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A Generic and Tailorable Cloud Migration Process 

Model 

Abstract 

Cloud computing literature provides a variety of perspectives towards the migration process, each with a 

different focus and mostly adopting heterogeneous technical-centric terminologies. Little, if any, studies have 

focused on developing an integrated and abstract process models which captures core domain constructs 

relevant to the cloud migration. By applying the metamodeling theoretical foundation, this article develops a 

generic process metamodel, as a domain language, for cloud migration. The metamodel is evaluated and refined 

through a three step approach including three case studies, domain expert review, and prototype system test. 

This research benefits academics and practitioners alike by underpinning a substrate for constructing, 

standardising, maintaining, and sharing bespoke cloud migration processes that suit given migration scenarios. 
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Introduction 

Cloud computing technology brings many advantages to the IT-based organizations 

including: (i) providing wide ranges of services such as processing, data storage, and 

infrastructure which are universally accessible, can be acquired and released on the fly, and 

be paid for actual usage, (ii) reducing upgrading cost of IT infrastructure by shifting this 

responsibility from the organisation to the service provider, and (iii) allowing for on-demand 

resource elasticity based on computing needs (Armbrust, Fox et al. 2010). These benefits 

motivate organisations to enable their legacy systems to utilise cloud services. Accounted by 

(Ried S 2011), the global cloud computing market will likely to grow from $40.7 billion in 

2011 to $241 billion in 2020.  

A sheer volume of research has been proposed by both academia and industrial communities 

providing solutions for moving legacy systems to cloud environments (Fahmideh, Daneshgar 

et al. 2016). Some examples of well-known models, mainly originated from the software 

engineering literature, are Chauhan’s Method (Chauhan and Babar 2012), REMICS 

(Mohagheghi 2011), Tran’s Method (Tran, Keung et al. 2011), Cloud-RMM (Jamshidi, 

Ahmad et al. 2013), Strauch’s Method (S. Strauch 2014), Zhang’s Methodology (Zhang, 

Chung et al. 2004), Oracle Method (Laszewski and Nauduri 2011), ARTIST Method 

(Menychtas, Santzaridou et al. 2013), Amazon Method (Varia 2010), Legacy-to-Cloud 

Migration Horseshoe (Ahmad and Babar 2014), IVI Cloud Computing Life Cycle (Conway 

and Curry 2013), and MILAS (Huru 2009). Each narrows in focus and presents a different 

viewpoint of the same migration process. For instance, Tran’s method has a cost-oriented 

view defining a taxonomy of the migration activities and cost factors related to these 

activities (Tran, Keung et al. 2011). REMICS proposed by (Mohagheghi 2011) is an agile 

and model-driven approach to integrate legacies with cloud services. The method suggested 

by (Ahmad and Babar 2014) is an architecture-centric software evolution for the migration of 

legacies to the cloud. There is a logical link between the above process models as they all 

define the same collection of activities for planning, cloud service selection, re-engineering, 

testing, and deploying legacies to utilise cloud services, but from different viewpoints. 

Nevertheless, till now, these links have not been explicitly established and integrated.  

Additionally, experts in the cloud computing community who may come from different IT 

backgrounds use different terminologies and phrases to refer to same concepts. It is hard to 

find any two migration methods that adopt the same definition of migration process and 

associated activities. For example, the IVI Cloud Computing Life Cycle, Chauhan’s Method, 

and MILAS define an activity related to the selecting cloud platform. IVI Cloud Computing 

Life Cycle defines it “as this step will select the best supplier based on value, sustainability, 

and quality”; Chauhan’s Method define this activity as “identify a set of potential cloud 

computing platforms based on a project’s nature, data confidentiality and sensitivity 

requirements, budget constraints and long-term organisational objectives”; and MILAS (Huru 

2009) defines it as “selecting appropriate technology for the modernised system and 

technology that can run alongside and communicate with the legacy system”. IVI Cloud 

Computing Life Cycle and Chauhan’s method take into account some criteria for a cloud 

platform selection. However, IVI Cloud Computing Life Cycle’s definition emphasises the 

non-functional qualities of a cloud platform whereas Chanhan’s definition emphasises aspects 

of project constraints. On the other hand, MILAS’s definition takes into account the 

interoperability of legacy assets with the cloud services. The above definitions are similar in 

meaning and context, but they have been expressed by different terms. In other words, when 

they are viewed collectively, the common theme among all of these definitions is the notion 

of proper cloud platform/service selection. While such variety and having multiple and 
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disparate sources of cloud migration is useful, it impedes audience to comprehend, digest, 

and grasp an overarching view of the cloud migration process. Regardless of operational 

details of cloud migration, the one question remains which is how IS researcher and 

practitioners grasp an abstract and overarching view of what the cloud migration process 

entails under such chaotic universe of cloud? The absence of a platform-independent model 

of cloud migration introduces communication barriers and obstructs information exchange 

among participating developers and organisations in a cloud migration project (Hamdaqa and 

Tahvildari 2012; Zimmermann, Miksovic et al. 2012). In this spirit Hamdaqa et. al. mention: 

“there is a need to detach the cloud application development process from specific cloud 

platforms” (Hamdaqa, Livogiannis et al. 2011).  

Furthermore, while for some cloud migration scenarios one of the existing process models 

may be an appropriate fit, for many others a method engineer needs to combine concepts 

from two or more models to meet requirements of a given migration scenario. For example, a 

process model might be suitable for moving large and distributed workloads from legacy data 

centres to public IaaS whilst another process model might be best suited to reengineer 

legacies to serve as a SaaS. This essence is captured well by Mahmood (Z.Mahmood 2013) in 

his Book, p.64: “One solution can never fit all problems; likewise, there is a need of 

customised cloud for individual businesses and dynamically changed requirements of 

clients”. In situations like this, the method engineering is suggested as a way to construct 

customised methods by assembling reusable method fragments obtained from existing 

migration methods (Ralyté, Deneckère et al. 2003). 

While there are merits in adopting technical-centric existing process models, an integrated 

overarching view of cloud migration process comprises that can facilitate interoperability and 

knowledge sharing across the cloud community is still non extant in the available literature. 

Such model currently does not exist, and the current study can be regarded as a small step 

towards achieving this goal. The fact that each year a considerable number of research papers 

are published in the cloud computing field, each reporting different solutions, experience 

reports, and recommendations, itself is an evidence that the field has reached a maturity point 

where the development of one such generic reference model becomes mandatory. Prior 

research acknowledges that although variety of models for any given domain is profitable at 

the beginning of a research filed, a consensual picture of what the bunch of these models 

looks is eventually more efficacious (Harmsen, Brinkkemper et al. 1994; Rossi, Ramesh et al. 

2004; Beydoun, Low et al. 2009). According to this account, it is helpful if common concepts 

in the cloud migration process such as phases, activities, and work-products could be factored 

out into a generic and unified process model at a convenient abstraction level. Adequately 

crafted, it can present a complete vision of the cloud migration process which is independent 

of any cloud platform, fine-tuneable according to characteristics of a migration scenario, and 

facilitator for consistent communication and efficient knowledge sharing and exchange across 

cloud computing domain. Such a generic model that, unifies the access and describes the 

domain can facilitate design, representation, maintenance, and sharing various cloud 

migration processes. Methods that are instantiated from such a generic model are expected to 

describe the domain concepts needed to be performed by developers in any specific scenarios 

of legacy to cloud migration. 

In addressing the abovementioned issue, metamodels are suggested for achieving an 

integrated view of a domain of interest and to describe it (Atkinson and Kuhne 2003; 

Gonzalez-Perez and Henderson-Sellers 2008). Metamodels capture common concepts and 

their relationships describing a domain and the way it works. A metamodel provides a 

language infrastructure to freely describe a domain in a way that stakeholders can better 

understand the domain along with guidelines to specialize this language for a particular 
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context (Rossi and Brinkkemper 1996). Development of metamodels has been a common 

practice in various themes in information systems and software engineering domains. The 

significance of metamodels, as a way to abstract cloud computing concepts, has been a top 

priority in the cloud community (Leymann 2011; Loutas, Kamateri et al. 2011; Hamdaqa and 

Tahvildari 2012). This paper continues this track from the perspective of cloud migration 

process. Thus, the objective of this paper is to develop and evaluate a metamodel that 

captures and harmonises common activities of cloud migration process and can be used to 

create, standardise, and share situation-specific cloud migration methods. The metamodel 

produced is domain-specific (i.e., cloud computing) but is generic, context agnostic, and can 

be grounded and extended to suite a given cloud migration context. The proposed model 

contributes to the cloud computing field by identifying and distilling common activities and 

key features of extant cloud migration literature. Based on our knowledge, such a model does 

not exist in the literature. 

The paper is structured as follows. The next section reviews prior literature on applying 

metamodels. Section Research method presents the adopted research approach. Section 

delineates the approach undertaken to develop the metamodel, following with the section 

Demonstration that shows how the metamodel can be used to describe real-world cloud 

migration processes. Next, section Evaluation presents the evaluation of the metamodel. The 

paper goes on discussion on implications, limitations, and conclusion of this study.  

Theoretical foundations and related work  

A domain specific language provides core concepts, relationships, notations, and semantic to 

simply understanding and representation of a particular domain. A key feature of such 

languages is that they allow domain experts construct models of their applications which can 

be later translated into low level representations. As suggested by (Atkinson and Kuhne 

2003), one effective way to create domain languages is the use of metamodels. A metamodel 

is “a model of a model or a model of a collection of models” (Atkinson and Kuhne 2003). 

The literature pertinent to develop metamodels to demystify the multi-faceted and yet 

ambiguous cloud computing technology varies between different streams. We found that the 

majority of themes are suggested in software engineering literature with a technical-centric 

focus on implementation of cloud applications. We also found a few work in IS literature of 

application of metamodels. The following provides a synopsis of notable research works and 

shows how the current study situates itself in the context of the existing literature.  

The first stream of metamodeling studies concentrates on abstracting the technical 

architecture of cloud computing. Academic research such (Zhang and Zhou 2009; Hamdaqa 

2011; Liu, Tong et al. 2011; Zimmermann, Pretz et al. 2013) and white papers published by 

major players of cloud computing such IBM, HP, Oracle, and Cisco are subsumed under this 

classification.  

The second stream is about distilling and sharing knowledge practice for the green cloud 

computing (Procaccianti, Lago et al. 2014). Herein, the application of the metamodel is to 

formalize a picture of how cloud data centres address the problem of reducing their energy 

footprint and carbon emission. Another work proposes a metamodel of the green practice for 

all aspects of cloud-based business processes such as environmental impact, pollution, and 

waste in class of patterns (Nowak, Breitenbücher et al. 2014). Dougherty et al. have proposed 

a metamodel-based auto-scaling resource management to reduce unnecessary idle cloud 

infrastructures (Dougherty, White et al. 2012). 
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The third stream is concerned with quality aspects of cloud services. As an example, the 

metamodel developed by cloud accountability project (A4Cloud) is to formulate the 

knowledge about non-functional properties of cloud services, and in particular, those that 

influence accountability of cloud providers (Nunez, Fernandez-Gago et al. 2013). The 

purported goal of this metamodel is to act as a language to describe cloud service 

accountability in terms of transparency, verifiability, observability, liability. It allows 

derivation of metrics from a high-level model to a tangible and measurable one, enabling 

consumers to monitor the quality of cloud service providers. Developing a metamodel to 

represent and share domain concepts of cloud services certification process has been the 

goals of European FP7 project as a response to how a certificate is produced, what its content 

is, and how it is managed (Cimato, Damiani et al. 2013). It conceptualizes the concepts 

involved during certification phases and allows for defining different instances of 

certification models.  

A number of scholars report that the adoption of metamodels eases code refactoring of cloud 

applications. The common feature of these studies (Ardagna, Di Nitto et al. 2012; Kopp, Binz 

et al. 2012; Wettinger, Behrendt et al. 2013) is to address the interoperability and portability 

of applications across different cloud providers for supporting instantiation of application 

description into multiple cloud environments using metamodel transformation techniques. 

This stream of studies uses feature models to model application variability and retransform 

them for a given target cloud platform.  

Capturing the common knowledge of designing of cloud architecture has been the topic of 

discussions in (Fehling and Retter 2011; Fehling, Leymann et al. 2012) where researchers 

propose a catalogue of patterns for legacy source code refactoring to enable them to use cloud 

services.  

As the last stream in the software engineering literature, researchers have incorporated 

domain-specific languages (DSLs) for developing cloud applications. Research in this 

direction have resulted in several DSLs such as cloud risk modelling (Zech, Felderer et al. 

2012), cloud service compliance management (Brandic, Dustdar et al. 2010), cryptographic 

cloud computing (Bain, Mitchell et al. 2011), distributed data-parallel computing (Isard and 

Yu 2009), cloud-mobile hybrid applications (Ranabahu, Maximilien et al. 2011), describing 

big data analytic algorithms for data analytics in the cloud (Weimer, Condie et al. 2011), and 

automatically code generation for cloud  applications (Sledziewski, Bordbar et al. 2010), to 

maximize SaaS application reusability (La and Kim 2009). The central claim of these 

technical studies is on the seamless transformation of application codes to various cloud-

specific platforms by using model transformation techniques.  

Finally, the metamodel creation has also received attention from IS scholars. The work 

presented in (Martens and Teuteberg 2011; Keller and König 2014) proposes reference 

models to support organizations in managing and reducing risk and compliance efforts for 

cloud computing as a socio-technical artefact.  

The current research posits that metamodeling is a legitimate and well-suited theoretical lens 

for understanding the cloud computing domain. However, due to the different viewpoints of 

metamodel creation in the literature, when it comes to design a process metamodel to 

establish a methodological foundation for moving legacy systems to the cloud, the research is 

less common. In this paper, we describe our effort to design and evaluate a generic process 

metamodel to standardize, tailor, and share cloud migration processes. 

Research method  
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Overview 

In the current study the proposed metamodel is viewed as a specific artefact and is developed 

according to the design science paradigm (Peffers, Tuunanen et al. 2008; Gregor and Hevner 

2013) using an iterative cycle of design and evaluation. More specifically, we adopted the 

DSR process model suggested by (Peffers, Tuunanen et al. 2008) that includes the following 

phases: 

Problem identification. This phase has been already described in the Introduction section of 

this article. That is, the cloud migration literature narrows in focus and present heterogeneous 

viewpoints of the same cloud migration process while there is no established correspondence 

among them. As such, it is hard to get an overall understanding of what activities are 

comprised in a typical cloud migration process. Furthermore, there is a dearth of research that 

suffices the method tailoring to create bespoke methods to suit a given cloud migration 

scenario. 

Objective definition. The quality of a proposed metamodel is an integrated part of a 

metamodeling process. The model quality is “the totality of features and characteristics of a 

conceptual model that bear on its ability to satisfy stated or implied needs” (Moody 2005). 

Thus, the development process of the proposed metamodel of the current study was informed 

by design principles (DP) pertinent to design of domain languages. There are a few 

commonly used frameworks for examining the quality of conceptual models, which are 

applicable to different modelling paradigms (Lindland, Sindre et al. 1994), (Stamper 1996), 

(Moody 1998), and (Paige, Brooke et al. 2007). From these frameworks we identified the 

following common design principles (DP) that are expected to be satisfied by a proposed 

metamodel: Completeness (DP1): the metamodel should capture all important and relevant 

methodological constructs that cloud migration process entails, Understandability (DP2): the 

definitions and names of constructs in the metamodel should be comprehensible by domain 

experts, Correctness (DP3): the notation and relationships among the constructs in the 

metamodel should be correct and meaningful, and finally Tailorability/or flexibility (DP4): 

the metamodel should enable method engineers to standardise, share, and tailor cloud 

migration methods according to characteristics of given scenarios. These generic design 

principles are further specialized during the remaining phases. 

Design and development. A consolidated metamodel was derived from the extant literature 

on cloud migration, which comprised all frequently occurring constructs in any process of 

legacy system migration to cloud environments and relationships among them. We first 

identified all relevant studies (process models, approaches, experience reports) on moving 

legacy systems to the cloud. Next, constructs were extracted from these studies, grouped, and 

refined based on their similarities and context. This step resulted in producing a set of 

essential constructs of the metamodel. Following harmonised constructs’ definitions, they 

were organised into phases and relationships among them were specified.  

Demonstration. The purpose of this phase was to show the expressivity of the metamodel to 

represent real-world enacted cloud migration processes. Three case studies were purposefully 

selected on the basis of (i) having clear goals for the cloud migration, (ii) reflecting various 

migration types such as IaaS, SaaS, and PaaS, and (iii) having available supportive 

documentation of performed cloud migration scenario for a detailed analysis. Three selected 

cases were: InformaIT in Sweden, TOAS in Finland, and Spring Trader in the United State. 

The unit of analysis was the legacy system that was planned for migration. Adherence to DP1 

and DP3 were examined by tracing the origin of the metamodel constructs and their 

relationships to these real-world migration models.  
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Evaluation. This phase was to evaluate the efficacy of the metamodel version 1.1, which had 

been resulted after applying refinements in the demonstration phase. Firstly, the metamodel 

adherence to DP1, DP2, and DP3 were examined by a panel of experts in the cloud 

computing field. The choice of domain experts were based on either having at least one year 

of experience in legacy system migration to cloud environments or extensive academic 

knowledge of cloud migration as evidenced by publications. Four experts, denoted by E1 to 

E4, who were geographically dispersed and had an overall 7.5 years of experience in the area 

of cloud migration, were selected and provided with the textual document of the metamodel 

(twenty-five pages long) along with a list of open-ended questions related to the metamodel’s 

support of DP1, DP2, and DP3. Each expert individually was asked to review and challenge 

the metamodel version 1.1. Neither expert was aware of the identity of other experts to avoid 

possible communication between them. An advantage of receiving feedback from experts 

with different cloud migration experience was that their expertise complemented each other 

by addressing different parts of the metamodel.  

The deadline for receiving feedback was negotiated with each expert. Feedback received 

from experts was analysed and relevant refinements were applied to the metamodel. To 

prevent possible misinterpretation of comments made by experts, an email-based 

communication was established to clarify comments whenever required.  

Secondly, a prototype system was implemented by the authors to show how the metamodel 

can be specialised for given migration scenarios and be used for standardisation of migration 

processes across the cloud community. The prototype system uses the metamodel as a 

repository of method fragments and provides interactive forms for constructing, configuring, 

standardising, and sharing situation-specific cloud migration methods for a scenario at hand. 

Qualitative feedback from two experts, denoted by E5 and E6, about the adherence of the 

metamodel to all design principles were sought in this evaluation step. The feedback 

collected from each step of evaluation was used to refine the metamodel to its next version. 

Communication. The document of the metamodel in sufficient detail and its actual 

implementation (prototype) are also available in (MLSAC 2016). 

As shown in Figure 1, this research was conducted in four consecutive iterations. In this 

figure, down arrows and back arrows show, respectively, the output of each phase and the 

metamodel refinement through design phase engine. Each iteration used the refined 

metamodel resulted from the predecessor iteration as the input. Starting from version 1.0, the  

metamodel refinements throughout iterations was labelled with an increasing version number. 

The first iteration resulted in the initial design of the metamodel version 1.0. The second 

iteration appraised the completeness and correctness of the initial metamodel through three 

case studies. By analysing results from these cases, the metamodel version 1.0 was refined to 

version 1.1 by adding new constructs which had not been captured by the metamodel version 

1.0. Later, in the third iteration, a panel of domain experts individually evaluated the 

metamodel version 1.1 and subsequently their feedback was applied to the metamodel, 

yielding to the next version of the metamodel, i.e. version 1.2. Finally, in the fourth iteration, 

the evaluation was conducted by examining a prototype system of the metamodel version 1.2. 

This iteration did not result in further refinement of the metamodel.  
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Figure 1 Design science research process specialized for this research  

Design Phase  

Developing Design Principles for the Metamodel 

The quality of a designed metamodel is an integrated part of a metamodeling process, “the 

act and science of creating meta-models, which are a qualified variant of models” 

(Gonzalez-Perez and Henderson-Sellers 2008) (p. 32). The (meta)model quality, defined in 

(Moody 2005), is “the totality of features and characteristics of a conceptual model that 

bear on its ability to satisfy stated or implied needs” (p. 2). Accordingly, this section 

synthesises a few design principles as fundamental requirements that are expected to be 

addressed during the development and evaluation of the proposed metamodel. Results of 

the demonstration and evaluation shows the proposed metamodel based on these principles 

provides a methodological foundation for moving legacy systems to cloud platforms 

including support for creating, configuring, and sharing customised methods for different 

scenarios.  

Completeness (Design principle 1). The development of the design principles are 

originated from the existing mainstream metamodeling frameworks and recurring concerns 

during a cloud migration process. Design principles that are proposed in this section are 

testable propositions and further are employed to develop and evaluate the metamodel. For 

instance, researchers can evaluate the adherence of a metamodel to design principles using 

case studies (Antkiewicz, Czarnecki et al. 2009; Cuadrado and Molina 2009; Karlsson and 

Ågerfalk 2012). Design principles and their connection with the context of this research are 

discussed in the following.  

One concern during creating a metamodel is the level of its completeness, that is, the 

extent to which the metamodel can make different kinds of statements required in the 

domain (Lindland, Sindre et al. 1994). Mitchell states that a language designer should 

discover key constructs in the problem and ensure they are modelled and representable 

during system development lifecycle (Bain, Mitchell et al. 2011). A designer may tend to 
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include many domain constructs in a metamodel. However, achieving valid completeness 

may not be feasible. In addition, the domain may contain many constructs that are 

irrelevant and, hence, out of the scope of the domain language purpose. Overemphasising 

on a domain language with many constructs is a worth practice.  

Completeness can be considered in terms of an appropriate balance between generality and 

specificity is an important factor in the successful development of a domain language. A 

language can be either too generic or too specific to the domain and in some cases both. 

Steven et al. (Kelly and Pohjonen 2009) suggest to include common core constructs in the 

domain. They mention, “Domain language isn’t about achieving perfection, just something 

that works in practice. It will always be possible to imagine a case that the language can’t 

handle. The important questions are how often such cases occur in practice, and how well 

the language deals with common cases” (p. 23). They further advise that in order to avoid 

analysis paralysis, one should concentrate on the core cases and build a prototype language 

for them. Defining a threshold for a metamodel completeness depends on the application 

context and, although is not easy to quantify, it can be when the model is detailed enough 

according to the purpose of modelling and further modelling is less beneficial (Lindland, 

Sindre et al. 1994). This can be examined, for example, by tracing proposed metamodel 

constructs to real word models (Othman, Beydoun et al. 2014) or existing counterpart 

models (Beydoun, Low et al. 2009). 

When viewing the cloud migration from the process perspective, a good coverage on core 

activities and expected work-products incorporating into the migration process is 

important. The key concerns initially introduced (S. Strauch 2014) in and then enriched 

and validated in (Fahmideh, Daneshgar et al. 2016) were found good yardstick to get a 

feasible completeness of functional and non-functional methodological requirements to be 

addressed by an ideal cloud migration process model. The concerns are Analysing 

Organisational Context, Understanding Cloud Migration Objectives and Requirements, 

Proper Cloud Migration Planning, Understanding Legacy Applications, Target Cloud 

Platform/Service Selection, Re-Architecting Legacy Applications, Environment 

Configuration, Testing, and Tailoring. This leads defining the first design principle: 

The proposed metamodel should capture all important and sound methodological 

constructs that are relevant for the incorporation into a typical process of the 

legacy system to the cloud.  

Understandability (Design principle 2). Developing a domain language needs a good 

knowledge of the domain. This implies that a language designer should think abstract and 

take his/her noise above the system code level, programming, and technical-oriented 

notions in the domain (Kelly and Pohjonen 2009). He/she should be able to produce good 

vocabularies for the domain that are understandable and interpretable by the audience of 

the language as referred to it as Audience-domain appropriateness (Lindland, Sindre et al. 

1994). An adequate domain language allows for minimum multiple interpretations by 

audiences. Ambler (Ambler 2005) states that for better understandability of a model, it 

should be kept simple and avoids details not necessary for modelling. Excessive emphasis 

on incorporating technical or programming concepts into a domain language, although, is 

useful they should not be defined as core constructs otherwise they impede the expressivity 

power of the metamodel and lead to a poor abstraction level (Kelly and Pohjonen 2009). 

The understandability of a domain language is determined by many properties such as 

quality of diagrams or text, icons and names, and the layout and closeness of the model to 

the domain (Lindland, Sindre et al. 1994). In the context of this research, an 

understandable can clarify the meaning of activities in order to understand what cloud 

service is supposed to provide and what service consumer need to consider or implement to 
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utilize advantages of cloud computing such as availability and scalability. Thus, naming 

and terminologies that proposed for the metamodel are results of synthesising the content 

in the cloud computing literature. The second design principle is formulated as the 

following: 

The definitions and names of constructs in the metamodel should be 

comprehensible by domain experts.  

Correctness (Design principle 3). A domain language contains names, definitions, and 

relationships among constructs, which are relative to the domain, and they are interpretable 

by human and computer for the purpose of generation and analysis (Moody 1998; Paige, 

Brooke et al. 2007). The correctness can be checked either by examining the language 

against existing domain models or domain experts. A metamodel for cloud migration 

process needs to specify relationships among operations, which can be in the form of a 

sequence, input/output, association, or aggregation. An example may illustrate this point. 

According to (Fahmideh, Daneshgar et al. 2016), a key concern in a cloud migration 

scenario is potential incompatibilities (e.g. APIs) between legacy systems and cloud 

services. This implies a sequence in the migration process in the sense that once a decision 

on the cloud platform selection is made, the next step is to identify and analyse 

incompatibilities between these two platforms. In this research, the relationships defined in 

the framework are based on the recommendations in the cloud computing literature. The 

second design principle is defined as the following: 

The notation and relationships among the constructs in the framework should be 

correct and meaningful.  

Tailorability (Design principle 3). A domain language should support configuration and 

extension so that it can be specialized into a new domain and continuously evolved 

according to upcoming domain requirements. The more a domain language is close to the 

problem domain, the more simple its customisation, maintenance, and evolution (Jonkers, 

Stroucken et al. 2006). A domain language includes a set of generic constructs, which are 

abstract enough and common to represent the domain. Customised models from a domain 

language can then be used to generate software systems. Converting the above point to the 

context of this research, the proposed metamodel, which is supposed to a representation for 

the cloud migration process, should be tailorable to meet requirements of migration 

scenarios. This is due to the fact that each cloud migration scenario may have different 

characteristics such as system workload for moving to the cloud, chose of migration type 

and cloud services. Hence, there is no single applicable method for all scenarios. In 

situations like this, designing customisable methods or configuring existing one that fit 

characteristics of migration scenarios is pivotal for successful adoption of the cloud 

computing (Fahmideh, Daneshgar et al. 2016). With respect to this, the fourth design 

principle is defined as follow.  

The framework should enable method designers in standardising, sharing, and 

tailoring migration methods for specific scenarios.  

Metamodel development 

The steps that were undertaken to develop initial metamodel in the design phase are 

explained below.  

Identifying studies. The development of the proposed metamodel was started by identifying 

all constructs relevant to the cloud migration process. We utilized past researches in the cloud 

migration literature as the main knowledge source for the creation of the metamodel. Due to a 

large volume of published researches, a systematic literature review was conducted to 

identify important and meaningful constructs stated in the literature for inclusion in the 
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metamodel. Recommendations proposed by (Kitchenham, Pearl Brereton et al. 2009) were 

used to identify, characterise, and assess studies suggesting solutions for moving legacy 

systems to the cloud. The keywords for search were Cloud, Cloud Computing, Service 

Computing, Legacy, Methodology, Process Model, Reference Model, and Migration were set 

as the main keywords and based upon them, the different search strings were defined using 

the logical operator OR to include synonyms for each search string as well as the logical 

operator AND to link together each set of synonyms. Seventy five relevant studies were 

identified from the cloud migration literature. The details this are presented in the 

Supplementary Material Appendix A.  

Extracting constructs. All relevant constructs related to the cloud migration process were 

extracted from all the identified studies. In this study a construct refers to a (i) Task: a 

discrete and small unit of migration work that developers may perform to achieve one or 

more specified goals, (ii) Work-product: a tangible artefact that is produced during the 

migration process and used by other tasks, (iii) Principle: a consideration that should be taken 

into account during cloud application design, and (iv) Phase: a logical concept to manage the 

complexity of migration process and classify tasks and work-product constructs. A phase 

represents a particular period of a cloud migration process. 

Derivation of the metamodel was based on the DP1 and DP3 as defined earlier.  More 

exactly, for the DP1 we leveraged the identified the key common occurring concerns during 

legacy system migration to cloud environment as discussed in (Fahmideh, Daneshgar et al. 

2016). This includes eight concerns such as understanding organisational context, 

understanding cloud migration objective and requirements, proper cloud migration planning, 

understanding legacy systems, target cloud platform selection, re-architecting legacy 

systems, environment configuration, and testing. There was a tendency in selection of 

constructs that were (i) sufficiently generic to a variety of cloud migration scenarios and (ii) 

also were platform and application independent. Constructs that were too general or belonged 

to general software engineering were not extracted as they were deemed out of the scope of 

this research. These included constructs related to the process governance and umbrella 

activities such as risk management, project management, quality assurance, configuration 

management, and measurement. For each construct its definition from the studies was also 

extracted. The full list of all constructs and their definitions are presented in the 

Supplementary Material Appendices B and C, respectively.  

Creating overarching constructs. Through a bottom-up approach, all identified constructs 

from the previous step were grouped based on their similarities and definitions to derive a set 

of high-level overarching constructs. Classification of constructs and creating overarching 

constructs were undertaken on the basis of the key concerns such as understanding 

organisational context, re-architecting legacy system, and understanding legacy system 

during moving legacy systems to the cloud as discussed in (Fahmideh, Daneshgar et al. 

2016).  

Harmonizing and reconciliation of constructs. Various definitions of overarching 

constructs were reconciled to reach a set of internally consistent set of metamodel constructs. 

When there were several definitions for a constructs, a hybrid definition which encompassed 

all definitions was chosen. Back to the example mentioned earlier, selecting cloud platform 

has been defined as “this step will select the best supplier based on value, sustainability, and 

quality” in IVI Cloud Computing Life Cycle (Conway and Curry 2013); as “identify a set of 

potential cloud computing platforms based on a project’s nature, data confidentiality and 

sensitivity requirements, budget constraints and long-term organisational objectives” in 

Chauhan’s method (Chauhan and Babar 2012); and as “selecting appropriate technology for 

the modernised system and technology that can run alongside and communicate with the 
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legacy system” in MILAS (Huru 2009). The definition decided for the metamodel is “Define 

a set of suitability criteria that characterise desirable features of cloud platforms. The criteria 

include provider profile (pricing model, constraints, offered QoS, electricity costs, power, and 

cooling costs), organisation migration characteristics (migration goals, available budget), and 

application requirements. Based on the criteria identify and select suitable cloud providers” 

which is a hybrid definition that encompasses all interpretations from these models.  

Classification and organising constructs into phases. Constructs were organised in terms 

of migration phases. The identified studies in the first step were analysed to identify generic 

phases of the cloud migration process. For instance, IVI Cloud Computing Life Cycle 

(Conway and Curry 2013) include four phases namely Architect, Engage, Operate, and 

Refresh. Strauch’s Method (S. Strauch 2014) includes three phases as Assessment, Analysis 

and Design, Migration, Deployment, and Support. Similarly, Cloud-RMM (Jamshidi, Ahmad 

et al. 2013) has three phases including Migration Planning, Migration Execution, and 

Migration Evaluation. Synthesised the similarity of phases in these studies, we defined three 

phases including Plan, Design, and Enable that are described in the next section.  

Defining relationships among constructs. The relationships among constructs such as 

sequence, association, specialization, and aggregation were defined based on the identified 

studies in the step one and the output from the previous step. All relationships are presented 

in the Supplementary Material Appendix E. To represent the metamodel in a clear and well-

structured manner, a simple version of UML notation (UML 2004) was used, which is a 

semi-formal and de-facto standard for information modelling. 

Resultant Metamodel 
The objective of the metamodel is to provide a generic representation of the cloud migration 

process that facilitates domain understanding, standardising, creating, and sharing customised 

migration methods. The metamodel includes a set constructs which are common comprised in 

the cloud migration. The constructs are organised into three phases namely Plan, Design, and 

Enable. Operationalisation details are left to each individual instantiation of the metamodel 

using available techniques in the cloud computing literature and/or tools in marketplace. 

Figure 1 shows the developed metamodel. A brief definition of the metamodel constructs is 

presented in Table 1.  

The Plan phase starts with a feasibility analysis of cloud adoption. This analysis can be 

related to potential changes in organisation structure, local network, and cost saving as the 

outcome of cloud migration. Moreover, an understanding of the current state of legacies is 

required to know their architecture, functional and none-functional requirements that might 

either be addressed by cloud services or be threatened by moving them to the cloud. This also 

gets estimation of required reengineering effort for making legacy systems cloud-enabled. A 

model of legacies including their components and their deployment relations is produced as 

the output of this activity. Legacy systems may have certain requirements that can be 

satisfied by utilising cloud services. These requirements may be related to computational, 

storage space, security, and system interoperability. A cloud migration also includes 

preparing a plan which organises the sequence of activities in the course of migration 

process.  

In the Design phase a new architecture model is designed which enables legacies to utilise 

cloud services. The re-architecting process includes identifying suitable legacies or 

components for moving to and their new deployment in the cloud environment in order to 

satisfy non-functional requirements. Examples include data security, expected workload, and 

acceptable network and scaling latency, selecting cloud services which fit requirements of 
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these legacies as identified in previous phase, and identifying inconsistencies between 

underlying legacy technologies and selected cloud services’ APIs. In some situations, 

organisation’s regulations and policies do not allow for a full legacy system migration and 

hence some legacy components are moved to the cloud and others are kept in the local 

network utilising cloud services that are offered to them. In re-architecting of legacies to 

cloud environments, design principles play central role. For instance, in order to support the 

dynamic deployability, handling with failures, and independent scalability in cloud 

environment, system components should be designed stateless in order to minimise storing 

the contextual data during their execution. An important consideration during cloud 

architecture design is the performance variability of cloud servers and network latency 

between local network and the cloud which can have a negative impact on the QoS of a 

migrated system. Developers should implement mechanisms in legacies to detect and handle 

transient faults that occur in cloud environments. A key work-product of this phase is 

architecture model which specifies an optimum distribution of legacy components on the 

cloud servers and takes into account data privacy, acceptable network latency and 

performance variability of cloud services, the availability zone of cloud servers, the affinity 

of system components in the cloud, and the geographical location of servers. 

The Enable phase consists of a set of reengineering activities to enable legacies for utilising 

cloud services. This will result in the realisation of the cloud architecture designed in the 

previous phase. Often, legacy systems have been implemented with technologies which are 

not compatible with cloud services (e.g. API incompatibilities or proprietary). If occurs, such 

incompatibilities between the legacy and cloud services should be identified and accordingly 

resolved through adaptation mechanisms. This can be in form refactoring legacy source 

codes, modifying data, or implementing wrappers code refactoring. For example, resolving 

inconsistencies between legacy database and a selected cloud database solution may imply a 

need for the data type conversion, query transformation, database schema transformation, and 

developing runtime emulators. Legacy systems might not have been implemented with a 

support for dynamic resource acquisition and release under input workload. High workloads 

are often addressed by adding new physical servers. Mechanisms for system elasticity in 

cloud environments need to be implemented in legacies for continuous system monitoring 

and performing actions for resource acquisition and release regarding scaling rules triggered 

in a specific workload threshold, event, or metric. Reengineering legacies may entail either 

adding new components to legacies or separately hosted in cloud servers. Local network 

setting is reconfigured to provide access to cloud services. In addition, legacy components 

and any required third party tools are installed in the cloud. Finally, in the metamodel, the test 

activity includes testing both functional and non-functional aspects of the migrated system. In 

particular, various cloud-specific tests should be performed including security test, 

interoperability test, and workload test.  

It is important to note that adopting different service delivery models may entail 

incorporating different constructs of the metamodel during the migration process. The 

metamodel includes guidelines for the connection between a chosen service delivery model 

and the metamodel constructs. Situations in which a construct should be incorporated into the 

migration process can be mandatory, situational, and unnecessary. 
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Figure 2 Metamodel for cloud migration process 
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Table 1. Definitions of constructs in the metamodel 

Phase Activity Definition 
P

la
n

 P
h

as
e 

Analyse Business 

Requirements 

Provide an understanding of what an organisation wants to achieve and goals 

and expectations are to be met by cloud migration. 

Analyse Migration 

Cost 

Analyse migration to cloud with respect to the cost of application modification, 

installation, training, administration, license management, developing cloud 

skills, pricing models of the service providers, and infrastructure procurement 

imposed by the migration. 

Analyse Migration 

Feasibility 

Identify potential organisational constraints regarding the adoption of a 

particular cloud model, based on information available in the organisation 

profile and then perform a feasibility study to evaluate the benefits and the 

consequences of migrating legacies to the cloud.  

Analyse Network 

Change 

Perform an impact analysis of potential changes in organisation network due to 

migration in order to identify any side effect on communication between local 

and cloud components and the required bandwidth. 

Analyse 

Organisational 

Changes 

Analyse the impact of cloud migration on the structure and resources of 

organisation. 

Analyse Technical 

Requirements 

Acquire a set of legacy requirements such as computational requirements, 

servers, data storage and security, networking and response time, and elasticity 

requirements from multiple stakeholders about the target application according 

to the current configuration setting of the legacy application. This helps to gain 

a good understanding of different kinds of architectural changes that needed to 

be made in the legacy application. 

Define Plan  

Define a correct and safe sequence of tasks that guide the migration process by 

analysis feedback from stakeholders. A plan may a procedure for (i) notifying 

legacy application users about the cloud migration and temporal unavailability 

of legacies during the migration period and activating them after the migration, 

(ii) rollback to an in-house version of the legacy in the case of occurrence of 

any significant risk during the migration process, (iii) retiring legacy 

components and infrastructure that are no longer needed, after a pre-defined 

period of monitoring and successful migration from original environment to the 

cloud. 

Recover Legacy 

Application 

Knowledge 

Produce a complete representation of legacy architecture application including 

its data, components, dependencies among components and infrastructure, 

application data usage and resource utilisation model (e.g. CPU, Network, 

storage). 

D
es

ig
n

 P
h

as
e 

Choose Cloud 

Platform/Provider  

Define a set of suitability criteria that characterise desirable features of cloud 

providers. The criteria include provider profile (pricing model, constraints, 

offered QoS, electricity costs, power, and cooling costs), organisation migration 

characteristics (migration goals, available budget), and application 

requirements. Based on the criteria, identify and select suitable cloud providers.  

 

Design Cloud 

Solution 

Identify legacy components which are appropriate for the migration to the cloud 

regarding identified requirements (e.g. workload, data privacy, confidentiality, 

latency, dependencies between application components, and migration goals) 

and then define their deployment and distribution in the cloud environment on 

the basis of organisation profile, cost saving, expected workload, performance, 

transaction delay, availability, security, and constraints. 

Identify 

Incompatibilities  

Identify and assess the list of potential incompatibilities between existing 

application components and selected cloud service. Different sources of 

incompatibilities should be checked including library, database, interface, 

behavioural, code style, communication protocol, offered QoS, and policy 

mismatches.    

Make Application 

Stateless  

Provide support in the application to the handle safety and traceability of 

tenant’s session when various application instances are hosted in the cloud. 

E
n

ab

le
 

P
h

as e Adapt Data 

Refine the current database schema for making it compliant with the schema of 

cloud database solution. Enhance the data access layer by adaptors and 

convertors so as to fulfil functionalities and necessary optimised query 
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transformations which are not supported by a chosen cloud database solution. 

Also, convert database data type to the target cloud database solution.  

Develop Integrators 

Develop a mediator component that resolves mismatches between legacy and 

cloud services that are plugged to the legacy. This component wraps/transforms 

incompatibility (e.g. message format, interaction protocols) between the legacy 

and cloud services. 

Enable Elasticity 
Define scaling rules and provide support for dynamic acquisition and release of 

cloud resources. 

Handle Transient 

Faults  

Detect and handle transient faults may occur in the cloud.  

Isolate Tenant 

Availability 

Detect and handle faults that may incur in a tenant in a way that it cannot be 

propagated to other tenants. 

Isolate Tenant 

Customisability 

Analyse commonality and variability in the target domain and provide support 

for the customisation of application components on the basis of particular needs 

and situations of tenants before and during running application in the cloud.   

Isolate Tenant Data 
Protect tenants' data from to be accessed by other tenants. Each tenant should be 

authorised and able to access to its own data. 

Encrypt/Decrypt 

Messages 

Secure messages transmission between the local components and those hosted 

in the cloud or distributed across multiple clouds using an encryption 

mechanism. 

Refactor Codes  

Refine (or re-implement) the source code for being compatible and able to 

interact with the selected cloud platform programming language. Also, refine 

(or re-implement) component interface operations, signature, messages, and 

data type for being able to interact with the selected cloud platform. 

Re-configure Network  

Re-configure the running environment of the application including reachability 

policies to resources and network, connection to storages, setting ports and 

firewalls, and load balancer. 

Synchronise 

Application 

Components 

Provide a support in the application to synchronise multiple components (e.g. 

database replica) hosted legacy network and clouds. 

Test Interoperability  

Test the compatibility of components with different cloud environments 

specifically, when components can be switched between different 

infrastructures. 

Test Multi-tenancy  
Test if tenants can easily configure the application components, i.e. user 

interfaces, business logic and workflows, and functional services. 

Test Network 

Connectivity 

Test the network connectivity between local components and components in the 

cloud. 

Test Performance 

Test the performance (e.g. process speed, response time, throughput, latency, 

and etc.) of the application when subjected to increased load from multiple 

tenants. 

Test Scalability  
Test to assure the application acquire and release the computing resources in an 

efficient manner. 

Test Security 
Test application components and reachability policies to access these 

components against the security requirements. 

W
o

rk
-p

ro
d

u
ct

s 

Application 

Templates  

A set of models allowing tenants/application users to customise variation points 

and features in the application components. These allow tenants/users to 

configure application components. 

Cloud Solution 

Architecture  

A complete high-level architecture document that will serve in later stages as a 

guidebook for the implementation 

Legacy Application 

Model 

A model of legacy application including its components and their deployment 

relations. 

Migration Plan 
A document that defines the execution of the migration process and sequence 

with which legacy application is to be moved to the cloud. 

Migration 

Requirements 

A set of requirements as a result of task Analyse Migration Requirements. 

Virtual Model 

Specification 

Virtual images of the application that are associated with the application 

components. 



17 
 

Demonstration 
This phase shows the metamodel adherence to the DP1 and DP2. More exactly, as the 

proposed metamodel is sufficiently generic and abstracts domain constructs being 

incorporated during the cloud migration process, it is anticipated that real-world migration 

processes including development activities, their relationships, and work-products can be 

represented by the metamodel. Three case studies were analysed to examine the conformance 

of the real-world scenarios to the metamodel and corresponding between constructs in the 

metamodel and these cases. These are shown in Table 2. Due to space constraint, a detail 

analysis is presented for the first case (InformIT) only and results from two other cases are 

presented in the following (A full detailed of the case analysis is in the Supplementary 

material Appendix F).  

Adherence to DP1 and DP3 were appraised by tracing the origin of metamodel constructs and 

their relationships to real-world migration models. Using the tracing technique (Sargent 

2005) in this section is similar to the research by (Othman and Beydoun 2013), which used an 

analysis of existing disaster scenarios to show the capability of their suggested metamodel in 

expressing key domain constructs. It is also consistent with (Beydoun, Low et al. 2009) in 

examining an agent-oriented metamodel in the coverage of design-time and run-time 

constructs in the agent-oriented software development. Furthermore, the tracing technique 

has been also used in (Antkiewicz, Czarnecki et al. 2009) in representing the domain 

knowledge of application code understanding through reverse/forward engineering and 

software code evolution. Using the tracing technique, constructs that were incorporated in the 

migration scenarios were categorised and mapped into the proposed metamodel constructs 

according to their relevance. Some of the leading questions that were used during case review 

for identification of the seed cloud-specific activities enacted by the developers in each phase 

of migration process were as follow: (i) what activities, including techniques, were performed 

and deliverables were produced during each phase of your migration project?, (ii) what 

cloud-specific challenges were faced in each phase? Inspired by previous studies suggesting 

the worthiness of secondary data in the assessment of metamodels (Antkiewicz, Czarnecki et 

al. 2009; Beydoun, Low et al. 2009; Othman and Beydoun 2013), the secondary data for 

conducting the tracing technique was used during the case study analysis. Project documents 

from a variety of sources (e.g. project sequence, application architecture, and user histories) 

was used to obtain a better understanding of the enacted migration process model by 

developers.  

Table 2 description of case studies 

Case 1: InformaIT (Sweden) Case 2: TOAS (Finland) Case 3: SpringTrader (US) 

InformaIT is a small independent 

software vendor involved in 

development of document 

management systems. The 

Document Comparison (DC) 

system, developed by InformaIT, 

is a Web-based enterprise 

solution for enhancing document 

management processes. DC 

provided a fast and easy way to 

compare textual and graphical 

contents of different digital 

documents. DC was originally 

designed to offer services to 

medium and large organisations 

which had enough resources, 

own infrastructure, and 

TietoOyj is an IT service company 

that had built an open source 

platform called Tieto Open 

Application Suite (TOAS) based on 

J2EE technology. This platform 

was used for developing and 

running business applications in 

cloud environments. The TOAS 

platform aims to increase the 

development speed, automation, 

and the integrity of cloud 

applications through providing an 

integrated set of middle-wares, 

tools, and services according to 

service models IaaS, PaaS, and 

SaaS. A cloud migration project 

was launched by Tieto to migrate a 

SpringTrader is an open-source 

Web-based system that has been 

originally developed by Pivotal 

company and maintained by many 

contributors over time. The 

system allows users to establish 

an account to view and manage a 

portfolio of stocks, lookup stock 

quotes, and buy and sell stock 

shares. Pivotal company had 

launched its own private cloud 

platform, which named Pivotal 

Cloud Foundry. The platform is 

an open-source platform for 

developing and deploying 

portable cloud-native enterprise 

systems. Pivotal decided to move 
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technicians to install and run the 

system. InformaIT considered 

promoting its competitiveness 

power via expanding DC’s 

services around small 

companies. However, small 

companies couldn't afford DC as 

they would be confronted with a 

high financial commitment such 

as high cost of installation as 

well as the usage cost of users. A 

cloud model could facilitate an 

efficient and agile maintenance 

environment for the DC. 

legacy system from the current 

Tieto’s infrastructure to this new 

TOAS platform. The system had 

was processing batch tasks. Due to 

the outdated hardware 

infrastructure and software 

platform, moving this system to 

TOAS IaaS was a promising way to 

enhance the system performance 

and reduce infrastructure cost.  

SpringTrader to this new cloud 

platform because it will enable (i) 

users to access real-time stock 

market data and more interactivity 

with the system, and (ii) the 

individual scaling up/down of 

SpringTrader’s components 

(called micro services) and their 

maintainability.  

Within-case analysis: InformIt case 

The following paragraphs describe how the constructs in the process model are instantiated to 

represent activities, carried out by a development team in InformaIT project (Rabetski 2012). 

The 43-page secondary document of this project was carefully reviewed. Figure 2 represent 

the instance of the enacted process in InformIT. 

As one of the first tasks, the developers performed Preliminary Analysis to identify benefits 

and challenges of migration to the cloud in terms of privacy, vendor lock-in, and 

environmental limitations. This activity is an instantiation of the Analyse Migration 

Feasibility in the metamodel. Additionally, a task which was called Current DC 

Implementation was performed to identify the current deployment model of DC. The model 

revealed that DC’s customers have to take care of the infrastructure and provision of 

technical expertise to maintain it locally. The process model supports this activity through an 

instantiation of the Recover Legacy Application Knowledge defined in the Plan Phase.  

The developers estimated the cost of DC migration to the cloud on the basis of server 

instances, storage, data transfer, storage transaction, cache, and database. They realised that 

the cost of DC could be down by 40 percent; that is $764.99 in the cloud model compared to 

$1264.99 in the legacy model when leveraging elastic scalability. The abovementioned cost 

analysis in InformaIT can be derived from the Analyse Migration Cost in the metamodel 

which is a subclass of Analyse Context. 

Once the cloud migration was perceived as a viable solution to empower DC, the developers 

performed a task named Choosing a Cloud Provider in order to analyse three existing public 

cloud platforms, Amazon Web Services, Google App Engine, and Microsoft Azure. Each of 

these platforms could affect the cost, the quality of the architecture solution, and the required 

legacy code changes. The developers found that Google App Engine could not be a suitable 

candidate for DC since it did not support .NET applications as opposed to the Amazon AWS 

and Microsoft Azure that both provided such a support. Given a further analysis, the 

developers preferred Windows Azure platform to Amazon AWS for three reasons: (i) it 

would require less configuration effort, (ii) it would offer a faster deployment model, and (iii) 

developers had a consistent development experience for systems that were based on 

Microsoft technologies. Choosing a Cloud Provider in InformaIT conforms to the 

metamodel’s construct of Choose Cloud Platform/Provider in the Design Phase.  

In InformaIT scenario the development team performed a task called Cloud DC Architecture 

indicating how the existing legacy application components are mapped to the Microsoft 

Azure platform. For example, the legacy version of DC’s database, which was a Microsoft 

SQL Server database, was replaced with SQL Azure. In the metamodel, Cloud DC 
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Architecture in InformaIT can be instantiated from the construct Design Cloud Solution in 

Design Phase of the metamodel.  

Although Microsoft Azure was well suited as a target platform for the migration, the 

developers identified some incompatibility issues that implicated required changes in the 

current legacy implementation, referred to as Identified Compatibility Issues. Subsequently, 

the migration process proceeded with some changes in the legacy DC. As an example, the 

available Blob Storage and Queue Storage by Microsoft Azure were not compatible with 

regular APIs that were currently used by DC. Accordingly, legacy codes were changed for 

access Microsoft Azure database. As another example, DC had been developed using 

Microsoft .Net 2.0 that was not supported by Microsoft Azure. The action to resolve this was 

to update DC’s framework to Microsoft .Net 3.5/4. Other incompatibility issues were session 

management and registration of legacy components in the cloud. The classes Identify 

Incompatibilities and Refactor Codes in the metamodel represent the above modifications to 

the DC in InformaIT case.  

Some changes to DC were in the form of applying design principles proposed by the 

construct Apply Design Principles in the metamodel. For instance, DC was required to be 

portable between the local network and the cloud. To address this, the data and business 

layers of DC were decoupled by adding a new intermediate data assess layer in order to 

increase the portability of DC. That is, instead of directly data access, the business logic layer 

calls a data access layer interface. In InformaIT project, this construct was referred to as 

Separate Data Layer from Business Logic Layer which can be derived from the construct 

Decouple Application Parts as a subclass of the Apply Design Principles in the metamodel. 

As another example, DC stored megabytes of data per session which was a big overhead. 

Such a session size required more time for serialisation and de-serialisation. Developers 

applied a principle called Becoming as Stateless as Possible to make DC cloud-enabled. This 

construct is an instantiation of the principle Make Application Stateless in the metamodel.   

It was likely that the performance of DC in the cloud was going to decrease due to latencies 

and unknown hardware infrastructure. In InformaIT project the task Performance Experiment 

was performed to execute CPU heavy code for the document processing in order to compare 

the execution and response time of running DC in the cloud (using a small Azure compute 

instance) and on-premise environment (using a local server). This experiment could identify 

potential performance bottlenecks in the cloud when heavy computational jobs such as digital 

document rendering are running. This activity was conducted in North Europe deployment 

location of Microsoft Azure because it was the closest geographical location to the project 

testing environment, located in Gothenburg, Sweden. The experiment illustrated that a proper 

deployment location can reduce interaction latencies and consequently, the performance. In 

addition, the experiment revealed that the performance of DC in the cloud is less than the 

local server and nine more instances of DC in the cloud are required to achieve the expected 

throughput. The abovementioned test in this scenario, i.e. Performance Experiment, conforms 

to the construct Test Performance in the Enable Phase of the metamodel. In InformaIT 

project, the developers felt there is no need for running other kinds of tests.  

The suitability of the DC migration to the cloud also was analysed from a cost perspective. 

Developers built a prototype to analyse three real life scenarios that could describe how DC 

could benefit from the cloud services. The cost of each migration scenario was estimated on 

the basis of the pricing model of Microsoft Azure and cost parameters such as compute 

instance, relational database, storage, storage transaction, data transfer, and cache. The 

prototyping helped developers to make a final decision regarding the DC cloud enablement. 

Prototyping in this scenario can be generated as a result of performing the task Make 

Prototype in the metamodel. Regarding DP3, the analysing InformaIT confirmed some 
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relationships between the constructs defined in the metamodel. Table 3 shows the list of 

relationships among the metamodel’s constructs that were instantiated in this migration 

scenario.  

With-in case analysis confirmed that almost all of its accommodated constructs can be 

derived from the metamodel constructs, except for a new construct Extensively Use Logging 

which was not covered by any constructs in the metamodel. It was found that the metamodel 

has a deficiency to support this construct. According to the finding in this migration exercise, 

since cloud environments are a-synchronous, debugging and tracing an application in the 

cloud might be problematic (Rabetski 2012). Applying a logging mechanism in the 

architecture of the application facilitates tracing of the behaviour of the application, resource 

utilisation, and identifying reasons for failures in the cloud. Therefore, the InformaIT case 

refined the metamodel construct Apply Design Principles by adding a new subclass construct 

and was named by Use Logging. In Figure 2, this new construct is the class Apply Design 

Principles. The following definition was used to define this new construct: Use the logging 

mechanism to facilitate the application debug and resource monitoring when running in the 

cloud. 
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Figure 3 InformIT model as an instantiation of the metamodel 



22 
 

Cross analysis 
Next, our cross-analysis compares and contrasts three cases of cloud migration process in 

terms of the metamodel adherence to DP1 and DP3. Table 3 shows results related to the 

metamodel completeness and its expressivity for producing constructs of InformIT, TOAS and 

SpringTrader migration scenarios and Table 4 shows the instantiations of some relationships 

in the metamodel in these cases. According to these tables, only a slice of the metamodel is 

required to represent domain-specific constructs which is described in the following.  

As for DP1, the review of the cases InformIT, TOAS, and SpringTrader shows that four 

metamodel constructs Recover Legacy Application Knowledge, Design Cloud Solution, 

Identify Incompatibilities, and Decouple Application Parts were commonly instantiated in 

their mainstream process, to make legacy systems cloud-enabled. For example, the construct 

Design Cloud Solution defined in the Design phase of the metamodel was instantiated in 

three different ways in the scenarios. In InformIT, the decision on the selection and 

deployment of legacy system components on cloud servers was basically a mapping between 

Microsoft-based legacy components into their counterparts in Microsoft Azure cloud 

platforms. In TOAS, the legacy components were classified into two logical groups of 

platforms on the basis of similar functional behaviours. In SpringTrader, those components 

that provided financial and market functionalities/data were selected for the migration 

purpose. These are an instance of Design Cloud Solution defined in the Design phase of the 

metamodel. 

Migration scenarios were performed very differently and therefore they were not same in the 

instantiation of the metamodel constructs. Except for InformIT, in both TOAS and 

SpringTrader scenarios activities related to handling incompatibility issues are performed. In 

TOAS case, developers implemented run-time adaptors to hide incompatibilities of message 

formats and API's support between the legacy and TOAS platform. Comparably, in 

SpringTrader case, developers implemented wrappers to separate incompatibilities between 

micro service and the legacy system. These techniques are subsumed under the construct 

Develop Integrators defined in the Enable phase of the metamodel. Additionally, unlike the 

instantiation occurrence of the construct Choose Cloud Provider in the scenario InformIT 

where developers decided to use Windows Azure cloud platform due to their experience with 

Microsoft-based programming platforms, the target cloud platform in both scenario TOAS 

and SpringTrader was a pre-chosen private cloud platform and therefore there was no need 

for the instantiation of the construct Choose Cloud Provider. 

Furthermore, as for DP3, the case studies confirmed some relationships between the 

constructs defined in the metamodel. With respect to DP3, Error! Reference source not 

found. shows the list of relationships among the metamodel’s constructs that were 

instantiated in the cases. As shown in Error! Reference source not found. in each case 

reviewed, only a slice of the metamodel was required to instantiate to represent relationships. 

Error! Reference source not found. shows the list of relationships that were identified 

during the case analysis. 

The second and third case studies did not lead any refinements to the metamodel and all their 

constructs were producible using the metamodel constructs. As we progress through the case 

analysis, the coverage of the metamodel on enacted process models is a strong indicator of 

the metamodel adherence to DP1 and DP3. Nevertheless, the metamodel adherence to DP1 

and DP3 cannot be statistically generalized based on the results of case analysis and hence 

there is a possibility of extending the metamodel to new constructs or relationships if more 

case studies are performed. This will be discussed further in this paper. 
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Table 3 Support of constructs in the migration scenarios by the metamodel  

Metamod

el 

Construct 

InformaIT TOAS SpringTrader 

Recover 

Legacy 

Application 

Knowledge 

A distributed deployment model 

of DC was identified. DC 

included five components namely 

frontend web, application, 

backend engine, distributed 

cache, database, and v) shared 

file store. InformaIT rents several 

virtual private servers. However, 

the servers could not be scaled 

dynamically and they became 

underutilized most of the time. 

The legacy system 

architecture recovered and 

documented in order to 

identify its hardware 

requirements, running 

components on middle 

wares and servers, their 

settings and computational 

requirements. In addition, 

legacy dependencies, 

features such as hardware 

requirements, running 

components on middle 

wares and servers, their 

settings and computational 

requirements were 

identified.  

It was found that the legacy 

system architecture was 

fairly simple with a front 

end that includes the Web 

layer talking to a set of 

HTTP/JSON-based services 

where stock quotes and 

portfolios could be viewed, 

and stock trade orders may 

be submitted, and a back end 

that fulfils orders. The 

communication between the 

front and back ends was 

asynchronous with the front 

end delivering orders to a 

message queue and the back 

end consuming from that 

queue. Both the front end 

services and the back end 

also access a shared 

relational database. 

Choose 

Cloud 

Provider  

Three existing public cloud 

platforms namely Amazon Web 

Services, Google App Engine, 

and Microsoft Azure compared 

on the basis of required cost for 

changing in DC and architecture 

quality. Standard rate of cloud 

platform alternatives such as 

price for computation, virtual 

network, storage, content 

delivery network, caching, 

service bus, data transfer, and 

access control were identified 

and analysed. Windows Azure 

was chosen as it needed less 

configuration effort, faster 

deployment model, less training 

effort. 

Not instantiated  (pre-chosen 

private cloud, i.e. TOAS 

platform) 

Not instantiated (pre-chosen 

private cloud, i.e. Pivotal 

Cloud Foundry) 

Design 

Cloud 

Solution 

Microsoft-based DC’s 

components (e.g. database) were 

mapped to their counterpart in 

Microsoft Azure platform and 

accordingly modified to Azure 

cloud services.  

The legacy components 

were classified on the basis 

of their similar functional 

behaviours into two logical 

groups of platforms. 

Those components that 

provided financial and 

market functionalities/data 

were selected for the 

migration purpose. Also, 

micro service architecture 

was used to distribute legacy 

components in Cloud 

Foundry. 

Identify 

Incompatibil

ities  

There were some 

incompatibilities between current 

technologies used in DC and 

legacy and Microsoft Azure such 

as different versioning between 

platforms, APIs, and session 

management. 

Legacy components were 

based on the technologies 

belonging to middle of 2000 

and constitute a lot of legacy 

codes. It was identified that 

are different versioning in 

legacy APIs and TOAS.  

As SpringTrader was written 

for JDK6 and Spring 3 and 

the current version of Cloud 

Foundry PaaS was JDK8 

and Spring 4, there were 

some incompatibilities in the 

libraries of these two 

environments. These include 
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the bytecode manipulation 

used by the annotation 

processing, and the use of 

some obsolete JSON 

libraries. To resolve 

incompatibilities, developers 

upgraded the application’s 

libraries. 

Decouple 

Application 

Parts  

The legacy was needed to be 

portable across on premise and 

cloud platform, it was decided to 

separate the business logic and 

data layer of DC. Decoupling 

also facilitated using on premise 

file system and Azure Storage 

depending on the chosen 

deployment environment. 

Loose coupling was 

performed to facilitate 

component scaling up/down 

and fault management. 

Decoupling was applied by 

replacing all remote method 

invocation (RMI) based 

communications in the 

legacy with XML-based 

service in TOAS cloud. 

Micro-service architecture 

design was used to decouple 

legacy components. In 

addition, a service discovery 

mechanism was 

implemented to enable the 

legacy system and 

developers to locate micro 

services by name at a known 

catalogue endpoint and look 

them up dynamically at 

runtime.  

Adapt Data 

DC used a Microsoft SQL Server 

database. It was replaced with 

SQL Azure. In most cases 

switching to SQL Azure was not 

a big task but it was required to 

update connection setting to the 

new database.  

Not instantiated. Different types of cloud 

database solutions were used 

in this project such as 

MySQL, MongoDB, and 

relational SQL database. In 

order to address 

incompatibilities between 

these cloud services, the 

notion of boundary context 

was used in the sense that 

transition data were packed 

and unpacked during 

executing transactions.   

Develop 

Integrators 

Not instantiated. Different kinds of run time 

adaptors were developed to 

hide incompatibilities of 

message formats and API's 

support between the legacy 

and TOAS platform. 

Warpers were implemented 

to hide incompatibilities 

between micro service and 

the legacy system. 

Refactor 

Codes  

Not instantiated. Not instantiated. Quote simulation 

functionality was refactored 

from the SpringTrader 

legacy in order to be 

exposed as a new micro 

service, i.e. Quote Web-

Service. It was a simple 

service that used the public 

Yahoo Finance APIs to 

provide real-time market 

data. Such refactoring freed 

the developers to choose any 

technologies that could 

make sense on basis of 

requirements regardless of 

ripple effect in the existing 

legacy codes. To refactor the 

legacy code some steps such 

as locate the code, identify a 

service interface, use the 

proxy pattern, create an 
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implementation of the 

interface, and point the 

monolith to the new service 

were performed. 

Re-

configure 

Network  

Not instantiated. Firewall rules and 

subsequently application 

endpoints were 

reconfigured.  

Firewall configuration was a 

burdening task and included 

finding, setting up, testing, 

and maintaining the required 

firewall rules. 

Not instantiated. 

 

Table 4 instantiations of metamodel relationships in the scenarios 

Relationship 

Name 
Construct 1 Construct 2 

Migration scenario 

InformaIT TOAS SpringTrader 

Uses Design Cloud 

Solution  

Analyse Migration 

Requirements 

Not 

instantiated 
√ 

Not 

instantiated 

Uses Design Cloud 

Solution  

Identify 

Incompatibilities 
√ √ √ 

Uses Design Cloud 

Solution  

Choose Cloud Provider 
√ √ √ 

Uses 
Refactor Codes 

Identify 

Incompatibilities 
√ - √ 

Uses Design Cloud 

Solution  

Recover Legacy 

Application Knowledge 

Not 

instantiated 

Not 

instantiated 
√ 

Uses 
Refactor Codes 

Design Cloud Solution  
√ 

Not 

instantiated 
√ 

Uses Migrate Database Refactor Codes √ - - 
Uses Test Application  Design Cloud Solution  √ √  

Follows  Plan Migration Design Phase √ √ √ 

Follows Design Phase Enable Phase √ √ √ 

Follows Choose Cloud 

Provider 

Identify 

Incompatibilities 
√ √ √ 

Evaluation 

kkkk 

Step 1. Domain experts feedback 
The metamodel was qualitatively examined by a panel of four domain experts regarding DP1, 

DP2, and DP3. The experts are denoted by E1, E2, E3, and E4 in this study. The overall 

experts’ feedback was promising and valuable. The list of questionnaire form and details of 

the feedback from the experts are available in the Supplementary document Appendix G and 

H, respectively. The usefulness of the metamodel was stated by the words such as “education 

and high-level guidance” (E1), “good communication vehicle” and “more comprehensive list 

of concerns” (E2). E2 stated that “the model is clearly valuable in conveying the important 

concerns of a migration and how they are related. The detailed semantics help to clearly 

understand dependencies and possibly resulting decisions and trade-offs to be considered”. A 

similar opinion was expressed by E3. He said “this model can make a good impact to 

increase the confidence of success factor of the migration process and decrease some 

uncertainty. Also, this model can be used as a checklist of success migration and this 

reference model makes an overall picture of migration phase and clears the roadmap for 
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audiences to do the migration with less stress and concerns”. The advantage of the 

metamodel against existing migration process models was stated by E4 “I have mostly used 

the classical reengineering model for legacy migration. In comparison to the model by SEI, 

the proposed model is more detailed in terms of underlying process and activities for 

migration”. Experts provided some suggestions for the improvement of the metamodel in 

relation to the design principles. The following is an explanation of the metamodel 

refinements as a consequence of each expert’s feedback.  

Regarding DP1, an area of concern raised by E2 was that he believed “determining licensing 

issues of legacies should be made more visible in the metamodel as it can turn out to be a 

major task in the migration process”. In cloud environments, multiple instances of a system, 

which is encapsulated into a virtual machine, might be created by a server based on the 

workload or rules are triggered to run resource scaling. This may cause an unintended 

violation of the licensing agreement that has been made between the owner and user of the 

system. The above comment by E2’s has been partially covered in the definition of the 

construct Analyse Migration Cost in the initial metamodel. However, it has not been 

considered as an individual construct in the metamodel. Utilising the knowledge source 

prepared in the phase one of design science process, a new construct named Resolve 

Licensing Issues as a special construct was added in Design Phase of the metamodel to 

explicitly represent this construct (Figure 2). It is defined as follow: Define and monitor a 

pay-as-you-go licensing model to handle unintended license agreement violations due to 

automatic scaling.  

E3 explained that the metamodel lacks a construct called “roll-back: I have observed that 

migration process model should contain a construct to show rollback for the migration 

process”. To address this concern, the metamodel was refined by extending the construct 

Define Plan to Define Roll-Back Plan and defining a new relationship in the metamodel 

(Figure 2). A definition for this construct regarding the knowledge source was decided as 

“Define roll-back, as a B plan, to an in-house version of the legacy application in the case of 

occurrence of any significant risk or new application fails during the migration process. This 

reduces the risk and exposure to the business”.  

The experts provided some comments related to DP2. From E2’s point of view, the notations 

and visualisation used to represent the metamodel were found unclear: “UML is not used by 

all stakeholders”. Likewise, E4 mentioned “a unified high-level block diagram for the 

reference model (unifying all those three different phases) must be presented for better 

illustration or reflection of the model”. As a responded to the above comment, a preliminary 

version of the metamodel was made using simple block diagrams. However, such a 

representation could be used simply for process documentation purposes. If the metamodel is 

going to be an integral part of model-driven development and OMG metamodeling 

framework (Atkinson and Kuhne 2003), a semi-formal representation of the metamodel 

becomes important when the migration scale is large. In this spirit, UML is a de-facto 

standard for the conceptual representation of a particular domain in terms of organising 

constructs, their relationships, and decidable reasoning. Furthermore, UML is used only to 

represent the metamodel for the purpose of illustration and its graphical representation is 

presented later in the prototype system (next section). With respect to DP3, there was no 

major comment made by the experts.  

Step 2. Prototype System 
In this step, a prototype system of the refined metamodel from the previous step was 

implemented in order to appraise the metamodel efficacy with respect to the design 

principles. Through this prototype it was also possible to examine the adherence of the 
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metamodel to DP4, i.e. creating situation method for a given cloud migration scenario 

through instantiation, reusing, and configuration of the generic constructing in the 

metamodel. The prototype was built on the guidelines proposed in (Ralyté, Deneckère et al. 

2003) for the situational method engineering approach. The prototype comprises two 

components: (i) a repository which stored the metamodel constructs, their definitions, 

relationships among them, and relation to migration types and (ii) a generic three-step 

procedure for the metamodel instantiation and customisation. The input to the procedure are 

parameters of a migration scenario mainly selected cloud service delivery model (migration 

types) and migration phases such as Plan, Define, and Enable. The sourced input parameters, 

provided by a method engineer, are used to select relevant constructs of the metamodel which 

are stored and retrieve from the system repository.  

 
Figure 4 choosing a migration type for a target method 

Once the initial method is created, the system shows constructs which are mandatory, 

situational, or unnecessary to be carried out in the method (the fourth form in Figure 6). 

Figure 7 shows a snapshot of a created sample method. The method engineer can browse 

through the method, which contains a set of relevant constructs and their definitions reused 

from the metamodel. The graphical user interface in Figure 7 has three main sections. The 

upper part contains the method name (in this fictitious example 

LegacyMigrationtoAmazonEC2), the migration type, and a general description of the 

method. The bottom-left part shows the constructs of the method reused from the metamodel. 

The method is rendered using a Microsoft .Net Tree View Control which is a common 

control to visualise complex data structures. The bottom-right part contains the information 

about a construct once the method engineer clicks on it in the tree view. Different icons are 

used in the prototype system to illustrate the classification of a method’s constructs such as 

phases, tasks, and work-products.  

Different functions may be performed to accommodate migration method needs such as (i) 

adding new constructs to the created method in the cases where the pre-existing constructs in 
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the in the repository are insufficient for the representation of a new particular construct for a 

given migration scenario (ii) extending existing constructs with new sub-constructs through 

the notion of inheritance in object-oriented software design, (iii) adding alternative 

techniques to guide developer in how to operationalise the abstract constructs, and (iv) 

defining a specific flow among constructs in the method to show how they are sequenced.  

 
Figure 5 a created method for enable phase of migration type 

The last optional step is to export the method as an XML document (Mendling and Nüttgens 

2006). Using the XML document in the prototype facilitates computer-readability and 

interoperability of produced methods across modelling tools. Figure 8 shows the conceptual 

structure and corresponding XML representation of a created method. Later on, developers 

can import this base method, reuse, and tailor it for a given migration scenario. The 

developers can specialise the method through new constructs or operationalisation techniques 

using complementing method or previous cloud migration experience. 
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Figure 6 an excerpt of a created method described in an XML format 

The prototype was examined by two experts. They worked with prototype, ran three-step 

tailoring procedure, and expressed their opinions about the suitability of the metamodel 

regarding DP1, DP2, DP3, and DP4. Two cloud computing experts, denoted by E5 and E6, 

one project manager and one technical lead were recruited and asked to provide feedback on 

the prototype. They have had experience in moving geosocial networking and finance 

applications to cloud environments, respectively. Each expert was asked to nominate one 

cloud migration scenario in which they already had actively participated. 

The overall feedback from the experts was positive along with some suggestions for further 

improvement of the metamodel. Both experts primarily mentioned that providing a rich 

repository of constructs and flexibility for extending them with new ones are excellent 

features of the metamodel. They believed the metamodel will have a positive effect on the 

quality of the cloud migration process. E6 highlighted that the framework is helpful for 

practitioners who may not be familiar with the cloud migration concepts. They also 

mentioned that the metamodel mitigates missing constructs that are important for 

consideration during the migration process. Furthermore, E6 stated that the metamodel’s 

ability in moving from text-based to a standard representation of methods facilitates method 

integration with other process modelling tools. Regarding the adherence to the DP1, experts 

alike agreed that the metamodel covers major constructs relevant to the cloud migration 

process.  

The experts provided some suggestions for improving the user interface design of the 

prototype. For example, E5 suggested adding a drag and drop feature for moving constructs 

among phases. Both experts acknowledged the clarity of names and definitions (DP2) and 

classification of constructs based on names and the migration types (DP3). The experts also 

provided positive feedback about DP4 and confirm the suitability of the metamodel 

tailorability for a given scenario; however, they suggested adding pre-built reusable templates 

relevant to particular cloud migration domains such as mobile computing, finance, or 

insurance in order to create immediate methods through the process of method tailoring for 



30 
 

specific domains. Additionally, the experts uttered improving the prototype to allow multiple 

users concurrently work on the method under enactment and maintenance, and if a user 

changes the method content, the framework can integrate this change into new a version of 

the method. E6 suggested adding warning messages when users define an illogical sequence 

among activities. However, adhering to some of the above suggestions are trivial to the main 

objectives of the current research and constitute as the future work. 

Discussion  

Implications for research  

Aimed at alleviating the problems afflicting the process aspect of the cloud migration, this 

research contributes to the cloud computing literature in several ways. Firstly, researchers 

have attempted to develop intellectual models to demystify multifaceted yet ambiguous 

nature of cloud computing technology from perspectives architecture of cloud computing 

(Hamdaqa and Tahvildari 2012; Zimmermann, Pretz et al. 2013), green cloud computing 

(Procaccianti, Lago et al. 2014), quality aspects of cloud services (Nunez, Fernandez-Gago et 

al. 2013), eases code refactoring (Ardagna, Nitto et al. 2012), reducing risk and compliance 

efforts for cloud computing (Martens and Teuteberg 2011; Keller and König 2014). 

Compared to these studies and in response to call made by previous research for engaging 

scholar to enhance the methodological aspect of cloud migration (Jamshidi, Ahmad et al. 

2013; Fahmideh, Daneshgar et al. 2016), a key theoretical contribution of this research is to 

shed light into the cloud adoption from the process perspective by developing an overarching, 

yet customizable, metamodel of moving legacy systems to cloud platforms. The proposed 

metamodel hides away the multifaceted and dispersed area of cloud computing migration 

from operationalisation details that are only relevant to the domain-specific cloud computing 

adoption by providing an abstract representation of core constructs in the domain. It 

facilitates the understanding of cloud migration process for both IS researchers and 

practitioners since it represents a single and unified model instead of looking for such a 

model in the existing sporadic and fragmented literature. It can also educate newcomers to 

the cloud computing field to envision the way through which organisation can move their 

legacy systems to cloud platforms. 

Secondly, the proposed metamodel can be viewed as a knowledge sharing platform to assist 

consistent communication between scholars since they can use the metamodel as a reference 

process model, allowing effective knowledge transfer across the community, which has been 

the concern of the current literature in the field  (Hamdaqa and Tahvildari 2012). The 

metamodel will fertile theoretical grounding for future research and is as a potential candidate 

for addressing the need for future cloud standardization as raised by (Dillon, Wu et al. 2010; 

Ortiz Jr 2011). 

Thirdly, previous research largely assumes that the cloud migration process is monomorphic, 

i.e. a single migration method is enough. When the methods reviewed in section Related 

Work are viewed collectively, they define a set of fixed activities for reengineering and 

integrating existing legacy systems with cloud services, though they may differ in their scope, 

operationalization details, and application domain. While there are merits to adopting these 

methods, some research has started to argue that cloud migration methods need to be tailored 

prior to their enactment based on a chosen cloud platform, migration type (e.g. IaaS, PaaS, or 

SaaS), reusability and quality of legacy system source code, system scalability and security 

requirements (Mohagheghi, Berre et al. 2010; Menychtas, Santzaridou et al. 2013). For 

instance, a method might be a better fit for process-intensive and distributed workloads from 

legacy data centers to public IaaS whilst another method maybe an adequate option for 
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making a legacy system SaaS-enabled. While such characteristics circumscribe the method 

suitability of a method for a given scenario, this research integrated extant migration 

solutions into a generic metamodel, supporting a pluralist view of the cloud migration process 

and yet customizable and extensible.  

Implications for practice 

Pertaining to practical values of this research IS practitioners may benefits from the results of 

this research in the following ways. Previous research (Yang and Tate 2012; Fahmideh 2016) 

state an urgent demand for model explaining cloud computing technologies in simple and 

friendly language since existing migration methods mostly focus on specific technical details 

of utilization of cloud services but do not offer practical knowledge to IS executives who may 

find difficult to fully comprehend, digest, synthesize, and put this voluminous and 

unstructured cloud migration body of knowledge for a specific migration purpose. A better 

understanding and articulation of the cloud migration process can facilitate identification of 

appropriate activities, anticipation, cost, and expected outcomes of a migration exercise. In 

response to this issue, the current research extends the literature by proposing a metamodel 

acting as an abstract view of cloud migration domain and flexible for extension and helping 

IS executives to gain the knowledge of what important business and technical activities that 

should be incorporated during moving legacy systems to cloud platforms. 

Secondly, an IT-based organisation may have its own arbitrary off-the-shelf or in-house 

method for a technology shift but it does not applicable for cloud computing migration. An 

important application of results in this research is that metamodel syntheses commonly 

encountered constructs to provide a rich source that can be integrated with existing methods, 

as an extension, to enhance their capability to support cloud migration.  

Thirdly, as is the case in any IS projects, method designers need to select appropriate 

methods that fit characteristics of a given cloud migration scenario. This effort cannot be 

facilitated unless by adopting a suitable tool to analyse and evaluate existing methods in 

terms of their features, shortcomings, strengths, similarities, and differences. According to 

Siau and Rossi (Siau and Rossi 1998), one effective way of comparing family-related 

methods, herein cloud migration process, is to use metamodels as a basis for analysis because 

they take place at one level of abstraction and capture information about methods. As 

mentioned earlier, cloud migration literature points to a dozen of methods for cloud adoption 

such as Chauhan’s Method (Chauhan and Babar 2012), REMICS (Mohagheghi 2011), Tran’s 

Method (Tran, Keung et al. 2011), Cloud-RMM (Jamshidi, Ahmad et al. 2013), Strauch’s 

Method (S. Strauch 2014), Zhang’s Methodology (Zhang, Chung et al. 2004), Oracle Method 

(Laszewski and Nauduri 2011), ARTIST Method (Menychtas, Santzaridou et al. 2013), 

Amazon Method (Varia 2010), Legacy-to-Cloud Migration Horseshoe (Ahmad and Babar 

2014), IVI Cloud Computing Life Cycle (Conway and Curry 2013), and MILAS (Huru 

2009). As the applicability of these methods is limited by characteristics of a migration 

scenario, project managers can use the list of constructs in the metamodel as a checklist to 

examine and select an appropriate existing method to match a given migration scenario.  

And finally, the metamodel is a useful source used by project managers to estimate required 

development effort to make legacy systems cloud-enabled. The metamodel constructs 

provides heuristics that facilitates analysing required migration effort and, accordingly, it can 

be used as an input for the studies by (Tran, Keung et al. 2011) and (Quang Hieu and Asal 

2012) suggesting a migration cost estimation based on development tasks are required to be 

performed.  
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Limitations of the study 
The current study has three limitations. Firstly, a potential weakness of the case studies is 

their specificity to a context which limits generalisability of the results to other applications 

and contexts (Benbasat, Goldstein et al. 1987). Although the applicability of metamodel was 

illustrated in three idiosyncratic cases with different characteristics, the complete satisfaction 

of the DP1 and DP3 can still be subject to some arguments. The metamodel is only a 

representative of the constructs of the three case studies and there is a possibility of being 

extended by introducing new constructs or relationships if more case studies are performed. 

In this regard, this research acknowledges that to increase the generalisability of the 

metamodel as a domain language for cloud computing adoption, it should be appraised with 

more cases in a variety of cloud migration contexts. By the word context, this research 

implies different industries, migration scale (partial or full), and organisation size (.i.e. small 

start-up, medium-sized organisation, and big organisations) which help identifying possible 

improvements of the framework components.  

Secondly, the current study acknowledges the limitation of retrospective studies (Hess 2004). 

Since it was not possible to have a detailed record of each activity of migration scenario, this 

research relied on the accuracy of the written documents about the cloud migration scenarios, 

which might not have documented some valuable constructs that were related to the cloud 

migration. Hence, examining the adherence of the metamodel to the design principles has 

been subjected to the quality of available documents of the migration scenarios. There is a 

possibility of missing some constructs that could be added to the metamodel to increase its 

domain coverage. This threatens the examining of the metamodel adherence to DP1 and DP3. 

To alleviate this issue, we conducted follow up communications with interviewees to confirm 

the validity of the secondary documents of the case studies and provide any missing 

information. 

Thirdly, the refinements to the metamodel have been based on the opinions from six experts 

which might have been biased and confined by their own experience and knowledge in 

relation to the cloud migration. Therefore, the satisfaction of design principles might have 

been affected by this threat. Receiving feedback from a larger number of experts in the cloud 

migration area in future will reduce this threat. Finally, although the steps for the metamodel 

tailorability was showed through the prototype system, there is no claim regarding adherence 

to the DP4 as it can be extended with new steps as briefly pointed out in the next section.  

Conclusion and future research 
This study was justified with the lack of an integrated and abstract domain language for 

efficient creation, configuration, standardisation and sharing knowledge of cloud migration 

processes that cater to specific cloud migration scenarios. In addressing this gap in extant 

literature, a generic, domain-independent, and tunable metamodel was developed and 

evaluated that constitutes reusable domain constructs incorporated into the cloud migration 

process. It was performed by case studies as the context of data collection, domain experts as 

source of data, and a prototype system as the research tool. The identified limitations of the 

current study lead to several directions for further extension of this work. Some of future 

studies are described in the following.  

One is to augment the metamodel to encompass new constructs relevant to post-migration 

and during the system maintenance in the cloud, for example continuous integration and 

delivery. Similarly, the metamodel can be extended to other particular domains of cloud 

computing. An example of that is mobile cloud systems which is a growing area of the cloud 

computing field (Giurgiu, Riva et al. 2009; Dinh, Lee et al. 2013). Mobile cloud applications 
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are run on mobile devices, utilise cloud services, and characterised with challenges such as 

battery life, bandwidth, heterogeneity, and privacy in mobile environments. The metamodel 

can be extended with constructs related to the development of such system. The UML 

formalism used in this study for representation of the metamodel facilitates inclusion and 

representation of new further constructs in a structured way.  

Secondly, depending on the characteristics of a cloud migration scenario, the creation of 

situational cloud migration methods may involve other factors that have not been covered by 

the current version of the metamodel and prototype system. Factors such as code refactoring 

cost, the choice of a target cloud platform, the pricing model of cloud providers, the 

capability of the development team, and time to market which may influence the steps of 

method tailoring procedure. In addition, a method tailoring effort may involve making trade-

offs among different factors or cloud migration goals which may be in contradiction or have 

dependencies with each other. The trade-off analysis of alternative migration methods can be 

performed on the basis of the results of an aggregated analysis of methods. As a further work, 

one can utilise the idea of goal-driven situational method tailoring suggested in (Cesar and 

Paolo 2009; Karlsson and Ågerfalk 2011) as a baseline in order to strengthen the metamodel 

tailorability for addressing such complex situations during a tailoring effort.  

Given the inclination of IT-based organizations towards empowering their legacy systems 

with cloud computing services, this study strives to facilitate consistent knowledge sharing 

and exchange about cloud migration processes as the proposed metamodel generalizes 

common domain constructs that are typically incorporated into a cloud migration process. It 

also enables method engineers to create and share new customised cloud migration methods 

on the basis of selecting constructs from the metamodel and characteristics of a migration 

scenario. We expect that this research will motivate other researchers to further explore new 

cloud migration approaches which systematically simplify the cloud migration process. 
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