visualisation used to represent the metamodel were found unclear: “UML is not used by

all stakeholders”. Likewise, E4 mentioned “a unified high-level block diagram for the

reference model (unifying all those three different phases) must be presented for better

illustration or reflection of the model”. As a responded to the above comment, a preliminary

version of the metamodel was made using simple block diagrams. However, such a

representation could be used simply for process documentation purposes. If the metamodel is

going to be an integral part of model-driven development and OMG metamodeling

framework (Atkinson and Kuhne 2003), a semi-formal representation of the metamodel

becomes important when the migration scale is large. In this spirit, UML is a de-facto

standard for the conceptual representation of a particular domain in terms of organising

constructs, their relationships, and decidable reasoning. Furthermore, UML is used only to

represent the metamodel for the purpose of illustration and its graphical representation is

presented later in the prototype system (next section). With respect to DP3, there was no

major comment made by the experts.

Step 2. Prototype System
In this step, a prototype system of the refined metamodel from the previous step was

implemented in order to appraise the metamodel efficacy with respect to the design

principles. Through this prototype it was also possible to examine the adherence of the

27

metamodel to DP4, i.e. creating situation method for a given cloud migration scenario

through instantiation, reusing, and configuration of the generic constructing in the

metamodel. The prototype was built on the guidelines proposed in (Ralyté, Deneckère et al.

2003) for the situational method engineering approach. The prototype comprises two

components: (i) a repository which stored the metamodel constructs, their definitions,

relationships among them, and relation to migration types and (ii) a generic three-step

procedure for the metamodel instantiation and customisation. The input to the procedure are

parameters of a migration scenario mainly selected cloud service delivery model (migration

types) and migration phases such as Plan, Define, and Enable. The sourced input parameters,

provided by a method engineer, are used to select relevant constructs of the metamodel which

are stored and retrieve from the system repository.

Figure 4 choosing a migration type for a target method

Once the initial method is created, the system shows constructs which are mandatory,

situational, or unnecessary to be carried out in the method (the fourth form in Figure 6).

Figure 7 shows a snapshot of a created sample method. The method engineer can browse

through the method, which contains a set of relevant constructs and their definitions reused

from the metamodel. The graphical user interface in Figure 7 has three main sections. The

upper part contains the method name (in this fictitious example

LegacyMigrationtoAmazonEC2), the migration type, and a general description of the

method. The bottom-left part shows the constructs of the method reused from the metamodel.

The method is rendered using a Microsoft .Net Tree View Control which is a common

control to visualise complex data structures. The bottom-right part contains the information

about a construct once the method engineer clicks on it in the tree view. Different icons are

used in the prototype system to illustrate the classification of a method’s constructs such as

phases, tasks, and work-products.

Different functions may be performed to accommodate migration method needs such as (i)

adding new constructs to the created method in the cases where the pre-existing constructs in

28

the in the repository are insufficient for the representation of a new particular construct for a

given migration scenario (ii) extending existing constructs with new sub-constructs through

the notion of inheritance in object-oriented software design, (iii) adding alternative

techniques to guide developer in how to operationalise the abstract constructs, and (iv)

defining a specific flow among constructs in the method to show how they are sequenced.

Figure 5 a created method for enable phase of migration type

The last optional step is to export the method as an XML document (Mendling and Nüttgens

2006). Using the XML document in the prototype facilitates computer-readability and

interoperability of produced methods across modelling tools. Figure 8 shows the conceptual

structure and corresponding XML representation of a created method. Later on, developers

can import this base method, reuse, and tailor it for a given migration scenario. The

developers can specialise the method through new constructs or operationalisation techniques

using complementing method or previous cloud migration experience.

29

Figure 6 an excerpt of a created method described in an XML format

The prototype was examined by two experts. They worked with prototype, ran three-step

tailoring procedure, and expressed their opinions about the suitability of the metamodel

regarding DP1, DP2, DP3, and DP4. Two cloud computing experts, denoted by E5 and E6,

one project manager and one technical lead were recruited and asked to provide feedback on

the prototype. They have had experience in moving geosocial networking and finance

applications to cloud environments, respectively. Each expert was asked to nominate one

cloud migration scenario in which they already had actively participated.

The overall feedback from the experts was positive along with some suggestions for further

improvement of the metamodel. Both experts primarily mentioned that providing a rich

repository of constructs and flexibility for extending them with new ones are excellent

features of the metamodel. They believed the metamodel will have a positive effect on the

quality of the cloud migration process. E6 highlighted that the framework is helpful for

practitioners who may not be familiar with the cloud migration concepts. They also

mentioned that the metamodel mitigates missing constructs that are important for

consideration during the migration process. Furthermore, E6 stated that the metamodel’s

ability in moving from text-based to a standard representation of methods facilitates method

integration with other process modelling tools. Regarding the adherence to the DP1, experts

alike agreed that the metamodel covers major constructs relevant to the cloud migration

process.

The experts provided some suggestions for improving the user interface design of the

prototype. For example, E5 suggested adding a drag and drop feature for moving constructs

among phases. Both experts acknowledged the clarity of names and definitions (DP2) and

classification of constructs based on names and the migration types (DP3). The experts also

provided positive feedback about DP4 and confirm the suitability of the metamodel

tailorability for a given scenario; however, they suggested adding pre-built reusable templates

relevant to particular cloud migration domains such as mobile computing, finance, or

insurance in order to create immediate methods through the process of method tailoring for

30

specific domains. Additionally, the experts uttered improving the prototype to allow multiple

users concurrently work on the method under enactment and maintenance, and if a user

changes the method content, the framework can integrate this change into new a version of

the method. E6 suggested adding warning messages when users define an illogical sequence

among activities. However, adhering to some of the above suggestions are trivial to the main

objectives of the current research and constitute as the future work.

Discussion

Implications for research

Aimed at alleviating the problems afflicting the process aspect of the cloud migration, this

research contributes to the cloud computing literature in several ways. Firstly, researchers

have attempted to develop intellectual models to demystify multifaceted yet ambiguous

nature of cloud computing technology from perspectives architecture of cloud computing

(Hamdaqa and Tahvildari 2012; Zimmermann, Pretz et al. 2013), green cloud computing

(Procaccianti, Lago et al. 2014), quality aspects of cloud services (Nunez, Fernandez-Gago et

al. 2013), eases code refactoring (Ardagna, Nitto et al. 2012), reducing risk and compliance

efforts for cloud computing (Martens and Teuteberg 2011; Keller and König 2014).

Compared to these studies and in response to call made by previous research for engaging

scholar to enhance the methodological aspect of cloud migration (Jamshidi, Ahmad et al.

2013; Fahmideh, Daneshgar et al. 2016), a key theoretical contribution of this research is to

shed light into the cloud adoption from the process perspective by developing an overarching,

yet customizable, metamodel of moving legacy systems to cloud platforms. The proposed

metamodel hides away the multifaceted and dispersed area of cloud computing migration

from operationalisation details that are only relevant to the domain-specific cloud computing

adoption by providing an abstract representation of core constructs in the domain. It

facilitates the understanding of cloud migration process for both IS researchers and

practitioners since it represents a single and unified model instead of looking for such a

model in the existing sporadic and fragmented literature. It can also educate newcomers to

the cloud computing field to envision the way through which organisation can move their

legacy systems to cloud platforms.

Secondly, the proposed metamodel can be viewed as a knowledge sharing platform to assist

consistent communication between scholars since they can use the metamodel as a reference

process model, allowing effective knowledge transfer across the community, which has been

the concern of the current literature in the field (Hamdaqa and Tahvildari 2012). The

metamodel will fertile theoretical grounding for future research and is as a potential candidate

for addressing the need for future cloud standardization as raised by (Dillon, Wu et al. 2010;

Ortiz Jr 2011).

Thirdly, previous research largely assumes that the cloud migration process is monomorphic,

i.e. a single migration method is enough. When the methods reviewed in section Related

Work are viewed collectively, they define a set of fixed activities for reengineering and

integrating existing legacy systems with cloud services, though they may differ in their scope,

operationalization details, and application domain. While there are merits to adopting these

methods, some research has started to argue that cloud migration methods need to be tailored

prior to their enactment based on a chosen cloud platform, migration type (e.g. IaaS, PaaS, or

SaaS), reusability and quality of legacy system source code, system scalability and security

requirements (Mohagheghi, Berre et al. 2010; Menychtas, Santzaridou et al. 2013). For

instance, a method might be a better fit for process-intensive and distributed workloads from

legacy data centers to public IaaS whilst another method maybe an adequate option for

31

making a legacy system SaaS-enabled. While such characteristics circumscribe the method

suitability of a method for a given scenario, this research integrated extant migration

solutions into a generic metamodel, supporting a pluralist view of the cloud migration process

and yet customizable and extensible.

Implications for practice

Pertaining to practical values of this research IS practitioners may benefits from the results of

this research in the following ways. Previous research (Yang and Tate 2012; Fahmideh 2016)

state an urgent demand for model explaining cloud computing technologies in simple and

friendly language since existing migration methods mostly focus on specific technical details

of utilization of cloud services but do not offer practical knowledge to IS executives who may

find difficult to fully comprehend, digest, synthesize, and put this voluminous and

unstructured cloud migration body of knowledge for a specific migration purpose. A better

understanding and articulation of the cloud migration process can facilitate identification of

appropriate activities, anticipation, cost, and expected outcomes of a migration exercise. In

response to this issue, the current research extends the literature by proposing a metamodel

acting as an abstract view of cloud migration domain and flexible for extension and helping

IS executives to gain the knowledge of what important business and technical activities that

should be incorporated during moving legacy systems to cloud platforms.

Secondly, an IT-based organisation may have its own arbitrary off-the-shelf or in-house

method for a technology shift but it does not applicable for cloud computing migration. An

important application of results in this research is that metamodel syntheses commonly

encountered constructs to provide a rich source that can be integrated with existing methods,

as an extension, to enhance their capability to support cloud migration.

Thirdly, as is the case in any IS projects, method designers need to select appropriate

methods that fit characteristics of a given cloud migration scenario. This effort cannot be

facilitated unless by adopting a suitable tool to analyse and evaluate existing methods in

terms of their features, shortcomings, strengths, similarities, and differences. According to

Siau and Rossi (Siau and Rossi 1998), one effective way of comparing family-related

methods, herein cloud migration process, is to use metamodels as a basis for analysis because

they take place at one level of abstraction and capture information about methods. As

mentioned earlier, cloud migration literature points to a dozen of methods for cloud adoption

such as Chauhan’s Method (Chauhan and Babar 2012), REMICS (Mohagheghi 2011), Tran’s

Method (Tran, Keung et al. 2011), Cloud-RMM (Jamshidi, Ahmad et al. 2013), Strauch’s

Method (S. Strauch 2014), Zhang’s Methodology (Zhang, Chung et al. 2004), Oracle Method

(Laszewski and Nauduri 2011), ARTIST Method (Menychtas, Santzaridou et al. 2013),

Amazon Method (Varia 2010), Legacy-to-Cloud Migration Horseshoe (Ahmad and Babar

2014), IVI Cloud Computing Life Cycle (Conway and Curry 2013), and MILAS (Huru

2009). As the applicability of these methods is limited by characteristics of a migration

scenario, project managers can use the list of constructs in the metamodel as a checklist to

examine and select an appropriate existing method to match a given migration scenario.

And finally, the metamodel is a useful source used by project managers to estimate required

development effort to make legacy systems cloud-enabled. The metamodel constructs

provides heuristics that facilitates analysing required migration effort and, accordingly, it can

be used as an input for the studies by (Tran, Keung et al. 2011) and (Quang Hieu and Asal

2012) suggesting a migration cost estimation based on development tasks are required to be

performed.

32

Limitations of the study
The current study has three limitations. Firstly, a potential weakness of the case studies is

their specificity to a context which limits generalisability of the results to other applications

and contexts (Benbasat, Goldstein et al. 1987). Although the applicability of metamodel was

illustrated in three idiosyncratic cases with different characteristics, the complete satisfaction

of the DP1 and DP3 can still be subject to some arguments. The metamodel is only a

representative of the constructs of the three case studies and there is a possibility of being

extended by introducing new constructs or relationships if more case studies are performed.

In this regard, this research acknowledges that to increase the generalisability of the

metamodel as a domain language for cloud computing adoption, it should be appraised with

more cases in a variety of cloud migration contexts. By the word context, this research

implies different industries, migration scale (partial or full), and organisation size (.i.e. small

start-up, medium-sized organisation, and big organisations) which help identifying possible

improvements of the framework components.

Secondly, the current study acknowledges the limitation of retrospective studies (Hess 2004).

Since it was not possible to have a detailed record of each activity of migration scenario, this

research relied on the accuracy of the written documents about the cloud migration scenarios,

which might not have documented some valuable constructs that were related to the cloud

migration. Hence, examining the adherence of the metamodel to the design principles has

been subjected to the quality of available documents of the migration scenarios. There is a

possibility of missing some constructs that could be added to the metamodel to increase its

domain coverage. This threatens the examining of the metamodel adherence to DP1 and DP3.

To alleviate this issue, we conducted follow up communications with interviewees to confirm

the validity of the secondary documents of the case studies and provide any missing

information.

Thirdly, the refinements to the metamodel have been based on the opinions from six experts

which might have been biased and confined by their own experience and knowledge in

relation to the cloud migration. Therefore, the satisfaction of design principles might have

been affected by this threat. Receiving feedback from a larger number of experts in the cloud

migration area in future will reduce this threat. Finally, although the steps for the metamodel

tailorability was showed through the prototype system, there is no claim regarding adherence

to the DP4 as it can be extended with new steps as briefly pointed out in the next section.

Conclusion and future research
This study was justified with the lack of an integrated and abstract domain language for

efficient creation, configuration, standardisation and sharing knowledge of cloud migration

processes that cater to specific cloud migration scenarios. In addressing this gap in extant

literature, a generic, domain-independent, and tunable metamodel was developed and

evaluated that constitutes reusable domain constructs incorporated into the cloud migration

process. It was performed by case studies as the context of data collection, domain experts as

source of data, and a prototype system as the research tool. The identified limitations of the

current study lead to several directions for further extension of this work. Some of future

studies are described in the following.

One is to augment the metamodel to encompass new constructs relevant to post-migration

and during the system maintenance in the cloud, for example continuous integration and

delivery. Similarly, the metamodel can be extended to other particular domains of cloud

computing. An example of that is mobile cloud systems which is a growing area of the cloud

computing field (Giurgiu, Riva et al. 2009; Dinh, Lee et al. 2013). Mobile cloud applications

33

are run on mobile devices, utilise cloud services, and characterised with challenges such as

battery life, bandwidth, heterogeneity, and privacy in mobile environments. The metamodel

can be extended with constructs related to the development of such system. The UML

formalism used in this study for representation of the metamodel facilitates inclusion and

representation of new further constructs in a structured way.

Secondly, depending on the characteristics of a cloud migration scenario, the creation of

situational cloud migration methods may involve other factors that have not been covered by

the current version of the metamodel and prototype system. Factors such as code refactoring

cost, the choice of a target cloud platform, the pricing model of cloud providers, the

capability of the development team, and time to market which may influence the steps of

method tailoring procedure. In addition, a method tailoring effort may involve making trade-

offs among different factors or cloud migration goals which may be in contradiction or have

dependencies with each other. The trade-off analysis of alternative migration methods can be

performed on the basis of the results of an aggregated analysis of methods. As a further work,

one can utilise the idea of goal-driven situational method tailoring suggested in (Cesar and

Paolo 2009; Karlsson and Ågerfalk 2011) as a baseline in order to strengthen the metamodel

tailorability for addressing such complex situations during a tailoring effort.

Given the inclination of IT-based organizations towards empowering their legacy systems

with cloud computing services, this study strives to facilitate consistent knowledge sharing

and exchange about cloud migration processes as the proposed metamodel generalizes

common domain constructs that are typically incorporated into a cloud migration process. It

also enables method engineers to create and share new customised cloud migration methods

on the basis of selecting constructs from the metamodel and characteristics of a migration

scenario. We expect that this research will motivate other researchers to further explore new

cloud migration approaches which systematically simplify the cloud migration process.

References
Ahmad, A. and M. A. Babar (2014). A framework for architecture-driven migration of legacy systems

to cloud-enabled software. Proceedings of the WICSA 2014 Companion Volume. Sydney,
Australia, ACM: 1-8.

Ambler, S. W. (2005). The Elements of UML (TM) 2.0 Style, Cambridge University Press.
Antkiewicz, M., K. Czarnecki, et al. (2009). "Engineering of framework-specific modeling languages."

IEEE Transactions on Software Engineering 35(6): 795-824.
Antkiewicz, M., K. Czarnecki, et al. (2009). "Engineering of framework-specific modeling languages."

Software Engineering, IEEE Transactions on 35(6): 795-824.
Ardagna, D., E. Di Nitto, et al. (2012). Modaclouds: A model-driven approach for the design and

execution of applications on multiple clouds. Modeling in Software Engineering (MISE), 2012
ICSE Workshop on, IEEE.

Ardagna, D., E. D. Nitto, et al. (2012). MODAClouds: a model-driven approach for the design and
execution of applications on multiple clouds. Proceedings of the 4th International Workshop
on Modeling in Software Engineering. Zurich, Switzerland, IEEE Press: 50-56.

Armbrust, M., A. Fox, et al. (2010). "A view of cloud computing." Communications of the ACM 53(4):
50-58.

Atkinson, C. and T. Kuhne (2003). "Model-driven development: a metamodeling foundation."
Software, IEEE 20(5): 36-41.

Bain, A., J. Mitchell, et al. (2011). A domain-specific language for computing on encrypted data
(invited talk). LIPIcs-Leibniz International Proceedings in Informatics, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

34

Benbasat, I., D. K. Goldstein, et al. (1987). "The Case Research Strategy in Studies of Information
Systems." MIS quarterly 11(3): 369-386.

Beydoun, G., G. Low, et al. (2009). "FAML: a generic metamodel for MAS development." Software
Engineering, IEEE Transactions on 35(6): 841-863.

Brandic, I., S. Dustdar, et al. (2010). Compliant cloud computing (c3): Architecture and language
support for user-driven compliance management in clouds. Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, IEEE.

Cesar, G. P. and G. Paolo (2009). "Method construction by goal analysis."
Chauhan, M. A. and M. A. Babar (2012). Towards Process Support for Migrating Applications to

Cloud Computing. Cloud and Service Computing (CSC), 2012 International Conference on.
Cimato, S., E. Damiani, et al. (2013). Towards the certification of cloud services. Services (SERVICES),

203 IEEE Ninth World Congress on, IEEE.
Conway, G. and E. Curry (2013). The IVI Cloud Computing Life Cycle. Cloud Computing and Services

Science, Springer: 183-199.
Cuadrado, J. S. and J. G. Molina (2009). "A model-based approach to families of embedded domain-

specific languages." IEEE Transactions on Software Engineering 35(6): 825-840.
Dillon, T., C. Wu, et al. (2010). Cloud computing: Issues and challenges. Advanced Information

Networking and Applications (AINA), 2010 24th IEEE International Conference on, Ieee.
Dinh, H. T., C. Lee, et al. (2013). "A survey of mobile cloud computing: architecture, applications, and

approaches." Wireless communications and mobile computing 13(18): 1587-1611.
Dougherty, B., J. White, et al. (2012). "Model-driven auto-scaling of green cloud computing

infrastructure." Future Generation Computer Systems 28(2): 371-378.
Fahmideh, M., F. Daneshgar, et al. (2016). "Cloud migration process—A survey, evaluation

framework, and open challenges." Journal of Systems and Software 120: 31-69.
Fahmideh, M., F. Daneshgar, et al. (2016). "Cloud Computing Adoption: An Effective Tailoring

Approach." The 27th Australasian Conference on Information Systems (ACIS) In press.
Fahmideh, M., Low Graham, Ghassan Beydoun (2016). "Conceptualising Cloud Migration Process."

Twenty-Fourth European Conference on Information Systems (ECIS), İstanbul,Turkey, 2016
1: 0.

Fehling, C., F. Leymann, et al. (2012). "Pattern-based development and management of cloud
applications." Future Internet 4(1): 110-141.

Fehling, C. and R. Retter (2011). Cloud computing patterns, URL: http://cloudcomputingpatterns.
org.

Giurgiu, I., O. Riva, et al. (2009). Calling the cloud: enabling mobile phones as interfaces to cloud
applications. Middleware 2009, Springer: 83-102.

Gonzalez-Perez, C. and B. Henderson-Sellers (2008). Metamodelling for software engineering, Wiley
Publishing.

Gregor, S. and A. R. Hevner (2013). "Positioning and presenting design science research for
maximum impact." MIS Quarterly 37(2): 337-356.

Hamdaqa, M., T. Livogiannis, et al. (2011). A Reference Model for Developing Cloud Applications.
CLOSER, Citeseer.

Hamdaqa, M., Livogiannis, T., Tahvildari, L. (2011). A Reference Model for Developing Cloud
Applications, In: Proceedings of CLOSER 2011.

Hamdaqa, M. and L. Tahvildari (2012). "Cloud computing uncovered: a research landscape."
Advances in Computers 86: 41-85.

Harmsen, A. F., J. Brinkkemper, et al. (1994). Situational method engineering for information system
project approaches, University of Twente, Department of Computer Science.

Hess, D. R. (2004). "Retrospective studies and chart reviews." Respiratory care 49(10): 1171-1174.
Huru, H. A. (2009). "MILAS: ModernIzing Legtacy Applications towards Service Oriented Architecture

(SOA) and Software as a Service (SaaS)."

http://cloudcomputingpatterns/

35

Isard, M. and Y. Yu (2009). Distributed data-parallel computing using a high-level programming
language. Proceedings of the 2009 ACM SIGMOD International Conference on Management
of data, ACM.

Jamshidi, P., A. Ahmad, et al. (2013). "Cloud Migration Research: A Systematic Review." Cloud
Computing, IEEE Transactions on PP(99): 1-1.

Jonkers, H., M. Stroucken, et al. (2006). Bootstrapping Domain-Specific Model-Driven Software
Development within Philips. 6th OOPSLA Workshop on Domain Specific Modeling (DSM
2006), Citeseer.

Karlsson, F. and P. J. Ågerfalk (2011). "Towards Structured Flexibility in Information Systems
Development: Devising." Theoretical and Practical Advances in Information Systems
Development: Emerging Trends and Approaches: Emerging Trends and Approaches: 214.

Karlsson, F. and P. J. Ågerfalk (2012). "MC Sandbox: Devising a tool for method-user-centered
method configuration." Information and software technology 54(5): 501-516.

Keller, R. and C. König (2014). "A Reference Model to Support Risk Identification in Cloud Networks."
Kelly, S. and R. Pohjonen (2009). "Worst practices for domain-specific modeling." Software, IEEE

26(4): 22-29.
Kitchenham, B., O. Pearl Brereton, et al. (2009). "Systematic literature reviews in software

engineering – A systematic literature review." Information and software technology 51(1): 7-
15.

Kopp, O., T. Binz, et al. (2012). BPMN4TOSCA: A domain-specific language to model management
plans for composite applications, Springer.

La, H. J. and S. D. Kim (2009). A systematic process for developing high quality saas cloud services.
Cloud Computing, Springer: 278-289.

Laszewski, T. and P. Nauduri (2011). Migrating to the Cloud: Oracle Client/Server Modernization,
Elsevier.

Leymann, F. (2011). "Cloud computing." it-Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik 53(4): 163-164.

Lindland, O. I., G. Sindre, et al. (1994). "Understanding quality in conceptual modeling." Software,
IEEE 11(2): 42-49.

Liu, F., J. Tong, et al. (2011). "NIST cloud computing reference architecture." NIST special publication
500: 292.

Loutas, N., E. Kamateri, et al. (2011). Cloud computing interoperability: the state of play. Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference
on, IEEE.

Martens, B. and F. Teuteberg (2011). "Risk and compliance management for cloud computing
services: Designing a reference model."

Mendling, J. and M. Nüttgens (2006). "XML interchange formats for business process management."
Information Systems and E-Business Management 4(3): 217-220.

Menychtas, A., C. Santzaridou, et al. (2013). ARTIST Methodology and Framework: A novel approach
for the migration of legacy software on the Cloud. Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), 2013 15th International Symposium on, IEEE.

MLSAC (2016).
https://www.dropbox.com/sh/u1im5321t8hdjbq/AAA5p6fWGfbedTPresVfCfNBa?dl=0,
Prentice Hall PTR.

Mohagheghi, P. (2011). Software Engineering Challenges for Migration to the Service Cloud
Paradigm: Ongoing Work in the REMICS Project. Services (SERVICES), 2011 IEEE World
Congress on.

Mohagheghi, P., A. Berre, et al. (2010). REMICS- REuse and Migration of Legacy Applications to
Interoperable Cloud Services. Towards a Service-Based Internet. E. Nitto and R. Yahyapour,
Springer Berlin Heidelberg. 6481: 195-196.

http://www.dropbox.com/sh/u1im5321t8hdjbq/AAA5p6fWGfbedTPresVfCfNBa?dl=0

36

Moody, D. L. (1998). Metrics for evaluating the quality of entity relationship models. Conceptual
Modeling–ER’98, Springer: 211-225.

Moody, D. L. (2005). "Theoretical and practical issues in evaluating the quality of conceptual models:
current state and future directions." Data & Knowledge Engineering 55(3): 243-276.

Nowak, A., U. Breitenbücher, et al. (2014). Automating Green Patterns to Compensate CO2
Emissions of Cloud-based Business Processes. ADVCOMP 2014, The Eighth International
Conference on Advanced Engineering Computing and Applications in Sciences.

Nunez, D., C. Fernandez-Gago, et al. (2013). A metamodel for measuring accountability attributes in
the cloud. Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, IEEE.

Ortiz Jr, S. (2011). "The problem with cloud-computing standardization." Computer 44(7): 13-16.
Othman, S. H. and G. Beydoun (2013). "Model-driven disaster management." Information &

Management 50(5): 218-228.
Othman, S. H., G. Beydoun, et al. (2014). "Development and validation of a Disaster Management

Metamodel (DMM)." Information Processing & Management 50(2): 235-271.
Paige, R. F., P. J. Brooke, et al. (2007). "Metamodel-based model conformance and multiview

consistency checking." ACM Transactions on Software Engineering and Methodology
(TOSEM) 16(3): 11.

Peffers, K., T. Tuunanen, et al. (2008). "A design science research methodology for information
systems research." Journal of management information systems 24(3): 45-77.

Procaccianti, G., P. Lago, et al. (2014). "Green Architectural Tactics for the Cloud."
Quang Hieu, V. and R. Asal (2012). Legacy Application Migration to the Cloud: Practicability and

Methodology. Services (SERVICES), 2012 IEEE Eighth World Congress on.
Rabetski, P. (2012). "Migration of an on-premise application to the cloud."
Ralyté, J., R. Deneckère, et al. (2003). Towards a Generic Model for Situational Method Engineering.

Advanced Information Systems Engineering. J. Eder and M. Missikoff, Springer Berlin
Heidelberg. 2681: 95-110.

Ranabahu, A. H., E. M. Maximilien, et al. (2011). A domain specific language for enterprise grade
cloud-mobile hybrid applications. Proceedings of the compilation of the co-located
workshops on DSM'11, TMC'11, AGERE!'11, AOOPES'11, NEAT'11, & VMIL'11, ACM.

Ried S, K. H. (2011). "Sizing the cloud—A BT futures report." Forrester Research, Inc., Cambridge,
MA.

Rossi, M. and S. Brinkkemper (1996). "Complexity metrics for systems development methods and
techniques." Information Systems 21(2): 209-227.

Rossi, M., B. Ramesh, et al. (2004). "Managing evolutionary method engineering by method
rationale." Journal of the Association for Information Systems 5(9): 356-391.

S. Strauch, V. A., D. Karastoyanova, F. Leymann (2014). "Migrating Enterprise Applications to the
Cloud: Methodology and Evaluation." International Journal of Big Data Intelligence.

Sargent, R. G. (2005). Verification and validation of simulation models. Proceedings of the 37th
conference on Winter simulation, Winter Simulation Conference.

Siau, K. and M. Rossi (1998). Evaluation of information modeling methods-a review. System Sciences,
1998., Proceedings of the Thirty-First Hawaii International Conference on, IEEE.

Sledziewski, K., B. Bordbar, et al. (2010). A DSL-based approach to software development and
deployment on cloud. Advanced Information Networking and Applications (AINA), 2010 24th
IEEE International Conference on, IEEE.

Stamper, R. (1996). "Signs, norms, and information systems." Signs at work. Walter de Gruyter,
Berlin: 349-397.

Tran, V., J. Keung, et al. (2011). Application migration to cloud: a taxonomy of critical factors.
Proceedings of the 2nd International Workshop on Software Engineering for Cloud
Computing, ACM.

UML, O. (2004). "2.0 Superstructure Specification." OMG, Needham.

37

Varia, J. (2010). "Migrating your existing applications to the aws cloud: A Phase-driven Approach to
Cloud Migration."

Weimer, M., T. Condie, et al. (2011). Machine learning in ScalOps, a higher order cloud computing
language. NIPS 2011 Workshop on parallel and large-scale machine learning (BigLearn).

Wettinger, J., M. Behrendt, et al. (2013). Integrating Configuration Management with Model-driven
Cloud Management based on TOSCA. CLOSER.

Yang, H. and M. Tate (2012). "A descriptive literature review and classification of cloud computing
research." Communications of the Association for Information systems 31(2): 35-60.

Z.Mahmood (2013). Cloud Computing Methods and Practical Approaches, Springer-Verlag London
64.

Zech, P., M. Felderer, et al. (2012). Cloud risk analysis by textual models. Proceedings of the 1st
International Workshop on Model-Driven Engineering for High Performance and CLoud
computing. Innsbruck, Austria, ACM: 1-6.

Zhang, J., J.-Y. Chung, et al. (2004). Migration to web services oriented architecture: a case study.
Proceedings of the 2004 ACM symposium on Applied computing, ACM.

Zhang, L.-J. and Q. Zhou (2009). CCOA: Cloud computing open architecture. Web Services, 2009.
ICWS 2009. IEEE International Conference on, Ieee.

Zimmermann, A., M. Pretz, et al. (2013). Towards Service-Oriented Enterprise Architectures for Big
Data Applications in the Cloud. Enterprise Distributed Object Computing Conference
Workshops (EDOCW), 2013 17th IEEE International, IEEE.

Zimmermann, O., C. Miksovic, et al. (2012). "Reference architecture, metamodel, and modeling
principles for architectural knowledge management in information technology services."
Journal of Systems and Software 85(9): 2014-2033.

