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Classification of aerial photographs relying purely on spectral content is a challenging topic in remote sensing. A convolutional
neural network (CNN) was developed to classify aerial photographs into seven land cover classes such as building, grassland,
dense vegetation, waterbody, barren land, road, and shadow. The classifier utilized spectral and spatial contents of the data to
maximize the accuracy of the classification process. CNN was trained from scratch with manually created ground truth samples.
The architecture of the network comprised of a single convolution layer of 32 filters and a kernel size of 3× 3, pooling size of
2× 2, batch normalization, dropout, and a dense layer with Softmax activation. The design of the architecture and its
hyperparameters were selected via sensitivity analysis and validation accuracy. The results showed that the proposed model
could be effective for classifying the aerial photographs. The overall accuracy and Kappa coefficient of the best model were 0.973
and 0.967, respectively. In addition, the sensitivity analysis suggested that the use of dropout and batch normalization technique
in CNN is essential to improve the generalization performance of the model. The CNN model without the techniques above
achieved the worse performance, with an overall accuracy and Kappa of 0.932 and 0.922, respectively. This research shows that
CNN-based models are robust for land cover classification using aerial photographs. However, the architecture and
hyperparameters of these models should be carefully selected and optimized.

1. Introduction

Classifying remote sensing data (especially orthophotos of
three bands—red, green, blue (RGB)) with traditional
methods is a challenge even though some methods in litera-
ture have produced excellent results [1, 2]. The main reason
behind is that remote sensing datasets have high intra- and
interclass variability and the amount of labeled data is much
smaller as compared to the total size of the dataset [3]. On the
other hand, the recent advances in deep learning methods
like convolutional neural networks (CNNs) have shown
promising results in remote sensing image classification
especially hyperspectral image classification [4–6]. The
advantages of deep learning methods include learning high-
order features from the data that are often useful than the
raw pixels for classifying the image into some predefined
labels. Other advantages of these methods are spatial learning

of contextual information from data via feature pooling from
a local spatial neighborhood [3].

There are several methods and algorithms that have been
adopted by many researchers to efficiently classify a very
high-resolution aerial photo and produce accurate land cover
maps. Methods such as object-based image analysis (or
OBIA) was mostly investigated because of its advantage in
very high-resolution image processing via spectral and spa-
tial features. In a recent paper, Hsieh et al. [7] applied aerial
photo classification by combining OBIA with decision tree
using texture, shape, and spectral feature. Their results
achieved an accuracy of 78.20% and a Kappa coefficient of
0.7597. Vogels et al. [8] combined OBIA with random forest
classification with texture, slope, shape, neighbor, and spec-
tral information to produce classification maps for agricul-
tural areas. They have tested their algorithm on two
datasets, and the results showed the employed methodology
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to be effective with accuracies of 90% and 96% for the two
study areas, respectively. On the other hand, a novel model
was presented by Meng et al. [9], where they applied OBIA
to improve vegetation classification based on aerial photos
and global positioning systems. Results illustrated a signifi-
cant improvement in classification accuracy that increased
from 83.98% to 96.12% in overall accuracy and from 0.7806
to 0.947 in the Kappa value. Furthermore, Juel et al. [10]
showed that random forest with the use of a digital elevation
model could achieve relatively high performance for vegeta-
tion mapping. In a most recent paper, Wu et al. [2] developed
a model based on a comparison between pixel-based decision
tree and object-based SVM to classify aerial photos. The
object-based support vector machine (SVM) had higher
accuracy than that of the pixel-based decision tree. Albert
et al. [11] developed classifiers based on conditional random
fields and pixel-based analysis to classify aerial photos. Their
results showed that such techniques are beneficial for land
cover classes covering large, homogeneous areas.

2. Related Works

The success of CNN in the fields like computer vision,
language modeling, and speech recognition has motivated
the remote sensing scientists to apply it in image classifica-
tion. There are several works that have been done on CNN
for remote sensing image classification [12–15]. This section
briefly explains some of these works highlighting their
findings and their limitations.

Sun et al. [16] proposed an automated model for feature
extraction and classification with classification refinement
by combining random forest and CNN. Their combined
model could perform well (86.9%) and obtained higher
accuracy than the single models. Akar [1] developed a
model based on rotation forest and OBIA to classify aerial
photos. Results were compared to gentle AdaBoost, and
their experiments suggested that their method performed
better than the other method with 92.52% and 91.29%
accuracies, respectively. Bergado et al. [17] developed deep
learning algorithms based on CNN for aerial photo
classification in high-resolution urban areas. They used data
from optical bands, digital surface models, and ground
truth maps. The results showed that CNN is very effective
in learning discriminative contextual features leading to
accurate classified maps and outperforming traditional
classification methods based on the extraction of textural
features. Scott et al. [13] applied CNN to produce land
cover maps from high-resolution images. Other researchers
such as Cheng et al. [12] used CNN as a classification
algorithm for scene understanding from aerial imagery.
Furthermore, Sherrah [14] and Yao et al. [15] used CNN
for semantic classification of aerial images.

This research investigates the development of a CNN
model with regularization techniques such as dropout
and batch normalization for classifying aerial orthophotos
into general land cover classes (e.g., road, building, water-
body, grassland, barren land, shadow, and dense vegetation).
The main objective of the research is to run several experi-
ments exploring the impacts of CNN architectures and

hyperparameters on the accuracy of land cover classifica-
tion using aerial photos. The aim is to understand the
behaviours of the CNN model concerning its architecture
design and hyperparameters to produce models with high
generalization capacity.

3. Methodology

This section presents the dataset, preprocessing, and the
methodology of the proposed CNN model including the net-
work architecture and training procedure.

3.1. Dataset and Preprocessing

3.1.1. Dataset. To implement the current research, a pilot
area was identified based on the diversity of the land
cover of the area. The study area is located in Selangor,
Malaysia (Figure 1).

3.1.2. Preprocessing

(1) Geometric Calibration. Since the orthophoto was cap-
tured by an airborne laser scanning (LiDAR) system, it was
essential to calibrate it geometrically to correct the geometric
errors. In this step, the data was corrected based on ground
control points (GCPs) collected from the field (Figure 2).
There were 34 GCPs identified from clearly identifiable
points (i.e., road intersections, corners, and power lines).
The geometric correction was done in ArcGIS 10.5 software.
The steps of geometric correction included identification
of transformation points in the orthophoto, application
of the least square transformation, and calculation of the
accuracy of the process. The selected points were uniformly
distributed in the area. After that, the least square method
(Kardoulas et al., 1996) was applied to estimate the coeffi-
cients, which are essential for the geometric transformation
process. After the least square solution, the polynomial equa-
tions were used to solve for X, Y coordinates of GCPs and to
determine the residuals and RMS errors between the source
X, Y coordinates and the retransformed X, Y coordinates.

(2) Normalization. Since the aerial orthophotos have inte-
ger digital values and initial weights of the CNN model
are randomly selected within 0-1, a z-score normalization
was applied to pixel values of the orthophotos to avoid
abnormal gradients. This step is essential as it improves
the progress of the activation and the gradient descent
optimization (LeCun et al., 2012).

X′ = X/max − μ

σ
, 1

wheremax is the maximum pixel value in the image, μ and σ
are the mean and standard deviation of X/max, respectively,
and X′ is normalized data.

3.2. The Proposed Approach

3.2.1. Overview. An orthophoto is composed of m × n × d
digital values, where m, n, and d are the image width, length,
and depth, respectively. The goal of a classification model is

2 Journal of Sensors



·

0 150 300 450 60075
(Meter)

Pahang

Perak

Johor

Kelantan

Kedah

Trengganu

Selangor

Negeri sembilan

Melaka

Perlis

101°32′20″E 101°32′30″E 101°32′40″E 101°32′50″E 101°33′0″E 101°33′10″E

3°
5′

40
″

N
3°

5′
40
″

N
3°

5′
50
″

N

3°
5′

40
″

N
3°

5′
40
″

N
3°

5′
50
″

N

101°32′30″E 101°32′40″E 101°32′50″E 101°33′0″E 101°33′10″E101°32′20″E

Figure 1: The study area location map.

3Journal of Sensors



to assign a label to each pixel in the image given a set of train-
ing examples with their ground truth labels. In general, the
common classification methods utilize the spectral informa-
tion (image pixels across different bands) to achieve that goal.
In addition, some of other techniques such as object-based
image analysis (OBIA) segment the input image into several
homogeneous contiguous groups before classification. This
method uses additional features like spatial, shape, and tex-
ture to boost the classification performance of the classifier.
However, both the methods, pixel-based and OBIA have
several challenges like speckle noise in the first method and
segmentation optimization in OBIA. Furthermore, both
methods require careful feature engineering and band selec-
tion to obtain high accuracy of classification. More recently,
classification methods using image patches and deep learning
algorithms have been proposed to overcome the above chal-
lenges. Among the common methods is CNN. As a result,
this study has proposed a classification method that is based
on CNN and spectral-spatial feature learning for classifying

very high-resolution aerial orthophotos. The following sec-
tions describe the proposed model and its components
including the basics of CNN, the network architecture, and
the training methodology.

The pseudocode of the proposed classification model is
presented in Algorithm 1. We developed the CNN model
in the current study by running several experiments with
different configurations. Then, we designed the ultimate
model with best hyperparameters and architecture based
on some statistical accuracy metrics such as overall accu-
racy, Kappa index, and per-class accuracies.

3.2.2. Basics of CNN. Convolutional neural networks (CNNs)
or ConvNets are a type of artificial neural networks that
simulate the human vision cortical system by using local
receptive field and shared weights. It was introduced by
LeCun and his colleagues [18]. Figure 3 shows a typical
CNN with convolutional max pooling operations. CNN is
suitable for analyzing images, videos, or data in the form of
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Figure 2: The ground truth samples over the study area, which were manually selected for seven land cover classes, for example, road, water
body, grassland, building, dense vegetation, shadow, and barren land. The number in the brackets indicates the number of pixels in each class.
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n-dimensional arrays that have a spatial component. This
unique property makes them suitable for remote sensing
image classification as well. A typical architecture of CNN
consists of a series of layers such as convolution, pooling,
fully connected (i.e., dense), and logistic regression/Softmax.
However, additional layers like dropout and batch normali-
zation also can be added to avoid overfitting and improve
the generalization of these models. The last layer depends
on the type of the problem, where for binary classification
problems, a logistic regression (sigmoid) layer is often used.
Instead, for multiclass classification problems, a Softmax
layer is used. Each layer has its operation and is aimed in
these models. For example, the convolutional layers are
aimed at constructing feature maps via convolutional filters
that can learn high-level features that allow taking advantage
of the image properties. The output of these layers then
passes through a nonlinearity such as a ReLU (rectified linear
unit). Local groups of values in array data are often highly
correlated, and local statistics of images are invariant to

location [19]. In addition, pooling layers (or subsampling)
are used to merge semantically similar features into one.
The most common method of subsampling computes the
maximum of a local patch of units in feature maps. Other
pooling operations are averaging max pooling and stochastic
pooling. In general, several convolutional and subsampling
layers are stacked, followed by dense layers and a Softmax
or a logistic regression layer to predict the label of each pixel
in the image.

3.2.3. Network Architecture. The architecture of the CNN
model was built with a single convolutional layer followed
by a max pooling operation, batch normalization, and two
dense layer classifiers (Figure 4). This architecture yielded
3527 total parameters where 96 parameters are not trainable.
The convolutional kernels were kept as 3× 3, and the pooling
size in the max pooling layer was kept at 2× 2. Dropout was
performed in the convolutional layer and the first dense layer
with a drop probability of 0.5 to avoid overfitting. The

Algorithm 1: CNN for orthophoto classification
Input: RGB image (I) captured by the aerial remote sensing system, training/testing samples
(D)
Output: Land cover classification map with seven classes (O)
I, D, O
Preprocessing (Section 3.1.2):
calibrate I using the available 34 GCPs
normalize pixel values using Eq. 1
Classification (CNN) (Section 3.2.2 and Section 3.2.3):
for Patch_x_axis:
initialize sum = 0
for Patch_y_axis:

calculate dot product(Patch, Filter)
result_convolution (x, y) = Dot product

for Patch_x_axis:
for Patch_y_axis:

calculate Max (Patch)
result_maxpool (x, y) = Dot product
update F = max(0, x)
result_cnn_model = trained model
Prediction:
apply the trained model to the whole image and get O
Mapping:
get the results of prediction
reshape the predicted values to the original image shape
convert the array to image and write it on the hard disk

Algorithm 1: The pseudocode of the proposed CNN developed for land cover mapping using aerial images.

Convolution ReLU Pooling

Figure 3: Illustration of typical layers of a CNN.
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minibatch of stochastic gradient descent (SGD) was set to 32
images. Under the framework of Keras with Tensorflow back-
end, the whole process was run on a CPUCore i7 2.6GHz and
memory ram (RAM) of 16GB. In the experiments, 60% of the
total samples were randomly chosen for training, and the rest
were chosen for testing, and overall accuracy (OA), average
accuracy (AA), Kappa coefficient (κ), and per-class accuracy
(PA) are used to evaluate the performance of the CNN classi-
fication method (Congalton and Green, 2008). The summary
of the model’s layers is shown in Table 1.

3.2.4. Training the Model. The CNN model was trained with
backpropagation algorithm and stochastic gradient descent
(SGD). It uses the minibatch’s backpropagation error to
approximate the error of all the training samples, which
accelerates the cycle of the weight update with smaller back
propagation error to speed up the convergence of the whole
model. The optimization was run to reduce the loss function
(J) (i.e., categorical cross entropy) of CNN expressed as the
following:

J X′,W, b, θ = −
1
N

〠
N

i=1
〠
k

j=1
1 yi = t · yit , 2

where X′ is normalized features, W and b are parameters of

CNN, θ is the parameters of Softmax layer, N is the number
of samples, k is the number of land cover classes, yi = yi1,
yi2,… , yik is the prediction vector geo by the Softmax classi-
fier (3), and yit represents the possibility of the ith sample
label being t and is computed by (3).

yit =
exp θTt c

〠k
j=1exp θTt c

3

During back propagation, (4) are adapted to update W
and b in every layer, where λ is the momentum which help
accelerate SGD by adding a fraction of the update value of
the past time step to the current update value, α is the learn-
ing rate, ∇W and ∇b are the gradients of J · with respect to
W and b, respectively, and t just stands for the number of
epoch during SGD:

Wt+1 =Wt − λVt − α∇W,
bt+1 = bt − λUt − α∇b

4

3.2.5. Evaluation. This study uses several statistical accuracy
measures to evaluate different models and compare them
under various experimental configurations. These metrics
are overall accuracy (OA), average accuracy (AA), per-class
accuracy (PA), and Kappa index (κ). They are calculated
using the following equations [20]:

OA = 〠Dii

N
,

AA = 〠m
1 PAm

m
,

PA =
Dij

Ri
,

k =
N〠m

i,j=1Dij −〠m
i,j=1Ri · Cj

N2 −〠m
i,j=1Ri · Cj

,

5

where ∑Dii is the total number of correctly classified pixels,
N is total number of pixels in the error matrix, m is the

Input image

Convolution ReLU Pooling
Batch

normalization
Dense

Flatten

Dropout

Softmax

Figure 4: The architecture of the proposed CNN for aerial orthophoto classification.

Table 1: The summary of the CNN model layers.

Layer (type) Output shape Number of parameters

Input (None, 3, 7, 7) 0

2D convolution (None, 1, 5, 32) 2048

Max pooling (None, 1, 2, 16) 0

Batch normalization (None, 1, 2, 16) 64

Dropout (None, 1, 2, 16) 0

Flatten (None, 32) 0

Dense (None, 32) 1056

Batch normalization (None, 32) 128

Dropout (None, 32) 0

Dense (Softmax) (None, 7) 231
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number of classes, Dij is the number of correctly classified
pixels in row i (in the diagonal cell), Ri is the total number
of pixels in row i, and Cj is the total number of pixels in
column j.

4. Experimental Results

4.1. Performance of the Proposed Model

4.1.1. CNN with Dropout and Batch Normalization. Figure 5
shows the accuracy performance of the CNN model with
dropout and batch normalization for 93 epochs on both
training and validation datasets. The increment in model
accuracy and reduction in model loss over time indicates
that the model has learned useful features to classify the
image pixels into the different class labels. The fluctuations
in the accuracy from one epoch to another are because of
using dropout that yielded a slightly different model at
each epoch. The OA, AA, κ of this model on validation
dataset was 0.973, 0.965, 0.967, respectively. In addition,
Table 2 shows the per-class accuracy (PA) achieved by
the model. The results suggest that the CNN model could

classify almost all the classes with relatively high accuracy.
The minimum accuracy was 0.894 for the shadow class.
While examining the confusion matrix (Table 3), the
results indicate that several (~11) samples of this class
were misclassified as dense vegetation affecting its PA.
The confusion matrix also shows that there were several
samples of water body class misclassified as grassland.

4.1.2. CNN Model with Other Configurations. The CNN
model was also trained without dropout and batch nor-
malization to see their impacts on the accuracy of the classi-
fication map. Table 4 summarizes the results of comparing
CNNmodels with different configurations (i.e., CNN+drop-
out + batch normalization, CNN+dropout, CNN+batch
normalization, and CNN). The results suggest that the
use of dropout and batch normalization could improve
the accuracy (OA, AA, and κ) of the classification by
almost 4%. The use of batch normalization slightly per-
formed better (OA=0.964, AA=0.956, κ=0.961) than just
using dropout (OA=0.958, AA=0.956, κ=0.954). Never-
theless, the use of either dropout or batch normalization
could improve the accuracy of the classification compared
to not using any of these techniques with the CNN model.
The CNN model without these techniques achieved the
following accuracies: OA=0.932, AA=0.922, κ=0.922
indicating the importance of such regularization methods
for aerial orthophoto classification. The classified maps
produced by these methods are shown in Figure 6. Fur-
thermore, the performance plot (Figure 7) of the CNN
model without dropout and batch normalization shows
that this model overfits the training data and performs
worse when applied to new data. Overall, the experimental
results on both training and validation data sets infer that
the proposed CNN architecture is a robust and efficient
model, while the use of dropout and batch normalization
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Figure 5: Performance of the CNN model with optimum parameters set, (a) model accuracy and (b) model loss for 93 epochs (early
stopping).

Table 2: PA of the CNN model.

Class PA

Road 0.971

Waterbody 0.944

Grassland 0.972

Building 0.995

Dense vegetation 0.999

Shadow 0.894

Barren land 0.980

7Journal of Sensors



techniques as regularization methods is essential to obtain
high accuracy of classification for the entire area rather
than just predicting the labels of the training samples.

4.2. Sensitivity Analysis. The performance of CNN while
classifying orthophotos is highly dependent on its architec-
ture and hyperparameters. Thus, the sensitivity analysis
could serve as an essential step in finding a good set of
parameters and architecture configurations in addition to
an understanding of the model behavior. Figure 8 shows
the impact of different parameters (e.g., number of
convolutional filters, activation function, drop probability,
optimizer, batch size, and patch size) on the validation
accuracy of CNN.

For convolutional filters, the sensitivity analysis shows
that larger number of filters can lead to an increase in per-
formance. However, use of larger number of filters can
increase training time and overfit the training data if the
model is not regularized properly. Thus, this parameter
was set to 32 as an optimal setting and not exploring a
larger number of filters. With this configuration, the
model could achieve the following accuracies: OA=0.956,
AA=0.945, and κ=0.947. In addition, this analysis shows
that the activation function “ReLU” outperformed the
other two functions (“Sigmoid” and “ELU”). By using this
activation, the CNN model could achieve an OA of 0.956
higher than the second best activation “Sigmoid” by
~4.4%. ReLU also facilitates faster training and reduced
likelihood of vanishing gradient. The experiments on drop
probability showed that different parametric values can
improve the performance of CNN depending on the accu-
racy metric. For example, results showed that the use of
drop probability as 0.2 could optimize the model for OA
and κ, where the model achieved an OA and κ of 0.975,
0.970, respectively. However, drop probability of 0.3 could
perform better than the value of 0.2 for this parameter

regarding AA. Furthermore, performances of CNN with
different optimizers have been investigated, and the results
indicated that “Adam” could be effective in training com-
pared to other optimizers. The highest OA (0.975) and κ
(0.970) were achieved by the CNN model that was trained
with “Adam.” However, when the optimizer “Nadam” was
used to train CNN, the model could achieve the highest
AA (0.974). The worst performance of CNN (OA=0.945,
AA=0.949, and κ=0.934) was found to be when the
model was trained with SGD. Moreover, the efficiency of
CNN was compared with different batch sizes such as 4,
8, 16, 32, and 64. The batch size of 32 was found the best
considering OA (0.975) and κ (0.970), while the batch size
of 64 achieved the highest AA (0.975).

Another important parameter in the proposed CNN is
the patch size, which is the local neighborhood area that
forms with the size (n × n). The advantage of using
patch-based learning for orthophoto classification is
sourced from the benefits of spectral and spatial informa-
tion of the data that can improve the accuracy compared
to just using the individual pixels (only spectral informa-
tion). To understand this parameter and find its subopti-
mal value, several experiments were conducted with
different patch sizes (n = 3, 5, 7, 9, 11, 13 ). The statistical
analysis in terms of model accuracy indicates that using
larger n yields higher accuracy (Figure 8). However, when
analyzing the classification map visually, the use of larger
n reduces the spatial quality of the features in the classifi-
cation map (Figure 9). As a result, we considered n = 7 as
an effective value for this parameter as it achieved rela-
tively high accuracy measured by OA, AA, and κ as well
as high spatial quality features.

4.3. Training Time Analysis. The computing performance of
the CNN model was dependent on the use of dropout and
batch normalization layers in the network architecture in
addition to other hyperparameters such as a number of
convolutional filters and image patch size. Table 5 shows
the training time of the CNN model with different config-
urations. When early stopping was applied, the training of
CNN with dropout and batch normalization took about
124 seconds on a CPU. Removing the batch normalization
from the architecture yielded a training time of 150 sec-
onds, whereas CNN with dropout took 75 seconds to be
trained. The CNN model without the use of dropout and
batch normalization took the shortest time (58.4 seconds)

Table 3: The confusion matrix calculated for the CNN model.

Road Waterbody Grassland Building Dense vegetation Shadow Barren land

Road 1474 0 0 23 0 0 21

Water body 0 1463 85 0 0 1 0

Grassland 0 10 1323 0 27 0 0

Building 4 0 0 991 0 0 0

Dense vegetation 0 0 0 0 1070 1 0

Shadow 0 0 0 0 11 93 0

Barren land 6 0 0 8 0 0 716

Table 4: Performance of CNN model with different configurations.

Model OA AA κ

CNN+dropout + batch normalization 0.973 0.965 0.967

CNN+dropout 0.958 0.956 0.954

CNN+ batch normalization 0.964 0.956 0.961

CNN 0.932 0.922 0.922
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to be trained. On the other hand, when the model was
trained with 200 epochs without early stopping, the model
(CNN+dropout +batch normalization) took about 230
seconds longer than that with early stopping by 106 sec-
onds. In addition, the other models (CNN+dropout,
CNN+batch normalization, and CNN) were also required
a longer time to train as it was expected due to more
number of epochs run. Overall, the computing perfor-
mance of the proposed model is efficient for the investi-
gated data. However, for larger datasets, the training of
such models will require longer time, and as a result,
graphical processing units will be essential.

5. Conclusion

In this paper, a classification model based on CNN and
spectral-spatial feature learning has been proposed for aerial
photographs. With the utilization of advanced regularization
techniques such as dropout and batch normalization, the
proposed model could balance generalization ability and
training efficiency. Use of such methods to improve the
CNN model along with other techniques like preprocessing
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Figure 6: Classification maps produced by CNN models, (a) CNN+dropout + batch normalization, (b) CNN+dropout, (c) CNN+batch
normalization, and (d) CNN.
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(geometric calibration and feature normalization) and sensi-
tivity analysis could make these models robust for classifying
the given dataset. The CNNmodel acts as a feature extractor,
and a classifier could be trained end-to-end given training
samples. The network architecture can effectively handle
the inter- and intraclass complexity inside the scene. The best
model achieved OA=0.973, AA=0.965, and κ=0.967

outperforming the traditional CNN model by ~4% in all
the accuracy indicators. The short training time (124 sec-
onds) confirmed the robustness of the proposed model for
small and medium scale remote sensing datasets. The future
work should focus on scaling this architecture for large
remote sensing datasets and other data sources such as satel-
lite images and laser scanning point clouds.
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Figure 8: The influence of hyperparameters, the number of convolutional filters, activation function, drop probability, optimizer, batch size,
and patch size.
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