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Abstract

Several acoustic cues contribute to auditory distance estimation. Nonacoustic cues, including familiarity, may also play a
role. We tested participants’ ability to distinguish the distances of acoustically similar sounds that differed in familiarity.
Participants were better able to judge the distances of familiar sounds. Electroencephalographic (EEG) recordings collected
while participants performed this auditory distance judgment task revealed that several cortical regions responded in
different ways depending on sound familiarity. Surprisingly, these differences were observed in auditory cortical regions as
well as other cortical regions distributed throughout both hemispheres. These data suggest that learning about subtle,
distance-dependent variations in complex speech sounds involves processing in a broad cortical network that contributes
both to speech recognition and to how spatial information is extracted from speech.
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Introduction

An important property of auditory perception is the ability to

locate the origin of a sound. One fundamental question about this

ability is, ‘How do listeners process auditory inputs to estimate

their distance from a sound source?’ Early attempts to answer this

question focused on the physical characteristics of received sounds

that might provide distance cues. The most prominent cue is

sound intensity; sounds coming from nearby are generally louder

than ones that have traveled long distances [1]. The spectral

content of a sound can also provide relevant cues: during

propagation in air, high frequencies attenuate more rapidly than

low frequencies [2]. The effort exerted in communicating speech

over long distances can also change the spectral information within

speech sounds [3,4]. In addition, the direct-to-reverberant energy

ratio (energy reaching the listener directly versus via reflecting

surfaces) decreases with increasing source distance, providing yet

another acoustic cue for distance estimation [2,5].

Despite the abundance of physical cues that potentially could

provide information about distance to a sound source, humans are

generally poor at making auditory distance judgments [3,6,7]. One

common finding is that people tend to underestimate the distances

of far sound sources and to overestimate the distances of nearby

sources [2,3]. Furthermore, thresholds for detecting changes in the

distance of an auditory sound source generally correspond to

about a 13% change in distance and can be as much as 48% for

nearby sounds [7,8]. This is much higher than thresholds for

detecting differences in horizontal azimuth, which can be near 1%

for frontal sound sources [8,9].

The physical characteristics of sounds are not the only factors

that determine how well a listener can judge auditory distance. If

familiar sounds are used to test distance perception, performance

is better than if unfamiliar sounds are used [3,6,10]. In one study,

forward and backward speech sounds were recorded at distances

of 2 m and 30 m [10]. Participants were played pairs of these

sounds and were asked to indicate whether the source of the

second sound of the pair was closer, further, or equidistant from

the first. In this task, distance perception of familiar stimuli

(forward speech) was significantly above chance, whereas distance

perception of unfamiliar stimuli (backwards speech) did not differ

from chance. Similarly, Brungart and Scott [3] tested the ability of

participants to estimate the distances of forward and backwards

speech sound sources that were recorded at distances of.5, 1, 2, 4,

8, 16, 32, 64, and 128 m in a large open field. When speech

sounds were played backwards, there was a substantial decrease in

accuracy relative to versions of the same speech samples played

forward. Because backwards speech had identical spectral

information as normal speech, Brungart and Scott [3] suggested

that listeners use both acoustic and phonetic information in order

to make accurate distance judgments. However, both of these

studies confounded phonetic familiarity with word familiarity. For

instance, the speech sequence ‘‘Don’t ask me to carry an oily rag

like that’’ (a sequence used in [3]) contains both familiar words and

familiar phonemes, leaving it unclear which type of familiarity

might facilitate performance.

To our knowledge, no studies have attempted to look at the

neural mechanisms underlying familiarity effects on auditory

distance perception in humans, and very few have examined the
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neural substrates that underlie processing of physical auditory

distance cues (for review see [8,11]). The few researchers studying

neural correlates of auditory distance perception have looked at

cortical areas associated with auditory processing. In one

magnetoencephalographic (MEG) study, streams of white noise

bursts with duration and amplitude deviants were presented to

human participants [12]. Auditory evoked magnetic fields

measured over the left and right supratemporal planes revealed

that amplitude deviants led to a larger evoked response over the

right supratemporal plane than over the left. Given that amplitude

can provide a cue to distance, the authors speculated that the right

temporal lobe is important for detecting the distance of a sound

source. Right temporal areas have also been implicated in the

tracking of changes in auditory distance in a functional magnetic

resonance imaging (fMRI) study in which sounds that increased in

amplitude over time activated a distributed network of brain

regions including the right temporal/parietal junction, right motor

and pre-motor areas, parts of cerebellar cortex, and the midbrain

[13]. These findings suggest that non-auditory areas may also be

important for judging sound source distance.

In the current study we attempted to explore differences in

participants’ ability to make auditory distance judgments between

sounds with similar physical characteristics, but having different

levels of phonetic and lexical familiarity. We used sounds that were

lexically and phonetically familiar (English speech), only phonet-

ically familiar (Bengali Speech), or both lexically and phonetically

unfamiliar (backwards English and Bengali Speech). We also

intensity-normalized all sounds to investigate the neural mecha-

nisms underlying the perception of distance without intensity cues,

as there appears to be little neuroimaging work investigating other

cues available for auditory distance perception. We hypothesized

that participants would be better at distinguishing near and far

sources of familiar sounds. In addition, if lexical familiarity aids

auditory distance perception, then source distance for English

speech should be more distinguishable for native English speakers,

whereas if phonetic similarity is sufficient, then there should be no

advantage for English speech over Bengali speech.

We used high-resolution EEG processed by independent

component analysis (ICA) to investigate brain processes that

underlie differences in the judgment of distance for intensity-

normalized speech sounds varying in familiarity. EEG scalp signals

are each mixtures of potentials volume-conducted from cortical

brain processes plus non-brain artifact processes (eye movements,

scalp and neck muscle activities, electrocardiographic signals, line

noise, etc.). Using ICA, multi-channel EEG signals can be

separated into independent component (IC) processes that can

be attributed to particular brain regions or non-brain origins

[14,15]. This approach provides a powerful tool for identifying

activities in brain regions of interest, as well as sufficient temporal

and spatial resolution to index the distributed network of brain

areas whose joint activities may underlie auditory distance

judgment [13] including familiarity effects.

Since speech familiarity has been shown to facilitate distance

perception [3,6,10], we expected that many of the same cortical

regions involved in speech recognition (e.g., left temporal and

frontal regions [16]) might also contribute to judgments of the

distance from a speaker. Given the difficulty of the task, we also

expected to find changes in EEG activities in other cortical regions

beyond those involved in recognizing speech. In particular, we

sought to determine whether cortical areas thought to be

important for determining sound source distance from intensity

cues contributed to processing when intensity cues were minimized

and other cues were more informative.

Results from the present study show that phonetic familiarity

increases the accuracy of auditory distance estimation (i.e., English

and Bengali was perceived more accurately played forwards than

backwards), and that although many of the same brain regions are

engaged during processing of all speech-like sounds, EEG

dynamics in these brain regions vary depending on a participants’

familiarity with the sounds they are hearing.

Results

Behavioral Results
The sound stimuli used in the current experiment were forward

and backwards played versions of English and Bengali speech

samples recorded at distances of 2 m or 30 m away from a speaker

in an open field (see Materials and Methods section for details).

Recordings were equalized in overall intensity to minimize

intensity cues to distance. Fluent speakers of English with no

Bengali language background (n = 15) heard these sounds played

over speakers at a comfortable volume level while continuous EEG

was collected from 248 channels. Participants were instructed to

respond ‘Far’ or ‘Near’ by pressing keys to indicate whether they

thought the pre-recorded sound source was 2 m or 30 m away

after each presentation of a sound. Accuracy was measured as the

percent of total trials in which the participant responded correctly.

No feedback of performance was given at any point during testing.

The mean accuracy of auditory distance judgments for

participants, averaged across sound categories, was 61% correct,

which was significantly above chance (t(14) = 6.53, p,0.001,

Cohen’s d = 1.67). Average accuracy scores for English, Bengali,

and backward speech categories are shown in Figure 1. A single

factor (speech category) repeated-measures ANOVA showed that

the means for different categories of speech were significantly

different, (F(2, 28) = 14.77, p,0.001, gp
2 = .77). Planned compar-

ison paired sample t-tests revealed that the mean accuracies for

English (t(14) = 4.115, p = .001, Cohen’s d = 1.337) and Bengali,

(t(14) = 6.181, p,.001, Cohen’s d = 1.363) were significantly

higher than for backwards speech.

There were also substantial individual differences in accuracy

(see Figure 1). Across participants, mean task performance ranged

from 51% to 77% correct, leaving even the best performer far

away from perfect performance, and demonstrating that some

participants found the task to be extremely difficult. Despite these

individual differences in discrimination ability, most participants

showed the same general pattern of results as in the group mean

data. All but 2 of the 15 participants performed worst for the

backwards speech category.

Electrophysiological Results
Extended infomax ICA was used to separate each participant’s

EEG data into ICs. Clusters of ICs were identified using a distance

metric composed of principal component analysis (PCA) reduced

event-related spectral perturbations (ERSPs), dipole locations, IC

log power spectra, and K-means clustering (see Materials and

Methods section for more detail).

ERSPs, which show mean log spectral power changes relative to

baseline across trials at a range of frequencies and time latencies

[17], revealed spectral dynamics of several component clusters

time-locked to task events. For some clusters, these dynamics were

significantly different between speech categories. We report here

IC clusters centered in or near the left and right temporal lobes, as

well as clusters in other non-auditory regions that showed

significant differences between speech categories in their spectral

dynamics and/or significant event-related changes in IC spectrum.

The centroid locations of IC clusters located in or near left-
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temporal lobe (STG), right-temporal lobe (STG), anterior

cingulate cortex (ACC), medial frontal gyrus (MFG), parietal

cortex (precuneus), and the right inferior parietal lobule are shown

in Figure 2. There were other clusters of ICs, but these are not

described here, because processes typically associated with those

clusters were not a focus of the current study.

ERSP images for all IC clusters revealed similar event-related

dynamics across speech categories. For this reason, all images of

ERSPs in this paper display the average ERSPs across speech

conditions. In constructing the ERSPs, the temporal axes of the

single-trial spectrograms were time-warped to make the number of

data points from stimulus onset to response onset the same for all

trials, allowing averaging and display of stimulus and response

event-related phenomena in the same figure. The abscissa of the

ERSP images thus shows changes in EEG spectral power as they

occur through a temporal dimension normalized to the mean

response time (1700 ms) rather than over absolute time. Details of

this normalization procedure are provided below in the EEG

analysis subsection of the Materials and Methods section.

Temporal IC clusters. ERSPs averaged across speech

categories for the temporal IC clusters are shown in Figure 3.

Changes to the IC spectrum were only analyzed within times and

frequencies in which there was at least a 0.5 dB change from

baseline. This method was used to define windows to be examined

for differences between ERSPs for speech categories in all reported

clusters.

For the left temporal cluster, the only time-frequency window

that showed a larger than 0.5 dB change from baseline was 8–

12 Hz between 500 ms and 2750 ms. Figure 4 shows the power,

relative to baseline, in this window for different speech conditions.

A repeated-measures ANOVA with speech condition as the only

factor showed that there was a significant difference between

means (F(2, 40) = 7.80, p = .001, gp
2 = .281). Post-hoc one-sample

t-tests, interpreted with Bonferroni corrections for three compar-

isons showed that the decrease in 8–12 Hz power was significantly

larger for English than for Bengali (t(20) = 4.267, p,.001, Cohen’s

d = 1.31), and Backwards speech (t(20) = 2.51, p = .021, Cohen’s

d = .73). Differences between speech categories were expected

considering that left temporal areas are believed to be important

for the processing of familiar speech (see [16], for review). In the

current case, the larger alpha band power decrease could be

related to stronger engagement of left temporal areas during the

processing of English speech sounds by English speakers [16,18].

For the right temporal cluster, three different time/frequency

windows showed larger than 0.5 dB changes from baseline. These

are also shown in Figure 4. Relative power in these windows was

compared using a (3) (window) 6 (3) (speech category) repeated-

measures ANOVA. Only a main effect of window was found (F(2,

52) = 7.12, p = .003, gp
2 = .354), as different windows contained

different degrees and directions of power changes. The finding

that right temporal areas are engaged by this task is consistent with

previous work on intensity cues in auditory distance [12,13], but

differences in the time course of frequencies was not found

between speech categories, leaving the behavioral differences

unassociated with differential EEG activity of right temporal areas.

Frontal IC clusters. IC centroids for frontal clusters were

centered in the anterior cingulate cortex (ACC) and the medial

frontal gyrus (MFG) with individual ICs in or near those locations.

The ERSPs associated with these clusters are shown in Figure 5.

For the ACC cluster, the mean ERSP shows a sustained

response in low-frequency power (2–8 Hz), increase at high-

alpha/low-beta frequencies (10–16 Hz), and a high beta-band

response (23–28 Hz) beginning after speech onset and lasting until

the motor response. Figure 6 plots the strength of these changes in

the IC spectrum across speech categories. A (3) (window) 6 (3)

(speech category) repeated-measures ANOVA revealed a main

effect of window (F(2, 88) = 23.87, p,.001, gp
2 = .520), reflecting

the different directions and strength of change in different

Figure 1. Accuracy for different speech categories. (left) Mean accuracy for each speech category. Error bars show the standard error of the
mean. The dotted blue line indicates chance performance level. (right) Green lines show the performance of each participant for different speech
categories and green circles indicate individuals’ mean performance across speech categories.
doi:10.1371/journal.pone.0041025.g001
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windows, and a main effect of speech category (F(2, 88) = 3.24,

p = .049, gp
2 = .128), showing that different categories exhibited a

different mean power spectral change. The window x speech

category interaction was also significant (F(4, 88) = 4.181, p = .004,

gp
2 = .160).

Paired-sample t-tests were performed on all possible within

window comparisons between speech categories. T-tests were

interpreted with Bonferroni corrections for 9 multiple compari-

sons. Bengali speech had significantly more 10–16 Hz power

increase than either the English (t(22) = 2.82, p = .01, Cohen’s

d = .93) or backwards speech categories (t(22) = 2.32, p = .03,

Cohen’s d = .94). It was also the case that 23–28 Hz power

spectral decreases were smaller for Bengali than for Backwards

speech (t(22) = 2.30, p = .031, Cohen’s d = .73).

In the medial frontal gyrus IC cluster, the ERSP showed a

significant theta (4–8 Hz) and high-alpha/low-beta (10–14 Hz)

power increase shortly after stimulus onset. There were also

significant decreases in 6–12 Hz power and (possibly 1st harmonic)

beta frequency bands (15–28 Hz) in the time surrounding response

onset. Figure 6 shows the relative power for each of these

frequency ranges during the times they exceeded a 0.5 dB change

from baseline. A (4) (window) 6 (3) (speech category) ANOVA

showed a main effect of window (F(3, 120) = 25.47, p,.001,

gp
2 = .560) as well as a significant window 6 speech category

interaction (F(6, 120) = 2.40, p = .032, gp
2 = .107).

To explore the sources of the interaction, four separate repeated

measures ANOVAs were conducted on each window with speech

category as the sole factor. Means for speech categories were

significantly different for the theta band power difference (4–8 Hz)

(F(2, 40) = 4.05, p = .025, gp
2 = .168), and for the beta band power

difference (15–28 Hz) (F(2, 40) = 4.81, p = .013, gp
2 = .194).

Paired sample t-tests, interpreted with Bonferroni corrections for

6 comparisons, showed that following Bengali speech there was

significantly less event-related change in (4–8 Hz) theta power

(t(20) = 2.98, p = .007, Cohen’s d = 1.04) and in 15–28 Hz beta

(t(20) = 3.44, p = .003, Cohen’s d = 1.09) than backwards speech.

The same trend was apparent in the comparison of English and

backwards speech for both theta power (t(20) = 1.73, p = .10,

Cohen’s d = .56) and for beta power (t(20) = 1.77, p = .092,

Cohen’s d = .55), but contrasts were only marginally significant.

Parietal IC clusters. Two parietal clusters of ICs showed

task related spectral perturbations. Figure 7 shows the scalp maps

and ERSPs of a cluster centered in or around precuneus (A) and

another cluster centered in or near the right inferior parietal lobule

(B).

The IC cluster centered in the precuneus of the parietal lobe

showed a significant and sustained decrease in high-theta/alpha

band 6–12 Hz power and high beta (18–30 Hz) power beginning

approximately 500 ms after the stimulus onset and dissipating

following the manual response. Figure 8 shows the relative power

at these frequencies across speech categories and the normalized

time frames within which they were measured. A (2) (window) x (3)

(speech category) repeated-measures ANOVA found only a

marginally significant main effect of window (F(1, 58) = 3.78,

p = .062, gp
2 = .115), owing to the stronger decrease in 6–12 Hz,

than in beta band power.

For the right parietal cluster, there was a sustained theta (4–

8 Hz) response starting shortly after the onset of speech and

continuing until the response. There was also an alpha power (8–

12 Hz) decrease between about 600 ms and 1800 ms. After the

response onset, at several frequencies, there was a large power

increase; these changes were not analyzed further since they

Figure 2. Independent component (IC) cluster centroids. Centroids of IC clusters as determined by equivalent dipole reconstructions with
locations in or near: left superior temporal gyrus (green), right superior temporal gyrus (blue), anterior cingulate cortex (yellow), medial frontal gyrus
(red), precuneus (pink), and right inferior parietal lobe (cyan).
doi:10.1371/journal.pone.0041025.g002
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occurred within the inter-trial interval. A (2) (window) 6 (3)

(category) repeated-measures ANOVA revealed a main effect of

window (F(1, 44) = 25.00, p,.001, gp
2 = .532), demonstrating

differences in extent and of direction of relative theta and alpha

power. There was also a significant main effect of speech category

(F(2, 44) = 3.99, p = .038, gp
2 = .138) and a marginally significant

window x speech category interaction (F(2, 44) = 2.69, p = .079,

gp
2 = .109). To get a better idea of the factors contributing to these

effects, we conducted paired-sample t-tests on each possible

comparison of speech category means within the same window.

The only statistically significant effect was a stronger decrease in

alpha band 8–12 Hz power following backwards compared to

Bengali speech (t(22) = 3.97, p = .001, Cohen’s d = 1.29).

Discussion

In line with previous studies on auditory distance perception in

humans, we found that participants’ judgments of source distance

for intensity-normalized speech sounds were generally poor.

Participants distinguished intensity-normalized speech pre-record-

ed at a distance of either 2 or 30 m with a mean accuracy of only

61% correct. They judged the distance of forward speech more

accurately than backwards speech, replicating several prior reports

that people are better at estimating the source distance of familiar

speech [3,6,10]. The current study extends past behavioral studies

by showing that such benefits reflect the processing of familiar

phonemes or simpler acoustic features rather than lexical

familiarity, because English speakers were as accurate at distin-

guishing source distance when the speech being judged was in an

unfamiliar language (Bengali). This finding also suggests that

novelty per se cannot fully account for the differences in ranging

accuracy between natural and reversed speech, since the novelty of

the unfamiliar language did not degrade performance.

Why it is easier to judge the distance of a speaker producing

natural speech remains unclear. Brungart and Scott [3] suggested

that time-reversed speech contains all of the relevant acoustic cues

for judging the distance of a speaker producing speech at

conversational levels, but that phonetic information might be

necessary for a listener to correctly interpret these cues when

speech was produced at higher amplitudes. In that study, distant-

dependent variations in intensity level were preserved and likely

contributed to participants’ performance. McGregor and col-

leagues [10] equalized the loudness of speech stimuli in their

experiment, and found that reversing speech degraded perfor-

mance (as was seen in the current study). These findings suggest

that phonetic information may be particularly relevant when

Figure 3. Event-related spectral perturbations (ERSPs) in temporal clusters. ERSPs and associated scalp maps for the (A) left temporal and
(B) the right temporal independent component cluster. The frames immediately to the left of the ERSP images show the average baseline log power
spectrum (2200–0 ms, blue trace) that was subtracted from individual component activities to generate ERSPs. The red and green traces in these
frames show the average upper and lower significance threshold (p,.001) across individuals. The ERSP images on the right were created by
averaging component ERSP images from individual participants after masking non-significant perturbations from baseline (p,.001). Vertical blue
lines in the ERSP image indicate speech delivery onsets, and pink dashed lines indicate motor responses. Colors in the images indicate the relative log
power (in dB) at that frequency and latency (normalized) relative to the power at that frequency during the baseline period.
doi:10.1371/journal.pone.0041025.g003
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Figure 4. Spectral power for different speech categories in temporal clusters. Relative power in time/frequency windows that showed
greater than a 0.5 dB change from baseline for the left and right temporal IC clusters, and for different speech categories. Error bars show the
standard error of the mean. The asterisk indicates that the mean relative power for English speech was significantly different from that of Bengali and
backwards speech.
doi:10.1371/journal.pone.0041025.g004

Figure 5. Event-related spectral perturbations (ERSPs) in frontal clusters. Scalp maps and their associated time-warped ERSP images for the
ACC (A) and medial frontal gyrus (B) IC clusters. Other details as in Figure 3.
doi:10.1371/journal.pone.0041025.g005
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Figure 6. Spectral power for different speech categories in frontal clusters. Relative power in time/frequency windows for which there was
more than a 0.5 dB change from baseline. Error bars show the standard error of the mean. Asterisks denote means that were significantly different.
doi:10.1371/journal.pone.0041025.g006

Figure 7. Event-related spectral perturbations (ERSPs) in parietal clusters. Scalp maps and ERSPs associated with clusters of ICs centered in
precuneus (A) and the right inferior parietal lobule (B). Other details as in Figure 3.
doi:10.1371/journal.pone.0041025.g007
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intensity cues are not reliable indicators of source distance. This

leaves the question of why phonetic processing might increase the

availability of localization cues unanswered. One possibility is that

familiar speech is processed more automatically, freeing brain

resources for extracting auditory distance cues. Another possible

factor, not considered in previous work, is that natural speech

sounds are not only more familiar, they are also more

reproducible. If reproducible sounds activate motor representa-

tions relevant to producing those sounds, then the availability of

multimodal stimulus representations could enhance processing of

acoustic cues [20,21]. This explanation predicts that the more

easily imitated a sound is, the better individuals should be able to

judge how far it has traveled.

Past neuroimaging work has implicated right temporal brain

areas in auditory distance perception [8,11–13]. Here we observed

an IC process cluster centered in the right superior temporal gyrus

that exhibited stimulus-related changes in EEG activity during

performance of the distance judgment task. These changes were

comparable across different speech conditions, however, and thus

cannot account for the observed behavioral differences. For a

similar IC cluster in the left temporal lobe, listening to English

speech sounds produced more alpha power decrease (‘alpha

blocking’) than other speech categories, but since distance

perception with English and Bengali speech was comparable, this

difference also cannot account for the behavioral results.

Recent observations of brain activity changes produced during

listening to backward speech using fMRI [22] and MEG [23]

imaging suggest that auditory-specialized networks in the temporal

lobes respond as reliably and systematically to backwards speech as

to natural speech, consistent with the current findings. However, it

remains possible that differences in processing in these regions not

indexed by the IC source EEG power-change measures used in

this study (e.g., fine-scale differences in the spatial distribution of

neural activity or in auditory receptive fields) might significantly

contribute to differences in accuracy across conditions.

We also observed power decreases at alpha and high-beta band

EEG frequencies in an IC cluster located in or near precuneus.

Studies of auditory spatial processing have implicated the parietal

lobes in spatial attention [24,25]. For instance, in a task where

participants had to attend to either the left or right side of auditory

space to detect a target sound, fMRI data showed that there was

stronger activation in the left and right precuneus of the superior

parietal lobes in a task where targets on the left and right side of

auditory space were not present [25]. The activity near the

precuneus centered IC cluster in this study also suggests that

estimating source distance may involve the superior parietal lobe,

as it does for localization in horizontal space. However, we did not

manipulate attention in the current task and thus cannot say for

certain whether our finding reflects spatial attention. As with the

right temporal IC cluster, the event-related spectral dynamics of

the precuneus cluster processes were not significantly different

between speech categories, providing no information concerning

brain-substrates underlying behavioral differences.

An IC cluster centered in or near the anterior cingulate cortex

(ACC) showed significant perturbations in low frequency, low-

beta, and high-beta band EEG power between the onset of speech

and response. Onton et al. [19] showed that the level of relative

EEG power in theta and low-beta bands for a similar cluster of ICs

was related to the number of items stored in working memory. In

that study, larger power was produced by the IC cluster when

more items were being stored, suggesting that larger relative power

was indicative of more effortful maintenance of memories. Others

have implicated the ACC in attention associated with selective

processing of relevant parts of an auditory scene [26].

In the current study, we saw the largest relative power changes

for Bengali speech items in the low and high beta ranges for an IC

Figure 8. Spectral power for different speech categories in parietal clusters. Relative power for theta, alpha, and high-beta bands centered
in the precuneus and right inferior parietal lobule. Error bars show the standard error of the mean. The asterisk indicates that the mean relative power
for backwards speech was significantly different from that of Bengali speech.
doi:10.1371/journal.pone.0041025.g008
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cluster near ACC. One possible reason for this finding may be that

participants were trying to maintain and/or attend to information

related to making the distance judgment. Distance cues in English

speech may be more salient and easier to maintain because of their

lexical and phonetic familiarity [27], and may thus require less

engagement of ACC (i.e., greater ACC activity is required to

effectively process Bengali speech). Backwards speech may also

show less engagement of ACC because information cannot be

adequately maintained in working memory (backwards speech is

harder to reproduce, and thus rehearse), and because selective

attention may be less effective when lexical or phonetic familiarity

cues are not contributing to auditory scene analysis. The current

study was not designed to assess the validity of such a hypothesis.

However, the observed differences in the ACC suggest that future

research on familiarity effects and auditory distance perception

should further investigate how working memory and attentional

processing vary between different categories of stimuli.

For an IC cluster centered in or near the medial frontal gyrus,

there was a relative increase in the theta band power for all

conditions. This increase closely followed stimulus onsets, and was

largest for backwards speech. Another IC cluster associated with

the right inferior parietal region showed relative decreases in the

alpha band. This decrease appeared to be more closely linked with

the response onset than with the stimulus onset and was again

largest for backwards speech. Several neuroimaging studies have

implicated parietal-frontal networks in sound localization, and

have identified the right parietal cortex as being particularly

important for higher-order spatial processes (reviewed by [28]). It

has also been suggested that circuits in the medial frontal gyrus are

specialized for gathering information in perceptual classification

tasks [29]. In general, the current results are consistent with the

idea that extracting spatial cues from natural speech requires less

engagement of fronto-parietal circuits than is the case for

backwards speech. However, there is another possible reason

why we may have seen stronger responses in the backwards speech

condition. Medial frontal and right parietal areas have also been

implicated in processing events that are novel [30]. Backwards

speech was the most novel speech category used here. It therefore

could also be the case that medial frontal and right parietal areas

are more active for backwards speech because they are working to

process both novelty and auditory spatial information. This

hypothesis might also explain why performance was worst for

the backwards speech category. Even though source locations may

be automatically assessed for novel stimuli [31], overlap in the

brain regions involved in novelty processing and auditory spatial

perception might actually hurt performance. In this case, distance

estimation may have been worse for novel backwards speech

because the resources available to process spatial information were

more limited. Either way, the current findings are the first

indication that the coherence of particular EEG frequency

components in these non-auditory regions may relate to differ-

ences in the accuracy of auditory distance perception. This

relationship may be similar to that observed in auditory cortex

between theta-band phase patterns and speech intelligibility [32].

The temporal dynamics of changes in power across different

frequency bands revealed in ERSPs during task performance

(Figures 3, 5, & 7) suggest that a complex, widespread, and well-

coordinated bout of brain activity occurs during performance of

this auditory task. Surprisingly, the earliest stimulus-related

changes are most evident in the cluster associated with the medial

frontal gyrus and involve increases in EEG power, whereas other

components showed later onset of power changes that involved

decreases in power (e.g., in the alpha band). It is not clear whether

these dynamics contribute to perceptual acuity or performance.

This could potentially be revealed in future studies by analyzing

individual differences in accuracy and brain dynamics.

The current study represents a first attempt at identifying

changes in brain activities that underlie judgments of auditory

distance, and is thus limited in several respects. We did not directly

measure participants’ ability to localize sound sources and so

cannot assess whether their performance in this dichotomous

auditory task accurately reflects their spatial acuity. Furthermore,

it is possible that participants’ used acoustic cues to differentiate

sounds without perceiving them as spatial cues (i.e., they could

distinguish the sounds, but did not perceive the differences as

corresponding to changes in position of the source). Given that the

recordings of playbacks were of the same speech-like sounds

broadcast from different distances, it seems likely that most or all

of the differences between recordings would reflect propagation-

related cues. Also, given that sound localization often occurs

rapidly and involuntarily, participants’ brains are likely continu-

ously monitoring for the presence of such cues. Nevertheless,

additional studies will be needed to definitively identify the neural

substrates of auditory distance estimation, as well as the factors

that constrain the accuracy with which a particular individual can

judge the distance to a sound source.

Materials and Methods

Ethics Statement
The study was approved by the Human Research Protections

Program of the University of California, San Diego. All

participants were asked to read and sign an informed consent

form before participating in the study.

Participants and EEG Data Acquisition
Seventeen participants from the University at California, San

Diego, were paid to take part in the study. All participants had

normal hearing. All were fluent speakers of English with no

Bengali language background. Two participants were dropped

from analyses because of errors that occurred in the collection of

EEG data.

EEG was recorded from 248 channels at a sampling rate of

512 Hz, 24-bit A/D resolution, referenced to the CMS-DRL

ground using a Biosemi ActiveTwo system (Biosemi, Netherlands).

Caps with a custom whole-head montage positioned electrode

wells over most of the skull, forehead, and lateral face surface. The

wells were filled with water based conductive gel and the

electrodes were placed within them. The locations of electrodes,

relative to skull landmarks were recorded for each participant

(Polhemus, Inc). Input impedances for electrodes were brought

below 20 kV before data collection. If the impedance criterion was

not reached for an electrode, that electrode was rejected from

analyses. Stimulus and response onsets were recorded in a separate

event channel.

Stimuli and Experimental Procedures
Three categories of sound were used in order to investigate

effects of familiarity on the perception of auditory distance and

EEG dynamics. These categories were lexically and phonetically

familiar (English speech), phonetically familiar (Bengali speech),

and unfamiliar (backwards speech). The same speaker, who was

fluent in English and Bengali, produced all speech sounds in a

natural manner. These particular categories of stimuli were chosen

and the same speaker was used so that the basic spectral structure

would be very similar across categories [33,34]. Because

backwards speech has identical spectral characteristics and

temporal dynamics as forward speech, it is the closest to a ‘non-
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speech’ stimulus that one can get while still being very physically

similar to natural speech. English speech consisted of the following

phrases/words: ‘‘Don’t ask me to carry an oily rag like that’’,

‘‘Threat’’, ‘‘Warning’’, ‘‘Emergency’’, ‘‘How far away do you

think I am?’’, ‘‘Look out’’, ‘‘Over here’’, ‘‘Caution’’, ‘‘Hello’’, and

‘‘Goodbye’’. Bengali phrases were: ‘‘Amaka ooghta tooltaa bolo-

nah’’, ‘‘Aa kha nae’’, ‘‘Aloo’’, ‘‘Kawla’’, ‘‘Choo noo dau’’, ‘‘Shaub

dhan ah’’, ‘‘Aamee kau tou dor ah ache?’’, ‘‘Mo mosh kar’’,

‘‘Hah’’, and ‘‘Nah.’’ With the exception of hello and goodbye, all

English words and sequences were chosen in order to replicate

previous work [3,10]. Backwards speech was created from both

English and Bengali speech (‘‘Don’t ask me to carry an oily rag like

that’’, ‘‘Threat’’, ‘‘Warning’’, ‘‘Emergency’’, ‘‘How far away do

you think I am?’’, ‘‘Look out’’, ‘‘Goodbye’’, ‘‘Aa kha nae’’, ‘‘Choo

noo dau’’, and ‘‘Aamee kau tou dor ah ache?’’). Pilot studies

revealed no differences between backwards speech made from

English and Bengali stimuli. In order to make neuroimaging

comparisons more easily interpretable, we collapsed across

backwards English and Bengali stimuli in our design and analysis.

All categories of speech were recorded in a single recording

session. Sounds were initially recorded in the same room using an

AKG D9000 microphone (frequency range 20 Hz –20 kHz)

approximately 6 inches from the talker’s mouth (70–90 dB SPL

peak) and a digital recorder (Sony MD Walkman Mz-NH900,

recording in.wav format). Backward sounds were created by

reversing waveforms using the acoustic software program Peak

(BIAS, Inc.). All sounds were broadcast from a SUNN speaker

(model 1201, Fender Musical Instruments Corporation) into an

open grass field at night in order to minimize environmental noise.

The free field environment was chosen to replicate the recording/

testing methods of previous work [3,10]. Broadcasts were recorded

from a distance of 2 m (Near) and 30 m (Far), using the same setup

as the initial recordings. Thus, there were 20 recordings for each

category of sound, 10 of which were recorded from Near and 10 of

which were Far, giving a total of 60 sounds. All the sounds were

then normalized to a constant intensity level (210 dB FS) using

PEAK to minimize the availability of intensity as a distance cue.

Participants were seated in a dimly lit room in front of a

computer screen and keyboard. Instructions and feedback after

responses were presented via the computer screen using ERICA

software [35]. Sounds were presented using the same software over

two speakers approximately three feet in front of participants.

Sound levels (peak level ,75 dB SPL), room, and speaker

arrangement were the same for all participants. Pilot studies

showed that the same general pattern of behavioral results was

obtained using headphones. Because of the pilot studies, and

previous studies showing similar results [3,10], we suspect that

room characteristics (e.g., reverberation, noise, etc) did not

significantly affect the results of the current study.

Participants were told that they would be presented with sounds

that were recorded at near or far distances and that their task

throughout the entire experiment was to use their right hand to hit

the ‘J’ key on the computer keyboard if the sound was Near and

the ‘L’ key if the sound was Far. They were also told that sounds

were altered such that intensity was not a viable discrimination

cue.

There were 3 blocks of 60 stimulus presentations. Self-paced

breaks were taken in between blocks, none of which lasted longer

than five minutes. Stimuli from the different speech categories,

recorded at both Near and Far distances, were presented in

random order. Participants were given 4 seconds after the onset of

a sound to respond. No feedback was given throughout testing. If

no response was made on a given trial, the computer screen

displayed the request ‘‘Please make a response next time’’ before

moving on to the next trial. These trials were removed from

analysis.

EEG Analysis
Data was analyzed using the open source EEGLAB toolbox for

Matlab ([36]; http://sccn.ucsd.edu/eeglab). Raw EEG data was

visually inspected for high-amplitude, high-frequency muscle noise

and other artifacts. Segments of EEG that contained these artifacts

were removed from analysis. Eye movements were not a criterion

for removal. Data from electrodes identified as having poor skin

conductance by their abnormal activity patterns was also rejected.

After this selection process, data from 134–224 electrodes

(M = 186, SD = 32) remained for each participant. EEG data

was then digitally high pass filtered with a cutoff of 1 Hz, re-

sampled at 250 Hz, and re-referenced to the average of the

retained electrodes.

Each participant’s filtered EEG data was entered into a full-rank

extended infomax ICA using the binica() function [37] of the

EEGLAB toolbox. See Jung et al. [38] for derivation of the

infomax algorithm; for the application of the algorithm to EEG

data see Makeig et al. [14] and Onton and Makeig [15].

Decompositions used default extended-mode binica() training

parameters. Extended infomax ICA allows the recovery of

components with supra- or sub-Gaussian activity distributions.

For instance, 60-Hz line noise has a supra Gaussian activity

distribution which in favorable circumstances can be separated

from other data by using extended infomax ICA.

The scalp topographies, time courses, and spectra of ICs were

visually inspected to separate brain activity from non-brain

artifacts (e.g., muscle noise, line noise). For instance, ICs with

spectra that showed high power in the high frequencies were

rejected for being muscle artifacts (for details on IC rejection see

[15]). An equivalent current dipole for each IC was then computed

by using a boundary element head model co-registered to each

participant’s electrode locations by warping the electrode locations

to the model head using tools from the EEGLAB dipfit() plug-in. If

the best fitting equivalent-dipole had more than 15% residual

variance over all electrodes from the IC scalp map, the component

was rejected from further analysis. ICs with an equivalent-dipole

outside of the brain were also rejected. The mean number of

remaining ICs per subject was 19 (SD = 7; range, 9–32).

Continuous EEG was split into 4-s epochs beginning 1 second

before stimulus onset and ending 3 seconds after it. ERSP

transforms were computed for brain ICs to examine processing-

related changes in the EEG power spectrum. ERSPs plot event-

related changes in spectral power from baseline across a wide

range of frequencies [17]. The power spectrum in time windows

centered in the 200 ms prior to stimulus onsets was used as the

mean baseline. Default EEGLAB Fast-Fourier transform (FFT)

parameters of the EEGLAB newtimef() function were used to

estimate spectral power in overlapping time/frequency windows.

The single-trial spectrograms were linearly time-warped so as to

produce equal numbers of data points between stimulus onset and

the key press in all trials. Therefore, ERSP results between the

labeled stimulus and response times reflect mean spectral

perturbations proportionately following the stimulus and before

the motor response.

The identification of clusters of similar ICs within and between

participants was based on the similarities of their scalp map

topographies, IC equivalent-dipole locations, log power spectra,

and ERSPs. Pre-clustering involved dimension reduction using

PCA to obtain an IC pairwise distance metric. K-means was then

used to cluster components into 12 separate clusters, one of which

was ignored as it contained ICs that were at least 3 standard
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deviations away from fitting into any of the other clusters (as per

the clustering metric).

Acknowledgments

The authors would like to thank Patchouly Banks, Estella Liu, Barbara

Church, Clarrisa Lock, Arnaud Delorme, Ying Wu, Alexandria Zakr-

zewski, Jeremy & Leslie Johnston, and Andre Vankov for support

throughout the project.

Author Contributions

Conceived and designed the experiments: EM MGW. Performed the

experiments: MGW KG. Analyzed the data: MGW KG SM. Contributed

reagents/materials/analysis tools: SM. Wrote the paper: MGW EM.

References

1. Coleman PD (1963) An analysis of cues to auditory depth perception in free

space. Psychol Bull 6: 302–315.
2. Zahorik P (2002) Assessing auditory distance cues using virtual acoustics. J Acoust

Soc Am 111(4): 1832–1846.

3. Brungart DS, Scott KR (2001) The effects of production and presentation level
on the auditory distance perception of speech. J Acoust Soc Am 110(1): 425–440.

4. Cheyne HA, Kalgaonkar K, Clements M, Zurek P (2009) Talker-to-listener
distance effects on speech production and perception. J Acoust Soc Am 126(4):

2052–2060.

5. Zahorik P (2002) Direct-to-reverberant energy ratio sensitivity. J Acoust Soc Am
112(5): 2110–2117.

6. Coleman PD (1962) Failure to localize the source distance of an unfamiliar
sound. J Acoust Soc Am 34: 345–346.

7. Simpson WE, Stanton LD (1973) Head movement does not facilitate perception
of the distance of a source of a sound. J Acoust Soc Am 86: 151–159.

8. Zahorik P, Brungart DS, Bronkhorst AW (2005) Auditory distance perception in

humans: a summary of past and present research. Acta Acust United Ac 91:
409–420.

9. Mills W (1972) Auditory localization. In: Modern Auditory Theory. J. V. Tobias
(ed.) New York: Academic Press.

10. McGregor P, Horn AG, Todd MA (1985) Are familiar sounds ranged more

accurately? Percept Mot Skills 61(3): 1082.
11. Hall DA, Moore DR (2003) Auditory neuroscience: The salience of looming

sounds. Curr Biol 13: 91–93.
12. Mathiak K, Hertrich I, Kincses WE, Riecker A, Lutzenberger W, et al. (2002)

The right supratemporal plane hears the distance of objects: Neuromagnetic

correlates of virtual reality. Neuroreport 14: 307–311.
13. Seifritz E, Neuhoff JG, Bilecen D, Scheffler K, Mustovic H, et al. (2002) Neural

processing of auditory looming in the human brain. Curr Biol 12(24): 2147–
2151.

14. Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain
dynamics. Trends Cogn Sci 8(5): 204–210.

15. Onton J, Makeig S (2006) Information-based modeling of event-related brain

dynamics. Prog Brain Res 159: 99–120.
16. Hickok G, Poeppel D (2007) The cortical organization of speech perception. Nat

Rev Neurosci 8: 393–402.
17. Makeig S (1993) Auditory event-related dynamics of the EEG spectrum and

effects of exposure to tones. Electroencephalogr Clin Neurophysiol 86(4): 283–

293.
18. Krause CM, Pörn B, Lang AH, Laine M (1999) Relative alpha desynchroni-

zation and synchronization during speech perception. Brain Res Cogn Grain
Res 5(4): 295–299.

19. Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during
working memory. Neuroimage 27(2): 341–356.

20. Liu EH, Mercado E III, Church BA (2011) Multidimensional processing of

dynamic sounds: more than meets the ear. Atten Percept Psychophys 73(8):
2624–2638.

21. Nasir SM, Ostry DJ (2009) Auditory plasticity and speech motor learning. Proc

Natl Acad Sci USA 106: 20470–20475.

22. Lerner Y, Honey CJ, Silbert LJ, Hasson U (2011) Topographic mapping of a

hierarchy of temporal receptive windows using a narrated story. J Neurosci

31(8): 2906–2915.

23. Howard MF, Poeppel D (2010) Discrimination of speech stimuli based on

neuronal response phase patterns depends on acoustics but not comprehension.

J Neurophysiol 104(5): 2500–2511.

24. Tzourzio N, Massioui FE, Crivello F, Joliot M, Renault B, et al. (1997)

Functional anatomy of human auditory attention studied with PET. Neuro-

image 5: 63–73.

25. Wu C-T, Weissman DH, Roberts KC, Woldorff MG (2007) The neural circuitry

underlying the executive control of auditory spatial attention. Brain Res 1134:

187–198.

26. Orr JM, Weissman DH (2009) Anterior cingulate cortex makes 2 contributions

to minimizing distraction. Cereb Cortex 19: 703–711.

27. Nachshon I (1986) Cross-language differences in dichotic listening. Int J Psychol

21: 617–625.

28. At A, Spierer L, Clarke S (2011) The role of the right parietal cortex in sound

localization: A chronometric single pulse transcranial magnetic stimulation

study. Neuropsychologia 49(9): 2794–2797.

29. Talati A, Hirsch J (2005) Functional specialization within the medial frontal

gyrus for perceptual go/no-go decisions based on ‘‘what,’’ ‘‘when,’’ and ‘‘where’’

related information: An fMRI study. J Cogn Neurosci 17(7): 981–993.

30. Downar J, Crawley AP, Mikulis DJ, Davis KD (2002) A corical network sensitive

to stimulus salience in a neutral behavioral context across multiple sensory

modalities. J Neurophysiol 87: 615–620.
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