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Abstract

Reinforcement learning (RL) aims to resolve the sequential decision-making under uncertainty problem
where an agent needs to interact with an unknown environment with the expectation of optimising the
cumulative long-term reward. Many real-world problems could benefit from RL, e.g., industrial robotics,
medical treatment, and trade execution. As a representative model-free RL algorithm, deep Q-network
(DQN) has recently achieved great success on RL problems and even exceed the human performance
through introducing deep neural networks. However, such classical deep neural network-based models
cannot well handle the uncertainty in sequential decision-making and then limit their learning perfor-
mance. In this paper, we propose a new model-free RL algorithm based on a Bayesian deep model. To
be specific, deep kernel learning (i.e., a Gaussian process with deep kernel) is adopted to learn the hid-
den complex action-value function instead of classical deep learning models, which could encode more
uncertainty and fully take advantage of the replay memory. The comparative experiments on standard
RL testing platform, i.e., OpenAI-Gym, show that the proposed algorithm outweighs the DQN. Further
investigations will be directed to applying RL for supporting dynamic decision-making in complex envi-
ronments.
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1. Introduction

Reinforcement learning (RL)22, as an important
branch of machine learning, aims to resolve the se-
quential decision-making under uncertainty prob-
lems where an agent needs to interact with an un-
known environment with the expectation of opti-
mising the cumulative long-term reward. A moti-
vating example is the self-driving car. If we con-
sider a car as the agent and the traffic conditions
(e.g., traffic light signal and speed limitation) as
the environment, RL can endow the car the abil-
ity to autonomously and safely choose actions (e.g.,
breaking, turning, and lighting) corresponding to
difference traffic conditions when driving on road.

Since the environment is unknown to the car, such
ability needs to be learned through the so-called
‘trail-and-error’ strategy that is to learn an optimised
action-selection policy through interacting with this
environment?. Thus, there are two goals for the
agent during the interaction with the environment:
exploration which aims to perceive more about the
environment and exploitation which aims to opti-
mise the policy under current information about the
environment. Apart from self-driving cars, many
real-world tasks could be formalised as sequential
decision-making under uncertainty problems and
then benefit from RL, such as: industrial robotics9,
medical treatment11, and trade execution14.

According to whether maintaining a computa-
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tional model for the environment, existing RL algo-
rithms could be categorised as being either model-
based or model-free. Model-based RL algorithms
improve the policy learning through modelling the
environment, e.g., simulating the interactions with
the environment model in hand or planning ahead
using the model. Due to the lack of such environ-
ment model, model-free RL cannot infer the effect
from environment dynamics and efficiently explore
the space. However, for some complex environ-
ments with large scale states, it is too difficult to
accurately build their models. Model-free RL al-
gorithms directly learn the policy without requiring
an explicit environment model. Recently, one sem-
inal model-free RL algorithm, i.e., deep Q-network
(DQN)13, has achieved great success on Atari games
and substantially promote the development of RL.
The advanced ability of DQN comes from two as-
pects: 1) deep learning models; DQN adopts deep
neural networks to replace the traditional Q-table
for the hidden action-value function learning. For
complex environments with large or even near infi-
nite number of states, Q-table is not appropriate due
to the large-scale storage and high computation re-
quirements; 2) experience replay; The historical in-
teractions are saved as replay memory and sampled
in DQN to stochastically update deep neural net-
works, which can reduce the dependency between
sequential interactions and then increase the effi-
ciency of the algorithm. However, the classical deep
neural networks used in DQN cannot handle uncer-
tainty well due to its deterministic nature. As de-
fined, RL aims to handle sequential decision-making
under uncertainty, so how to capture and deal with
uncertainty is essential for RL. Besides, all the saved
historical interactions are equally treated in DQN,
but they are in fact different for model training and
convergence.

In this paper, we propose a new model-free RL
algorithm based on a Bayesian deep model - deep
kernel learning28, which is able to encode more un-
certainty and fully take advantage of the saved his-
torical interactions. Specially, the deep kernel learn-
ing is a Gaussian process (GP)16 with a deep ker-
nel modelled by a deep neural network, which has

both advantages of deep neural network and GP. We
adopt the deep kernel learning to replace the origi-
nal deep neural network, which could encode more
uncertainty. For example, the prediction of action-
value function from this algorithm is not just the
action but also the variance of such action. Fur-
ther, a new weighted sampling strategy is devel-
oped. The prediction variance from deep kernel
learning is used as the weight for each historical in-
teraction, and then the model is updated using the
samples from weighted interactions. The experi-
mental evaluation on standard RL testing platform
-OpenAI.Gym∗- has demonstrated that the new al-
gorithm could reach larger scores. In summary, the
main two contributions of this article are as follows:

• we propose a new model-free RL algorithm based
on deep kernel learning with better performance
comparing the classical deep neural network-
based one;

• a new weighted sampling strategy is developed to
fully take advantage of the replay memory to fur-
ther improve the algorithm performance.

The remainder of this article is organised as fol-
lows. Section 2 discuses related work. The new
model-free RL algorithm is introduced in Section 3.
Section 4 evaluates the proposed RL algorithm on
standard RL testing platform through comparing the
classical algorithm. Section 5 concludes this study
and discusses possible future work.

2. Related Work

In this section, we briefly review the related work
of this study. The first part summarizes the litera-
ture on model-free reinforcement learning and the
second part summarizes the literatures on Bayesian
deep models.

2.1. Model-free RL

Model-free RL aims to learn an optimal policy for
an agent without explicitly modelling the environ-
ment. Existing works in this direction can be mainly

∗ https://gym.openai.com/
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grouped into three categories: value-based, policy-
based, and combined22. Policy-based RL is to di-
rectly optimise the parameters of the policy aiming
to maximise the expected reward, and policy gradi-
ent is a typical algorithm of this category. Value-
based RL is to learn the action-value function first
aiming to minimise the temporal difference error
and then design the policy based on this function.
According to the difference on the computation of
temporal difference error, there are two kinds in
value-based RL: on-policy one which computes the
temporal difference error based on current policy,
e.g., SARSA; off-policy one which computes the
temporal difference error based on greedy policy,
e.g., Q-learning. Deep Q-Networks (DQN)13 is a
seminal work of Q-learning, which adopts deep neu-
ral network to approximate the Q-function. Such
algorithm is proofed successful on Atari games
and even exceeds the human performance. Based
on DQN, Double-DQN24 is proposed to separately
model action-selection and Q-function by two deep
neural networks, which resolves the possible over-
estimate problem in DQN. The performance can be
further improved by splitting Q-function into state
function and advantage function in Dueling DQN26.
There are also works that try to combine two cate-
gories, e.g., Deep Deterministic Policy Gradient10.
This paper will only target on DQN and replace the
traditional deep neural network with Bayesian deep
models, and other advanced extensions can also be
easily adopted later.

2.2. Bayesian deep model

The Bayesian paradigm for machine learning, also
known as Bayesian (machine) learning, is to ap-
ply probability theories and techniques to represent
and learn knowledge from data. Some renowned
examples are Bayesian network, Gaussian mixture
models, hidden Markov model15, Markov random
field, conditional random field, and latent Dirichlet
allocation1. Compared to other learning paradigms,
Bayesian learning has distinctive advantages: 1) rep-
resenting, manipulating, and mitigating uncertainty
based on a solid theoretical foundation - probabil-

ity; 2) encoding the prior knowledge about a prob-
lem; 3) good interpretability thanks to its clear and
meaningful probabilistic structure. Inspired by the
recent success of deep learning, researchers start
to pay attention to build Bayesian deep models25

aiming to combine the advantages from two areas.
One straightforward strategy is to assign probabilis-
tic prior for parameters of traditional deep neural
networks, e.g., Gaussian prior 6,4. Such Bayesian
method could avoid some of the pitfalls of stochas-
tic optimisation. Bayes by Backprop2 -a varia-
tional inference method- is proposed to efficiently
resolve these models. Another strategy is to pave
the probabilistic models deeply. Deep belief net-
works 8 may be the earliest one, which has undi-
rected connections between its top two layers (it is
actually a RBM7) and downward directed connec-
tions between all its lower layers. Its advantage
is that it needs less time to train the model, but
there is no feedback from top to bottom. On the
contrary, Deep Bolzman Machine (DBM)18, which
is the multi-layered RBM, requires more time for
model training but there is feedback from top to bot-
tom so it is more robust. The hidden units in DBN
and DBM are restricted to be binary. To resolve
this constraint, Gamma belief networks29 and deep
poisson factor analysis5 are proposed using Gamma
and Negative-binomial distributions, which could
build deep structure with nonnegative real hidden
units. Deep latent Gaussian model17 is another deep
Bayesian model built by Gaussian distributions. Be-
yond Gaussian distributions, Gaussian process (GP)
is also adopted for constructing Bayesian deep mod-
els. For example, deep neural network is used to
construct a deep kernel as the covariance function of
GP in deep kernel learning28,27; the other idea is to
pave more Gaussian process on each other known as
deep Gaussian process3.

3. The Proposed Model

RL is often modelled by a Markov decision process
as†< S,A,P,R,γ >, where S is a set of environment
states, A is a set of agent actions, P defines the state
transition of environment, R defines the reward from

† https://en.wikipedia.org/wiki/Markov decision process
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environment, and γ is the discount factor. The goal
of RL is the agent policy π(s) which is a mapping
from environment states to actions aiming to max-
imise the (discounted) expected long-term reward
E[∑∞

t=1 γtrt ], where rt is the reward from t-th inter-
action.

3.1. Preliminary: Deep Q-Network

Q learning12 is a methodology to resolve RL by
evaluating the value Q(s,a) of action a given state
s which is also known as Q-function. Such value
could be considered as the expected “reward” from
taking this action under this state. To learn this
action-value function (a.k.a., Q-function), an effec-
tive method is temporal difference learning21 which
minimises the difference between current value of
an action and its optimal value according to the next
step

||Q(st ,at)− (rt + γt max
a′

Q(st+1,a′)||F (1)

where st+1 = P(st ,at) is the next state of envi-
ronment by taking action at . DQN adopts deep
neural network (DNN)20 to model Qθ (s,a) where
θ denotes the parameters of the deep neural net-
work. With the sequential interaction, θ is contin-
uously optimised using Eq. (1) as the loss func-
tion. Another significant contribution of DQN is
the experience replay based on a constructed mem-
ory which is composed of historical interactions <
st+1,st ,at ,rt >. When learning the RL algorithm
(i.e., training θ ), a number of interactions are uni-
formly sampled from the memory.

3.2. Bayesian deep RL

We propose a Bayesian Deep RL (DBRL) to adopt
Gaussian process with deep kernel28 to model
Q(s,a). A Gaussian Process (GP)16 is defined as a
collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions

f (x)∼ GP(m(x),kϑ (x,x′)) (2)

where m(x) is the mean function and kϑ (x,x′) is a
kernel function parameterised by ϑ , e.g., Polyno-
mial kernel and Radial basis function kernel (RBF).

GP is often used as the prior for functions and is
able to approximate complex and nonlinear func-
tional forms given a number of observations. To fur-
ther improve the ability on function approximation,
deep kernel learning (DKL) incorporates the deep
learning idea to the kernel learning

kϑ (gθ (x),gθ (x′)) (3)

where g(·) is a deep neural network-based data
transformation. When applying this deep kernel-GP
to RL, we adopt the same framework with DQN and
replace the traditional DNN by DKL as illustrated
in Fig. 1. The advantage of BDRL comparing DQN
is the capability of encoding more uncertainty. That
is to say, the prediction from the BDRL is not only
the action value but also its variance which could
be simple seen as the confidence of this prediction.
Next, we will utilise such variance to better take ad-
vantage of replay memory.

environment

state

action

GP(m(x), K(x, x’))

Agent: DQN Agent: BDRL

action

Fig. 1. Interaction between an environment and two agents:
DQN and BDRL

Experience replay is another genius in DQN,
where historical interactions are saved in memory
for Q-function learning. The original memory struc-
ture is

< st+1,st ,at ,rt > . (4)

We add the action uncertainty (i.e., prediction stan-
dard deviation) from GP as another column to the
memory,

< st+1,st ,at ,ut ,rt > . (5)

Rather than uniform sampling, weighted sampling
is adopted when the historical interactions are re-
trieved for model training, where each interaction is
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weighted by

wi =
(1−σ(ui))

α

∑i(1−σ(ui))α
(6)

where σ() denotes the sigmoid function and α con-
trols the contribution of this weight. When α = 0,
it degenerates to uniform sampling. This weight-
ing schema prefers the interaction with small un-
certainty. The whole procedure of the algorithm is
summarised in Algorithm 1.

Input: An environment: env and n episode
Output: interactions: < st ,at ,rt > and

parameters of Q-function: θ ,ϑ
initialization θ ,ϑ ;
step = 0;
while n episode > 0 do

a,u = agent.chooseAction(s);
s′, r, done = env.step(a);
agent.store(< s,a,u,r,s′ >);
agent.updateMemoryWeight() by Eq. (6);
θ ,ϑ = agent.update() using Eq. (1) as loss
function;

s = s′;
if done then

s = env.reset();
n episode−−;

end
step++;

end
Algorithm 1: Bayesian deep RL

4. Experiments

We evaluate BDRL on a open RL testing platform:
OpenAI.gym and compare it with DQN in this sec-
tion.

4.1. Setting

In the following, we choose the simple environment
‘CartPole-v1’‡in OpenAI.gym. This environment
has two actions (i.e., move left or right), its state is a

four dimensional vector, and a reward of +1 is pro-
vided for every timestep that the pole remains up-
right. One episode ends when the pole is more than
15 degrees from vertical or the cart moves more than
2.4 units from the center. At first, we take 10,000
steps to explore the state space and construct the
initial experience memory, where the action is ran-
domly chosen not from RL algorithms. After the
exploring, we take 15,000 steps to train the RL al-
gorithms using ε-greedy strategy with a decreasing
ε value and minimum value 0.01. Finally, we test
10,000 steps only using RL algorithms and record
the total reward as score for each episode. The
higher score means better RL algorithm. The mem-
ory size is set as 10,000 and the batch size is 32.
Every 150 steps, the fixed target Q-function is up-
dated by the latest evaluation Q-function. The other
two hyper-parameters are γ = 0.99 and learning rate
0.00025 for the optimisor. For DQN, we build a
deep neural network that contains two hidden fully
connected linear layers with 512 and 128 nodes and
activation function is ReLU. For BDRL, we use a
deep neural network containing two hidden (linear)
layers with 10 nodes in each layer and activation
function is tanh, and RBF kernel is used for GP. The
implementation of BDRL is based on DKL§.

4.2. Results

At first, we compare the performance of DQN and
BDRL under same setting where both of them use
uniform sampling when retrieving replay memory
for deep model update. The result is shown in Fig.
2, where the scores of all episodes in testing stage
are plotted. According to this figure, we can observe
that: 1) BDRL can reach much higher score than
DQN. The highest score from BDRL is 346, which
means the car makes 346 moves with the bar upright.
2) The average score of BDRL (113.52) is also bet-
ter than the one of DQN (98.33). 3) The episode
number of BDRL (88) is smaller than the one of
DQN (102) within the same number of steps (i.e.,
10,000). 4) Although the overall results of BDRL is
better than DQN, the line for BDRL is with stronger

‡ https://gym.openai.com/envs/CartPole-v1/
§ https://github.com/maka89/Deep-Kernel-GP
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fluctuation than the one for DQN, which means the
results from BDRL is unstable comparing with the
ones from DQN.
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Fig. 2. Evaluation of the efficiency of BDRL through com-
paring with DQN on ‘CartPole-v1’. The scores (the higher
is the better) of all episodes in testing stage from both al-
gorithms are plotted. The average scores from BDRL and
DQN are 113.52 and 98.33, respectively.
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Fig. 3. Evaluation of the efficiency of uncertainty-
based weighted sampling strategy for replay memory on
‘CartPole-v1’. The scores (the higher is the better) of all
episodes in testing stage from BDRL with uniform and
weighted strategies are plotted. The average scores from
BDRL with weighted and BDRL with uniform are 136.75
and 113.52, respectively.

Then, we evaluate the proposed weighted sam-
pling strategy for replay memory. We run BDRL
using two different sampling strategy: uniform and

weighted (according to Eq. (6) with α = 0.1. Note
that during the exploring stage, the action is ran-
domly chosen and their weights are also randomly
assigned. The result is shown in Fig. 3, where the
scores of all episodes in testing stage are plotted.
According to this figure, we can observe that: 1)
The episode number of BDRL with weighted (73)
is smaller than the one of BDRL with uniform (88)
within the same number of steps (i.e., 10,000). 2)
The average score of BDRL with weighted (136.75)
is also better than the one of BDRL with uniform
(113.52). Therefore, we can draw the conclusion
that the proposed uncertainty-based weighted sam-
pling strategy could better take advantage of replay
memory and improve the efficiency of the BDRL.

5. Conclusions and Further Study

In this study, we have presented a new model-
free reinforcement learning (RL) algorithm based
on Bayesian deep model. This Bayesian deep RL
(BDRL) algorithm has unique advantages compared
with deep Q-network (DQN) that is the deep neu-
ral network (DNN)-based RL algorithm, i.e., more
ability to handle uncertainty and take advantage of
past experience. The experiments on standard rein-
forcement learning testing platform demonstrated its
effectiveness on RL tasks, and the comparison with
DQN showed the superior performance of the pro-
posed algorithm than the DNN-based one. In this
paper, we only use on one simple task to demon-
strate the effectiveness of the proposed ideas, and we
will test them using more and harder tasks in the fu-
ture. We believe that this study is only a start point,
and there are many interesting following works. One
interesting direction for further study would be to
add more Gaussian process layers to the deep archi-
tecture based on deep Gaussian process3; the sec-
ond interesting direction is to build new Bayesian
nonparametric deep models23 for more flexible Q-
function learning with less tunable parameters; the
third one is to incorporate the temporal difference
error19 and marginal likelihood from GP into the
weights for interactions in replay memory; and the
last one is to apply fuzzy systems techniques to the
Q-learning process to deal with decision processes?
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in which the goals and constraints are fuzzy in na-
ture. These future investigations are expected to pro-
vide backbones for applying RL techniques to sup-
port dynamic decision-making in complex situations
that involve massive data domains, agents, and envi-
ronments.

Acknowledgments

This work is supported by the Australian Re-
search Council (ARC) under Discovery Grant
DP170101632.

References

1. David M Blei, Andrew Y Ng, and Michael I Jordan.
Latent dirichlet allocation. Journal of Machine Learn-
ing Research, 3(Jan):993–1022, 2003.

2. Charles Blundell, Julien Cornebise, Koray
Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. arXiv preprint arXiv:1505.05424,
2015.

3. Andreas Damianou and Neil Lawrence. Deep gaus-
sian processes. In Artificial Intelligence and Statistics,
pages 207–215, 2013.

4. Yarin Gal and Zoubin Ghahramani. Bayesian
convolutional neural networks with bernoulli ap-
proximate variational inference. arXiv preprint
arXiv:1506.02158, 2015.

5. Ricardo Henao, Zhe Gan, James Lu, and Lawrence
Carin. Deep poisson factor modeling. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Process-
ing Systems 28, pages 2800–2808. Curran Associates,
Inc., 2015.
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