
On the Frequency of Words Used in Answers to Explain in Plain 
English Questions by Novice Programmers 

Thomas Pelchen 
University of Technology Sydney 

Ultimo, NSW, Australia 
Thomas.Pelchen@student.uts.edu.au 

ABSTRACT 
Most previous research studies using Explain in Plain English ques- 
tions have focussed on categorising the answers of novice program- 
mers according to the SOLO taxonomy, and/or the relationship 
between explaining code and writing code. In this paper, we study 
the words used in the explanations of novice programmers. Our 
data is from twelve Explain in plain English questions presented to 
over three hundred students in an exam at the end of the students’ 
first semester of programming. For each question, we compare the 
frequency of certain words used in correct answers, between stu- 
dents who scored a perfect twelve on all the Explain in plain English 
questions and students with lower scores. We report a number of 
statistically significant differences in word frequency between the 
students who answered all questions correctly and students who 
did not. The students who answered all twelve questions correctly 
tended to be more precise, more comprehensive, and more likely to 
choose words not explicitly in the code, but instead words that are 
an abstraction beyond the code. 

CCS CONCEPTS 
• Social and professional topics → Computer science educa- 
tion; 

KEYWORDS 
Novice Programmers, Explain in Plain English 

 
1 INTRODUCTION 

Since Explain in Plain English questions (EiPE) were first 
presented at the ACE  2006 conference [22], EiPE questions 
have become    a common way to study the code reading and 
understanding of novice programmers. In most of those studies, 
the focus has been on comparing the performance of students on 
EiPE questions and how that relates to the performance of 
those students on code tracing and code writing questions. In 
those past studies, the number of EiPE questions used was low, 
often only two or three EiPE questions, with the largest number of 
EiPE questions used in a single past study being six [3]. In this 
paper, we had our student subjects answer a dozen EiPE 
questions. 

 

Raymond Lister 
University of Technology Sydney 

Ultimo, NSW, Australia 
Raymond.Lister@uts.edu.au 

 
Our motivation arose from reading some literature in the area  

of Linguistic Inquiry and Word Count (LIWC) [8, 16]. In two LIWC 
studies, where both studies were in knowledge domains that were 
not computer-related, Kim et al. [7] and Gobbo and Chi [6] found 
that experts and novices differed in the frequency with which they 
used certain words. Researchers in LIWC claim that they have iden- 
tified patterns in the use of words that are domain-independent [7]. 
If certain patterns of language usage are associated with the degree 
of expertise, and those patterns are domain-independent, then the 
exact words used by a student when describing programming code 
may be an indicator to a teacher of the developmental stage of the 
student. Inspired by that literature in LIWC, our primary research 
question was as follows: 

RQ1: Among students who answer a specific EiPE 
question correctly, is there a difference between the 
answers of students who did well on other EiPE ques- 
tions and students who did not do as well on other 
EiPE questions? 

Having our students answer twelve EiPE questions also allowed us 
to ask a secondary research question: 

RQ2: Are some EiPE questions harder than others? 

Several of our 12 EiPE questions have been used in earlier studies 
of EiPE questions. This paper is the first time that all of these pre- 
viously published EiPE questions have been compared on the same 
student cohort, thus for the first time providing the opportunity to 
directly compare student performance on all these questions. 

1.1 Institutional Context 
The study presented in this paper used data collected from over 
300 students enrolled in an introductory programming subject at 
the authors’ university. The programming language taught is Java. 

An earlier study of EiPE questions provided some evidence that 
the English-speaking background of students may affect their abil- 
ity to answer EiPE questions [15]. Direct data about the English- 
speaking background of the students sampled in this study was not 
available. However, it is known from regular surveys of this class 
in other semesters that typically 80% of the class regard English as 
their first language. 



× 

× 

× =

2 METHOD 

2.1 The End-of-Semester Exam Paper 
The 12 EiPE questions were part of the end-of-semester exam. Every 
question began with the same preamble: 

In one sentence that you should write in the empty 
box below, explain in plain English what this code 
does. 

The “empty box below” which followed each question was the full- 
text width of the single-column page and was 2cm in height. For 
most students, the box provided ample room for their answer. Every 
student’s full answer was transcribed and included in our analysis, 
even when it extended beyond the box. 

Prior to the exam, students had limited exposure to EiPE ques- 
tions. The very first EiPE question presented below (Q25) was used 
on a non-assessable worksheet in the first two weeks of semester. 
In the final “exam hints” lecture, students were advised that there 
would be EiPE questions in the exam, and they were shown a small 
number of examples of such questions, and what constituted a cor- 
rect answer, using code that had been studied during semester, but 
none of those examples used code from the actual exam questions. 

2.2 Correct, Relational Answers Only 
The reader should note that the student answers analyzed in this 
paper are all correct answers; incorrect answers are ignored. The 
motivation for doing so is that the exact words a student uses in a 
correct answer to a single EiPE question may be an indication of 
how well the student comprehends code in general. Furthermore, 
for this study, a correct answer must be, in terms of the SOLO 
taxonomy, a relational answer [2, 10, 14, 22]. A line-by-line multi- 
structural answer is considered incorrect. 

2.3 Data Collection 
The handwritten answers from the exam papers of 334 students 
were transcribed into a digital text format for analysis. Of those 334 
students, 31 students scored zero on the 12 EiPE questions. Those 
31 students are included in the statistical reporting below. 

2.3.1 Transcription Rules. To maintain consistency in the way that 
the words were transcribed and analyzed, the following transcrip- 
tion rules were applied: 

(1) Spelling mistakes were corrected, to ensure that the student’s 
intended word was analyzed. 

(2) When a word could not be read, due to poor handwriting, 
<illegible> was entered. 

(3) The names of variables were encased with quotation marks, 
thus distinguishing the variable name from the normal use 
of the word; for example, a variable called ‘number’ is dis- 
tinguished from the common noun number. 

(4) Similar words, for example, “number”, “numbers” and “num”, 
were collapsed into the same word. 

2.4 Data Analysis 
Students from high, medium and low performance bands were 
studied: 

Band 12: the 36 students who answered all 12 EiPE questions 
correctly. 
Band 9: the 39 students who answered 9 of the 12 EiPE 
questions correctly. This medium band is roughly equidistant 
from the other two bands, in terms of a score out of 12. On 
average only 9/12 39 29 of these band 9 students would 
have answered a question correctly and thus be eligible for 
inclusion in the analysis of that question. 
Band 4-7: the 69 students who answered 4 to 7 of the 12 
EiPE questions correctly. Even lower performing students 
were not used because a useful sample size is needed per 
question. Consider the students who answered 1, 2 or 3 
questions correctly. On average only approximately nine   
of those students would have answered a specific question 
correctly and thus be eligible for inclusion in the analysis for 
that question. In the 4-7 band, an average of approximately 33 
students would have answered a specific question correctly. 

A word was counted only once per student, as our interest is in 
a student’s lexicon, not how many times they use a word. 

The comparison of a word between two performance bands 
implies a 2 2 contingency table as illustrated in Figure 1. In general, 
a chi-squared test was used to assess the statistical significance in 
such contingency tables. However, when an individual expected 
count value was less than 5, a two-tailed Fisher Exact test was used 
[12]. Also, when comparing the frequency of use of a particular 
word in all three performance bands simultaneously (i.e. a 3 2 
contingency table), a Fisher-Freeman-Halton Exact test was used 
when 20% of the expected count values were less than 5 or a single 
expected count value was less than 1 [12]. 

 

Figure 1: A Contingency Table for two performance bands 

 
3 RESULTS AND DISCUSSION 
Table 1 summarizes the performance of the students on all twelve 
questions, both overall performance, and performance broken down 
according to how many questions students answered correctly. For 
example, the third column shows the performance of students on 
question 25. The row under “Q25” contains the word “swap”, a 
mnemonic for what the code in Q25 does (i.e. it swaps the values 
between two variables). Below the mnemonic is a percentage, “54%”, 
indicating the percentage of the total student cohort who answered 
this question correctly. Below that percentage is “10th”, indicating 
this question ranked as the 10th easiest (i.e. 3rd hardest) for the 
entire cohort. Below that rank is a percentage, “30%”, indicating 
that this “swap” question was answered correctly by 30% of the 27 
students who scored 1 out of 12 (i.e. 8 students). 

As the top header row in Table 1 shows, the first six EiPE ques- 
tions involve non-iterative code, while the second six involve itera- 
tive code. The row that ranks the ease of each question shows that 

•

•

•



 
a = b; 
b = c; 
c = a; 

non-iterative questions are not necessarily ranked easier than itera- 
tive questions. Students who scored from 1 to 3 out of 12 tended to 
perform much better on non-iterative questions than on iterative 
questions, but as scores increase the relative ease of iterative versus 
non-iterative questions is more mixed. 

Table 2 contains data similar to Table 1, but Table 2 only contains 
the data for the three performance bands studied below (i.e. the 
students who scored 4-7, 9, or 12 out of 12). There is not the obvious 
performance difference between iterative and non-iterative ques- 
tions in Table 2 that there is in Table 1. For band 4-7, the average 
performance on all six non-iterative questions is 54% and for the 
iterative questions it is 40%. For band 9, the average performance 
on the non-iterative questions is 68%, but the overall performance 
on the iterative questions is actually better, at 82%. 

On the basis of Tables 1 and 2, we can already answer our sec- 
ond research question: some EiPE questions are harder than others. 
However, it is not clear what makes some EiPE questions harder 
than others. Students who performed poorly on all the EiPE ques- 
tions tended to find the iterative code questions harder to explain 
than non-iterative code, but that tendency reversed for students 
who performed well on the EiPE questions. 

3.1 Length of Correct, Relational Answers 
One of the claims from LIWC research is that experts provide longer 
answers than novices [7]. If that is also the case with the data used 
in this study (i.e. that students who scored a perfect 12 provided 
longer answers), then any difference in word frequencies between 
performance bands might be attributable to better-performing stu- 
dents providing longer answers. However, Table 3 shows that for 
each EiPE question, there is little difference in the average number 
of words used in correct, relational answers by students in different 
performance bands. With one exception, ANOVA tests revealed no 
statistically significant differences in the length of student answers 
between the three performance bands. The exception was Q26, be- 
tween the bands 4-7 and 12. That exception will be discussed in the 
subsection below that describes Q26. 

3.2 Q25: Swapping Two Variables (“swap”) 
The code for Q25 is shown in Figure 2. A correct answer is “it swaps 
the values in variables b and c”. For an answer to be correct, a 
student had to be clear about which two variables have their values 
swapped. It was not essential for a student to mention that variable 
“a” was used to hold a temporary value. 

This EiPE question has been used in several earlier published 
studies [2, 14, 17, 18, 21]. Corney et al. [2] gave swapping a special 
status, describing it as being the “Hello World of Relational Reason- 
ing”. This question would probably be easier if the variable name “a” 
were replaced with something more descriptive, like “temp”. How- 
ever,  using an obscure variable name for the temporary variable   
is consistent with earlier studies [14, 18, 21]. (But the reader will 
see that the use of the variable name “temp” in the next question, 
Q26, did not make that question easy.) It also should be noted that 
this question may have been easier for the students in this study 
than this question would be for students at other institutions, since 
swapping using exactly this code featured prominently in the first 
two weeks of their lectures. 

Table 4 shows the frequency with which various words were 
used by each of the three performance bands. In fact, as explained 
below, Table 4 shows that there is no statistically significant differ- 
ence in the word usage of the three performance bands, perhaps 
because there is little scope for variation in correct answers for  
this particular question. However, Table 4 will now be discussed in 
detail so that the reader will be able to understand the subsequent 
tables for the other EiPE questions. 

 

Figure 2: The Code Used in Question 25 (“swap”) 

 
The first column of Table 4, headed “Word”, lists some of the more 

common words used in correct student answers. All words listed in 
the first column are by convention shown in capitals, irrespective of 
how students used capitalisation. The second column, headed “All”, 
shows the percentage of correct answers that contained that word 
for all the students in the three performance bands combined. For 
example, the variable names ‘B’ and ‘C’ occur in 99% of all correct 
answers. (These two variable names do not occur in all correct 
answers because an answer like “it swaps two of the variables using 
‘a’ as a temporary variable” would be marked as correct: since that 
answer implies which variables have their values swapped.) The 
rows in the table are ordered by the percentage in the “All” column 
and thus the words listed in the first few rows of the table – ‘SWAP’, 
‘VALUES’, ‘B’, ‘C’ – approximate a common correct answer. (The 
words listed in the first few rows of most of the subsequent word 
frequency tables similarly approximate a common correct answer.) 

In Table 4, the three columns headed “4-7”, “9” and “12” show, 
in each row, the percentage of correct answers that included the 
word in the first column, for students in the three performance 
bands. For example, the variable name ‘A’ was mentioned by 33% of 
students who scored 4-7, 20% of students who scored 9, and 56% of 
students who scored 12. Separating these three columns containing 
those percentages are two columns, both headed “Sig”. These “Sig” 
columns show the degree of statistical significance in the difference 
between the two percentages separated by a “Sig” column. In Table 
4, all rows for both “Sig” columns contain “ns”, indicating that there 
are no statistically significant differences in the percentages shown 
in this table, using the traditional criterion of p < 0.05. 

The third column of Table 4, headed “p”, shows in each row the 
probability from a chi-square test of whether there is a significant 
statistical difference in the percentages across all three performance 
bands. In this table, none of those “p” values are less than 0.05. 

3.3 Q26: Shifting Array Values Right (“shiftR”) 
The code for Q26 is shown in Figure 3. A minimal correct answer 
is “it shifts one position”. A student did not have to specify that 
the shift was to the right. In fact, an answer was correct even if a 
student specified a shift left. Also, it was not essential for a student 
to mention that the rightmost value (or leftmost) wrapped around. 
(The statistically significant difference in answer length between 



Assume that the “x” is an array of three integers. 

 
temp = x[2]; 
x[2] = x[1]; 
x[1] = x[0]; 

x[0] = temp; 

Table 1: Performance of the Students on the Twelve EiPE Questions, Q25 to Q36 
 

 Non-Iterative Iterative 

Student 
Score 

Number of 
Students 

Q25
swap 
54% 
10th 

Q26 
shiftR 

48% 
12th 

Q27 
rev 
74% 
2nd 

Q28
large3

78% 
1st 

Q29
sort3
63% 
6th 

Q30
mid3 
73% 
3rd 

Q31
add1 
62% 
7th 

Q32
sum
67% 
5th 

Q33 
sorted 

59% 
8th 

Q34 
ftnd 
68% 
4th 

Q35 
possum

52% 
11th 

Q36
same
54% 
9th 

1 27 30% 11% 26% 11% 19% 0% 0% 0% 0% 0% 0% 4% 
2 15 33% 7% 73% 47% 13% 20% 7% 0% 0% 0% 0% 0%
3 18 56% 28% 61% 56% 33% 17% 0% 11% 6% 11% 6% 17%
4 12 33% 8% 67% 83% 75% 50% 33% 8% 17% 0% 0% 25%
5 18 50% 17% 67% 67% 72% 67% 56% 28% 22% 28% 17% 11%
6 20 20% 20% 55% 70% 55% 75% 40% 70% 45% 80% 30% 40%
7 19 37% 37% 63% 74% 42% 95% 42% 84% 32% 74% 58% 63%
8 21 48% 29% 76% 90% 62% 86% 86% 67% 71% 90% 48% 48%
9 39 38% 49% 72% 97% 67% 87% 77% 97% 90% 95% 69% 62%

10 35 57% 80% 86% 89% 74% 91% 94% 94% 86% 97% 83% 69%
11 43 86% 77% 95% 100% 84% 100% 95% 100% 93% 100% 79% 91%
12 36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

 
Table 2: Performance of the Students on the Twelve EiPE Questions, Q25 to Q36, for the three performance bands 

 

 Non-Iterative Iterative 

Student 
Score 

Number of 
Students 

Q25
swap 
52% 
11th 

Q26 
shiftR 

49% 
12th 

Q27 
rev 
74% 
5th 

Q28
large3

86% 
1st 

Q29
sort3
72% 
6th 

Q30
mid3 
84% 
2nd 

Q31
add1 
67% 
7th 

Q32
sum
76% 
3rd 

Q33 
sorted 

64% 
8th 

Q34 
ftnd 
75% 
4th 

Q35 
possum

58% 
10th 

Q36
same
59% 
9th 

4-7 69 35% 22% 62% 72% 59% 74% 43% 52% 30% 51% 29% 36% 
9 39 38% 49% 72% 97% 67% 87% 77% 97% 90% 95% 69% 62%

12 36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
 

Table 3: Average Number of Words in Correct Answers by 
each Performance band for each EiPE Question 

 

Question 
No. of students Avg. no. of words
4-7 9 12 4-7 9 12

Q25 swap 24 15 36 11.5 9.8 12.3 
Q26 shiftR 15 19 36 19.5 21.3 21.8
Q27 rev 51 34 36 10.5 8.4 12.5
Q28 large3 50 38 36 12.1 10.9 14.7
Q29 sort3 41 26 36 15.1 13.1 20.0
Q30 mid3 51 34 36 16.5 13.5 20.9
Q31 add1 30 30 36 15.3 11.7 11.4 
Q32 sum 49 38 36 11.7 11.6 14.6
Q33 sorted 21 35 36 19 18.4 23.9
Q34 find 35 37 36 24.1 22.3 27.8
Q35 possum 20 27 36 15.9 14 16.5
Q36 same 25 24 36 20.3 14.6 20.8

 
band 12 and band 4-7 is probably because higher band students 
were more likely to mention these details.) Even with this generous 
grading, Tables 1 and 2 indicate this was one of the more di@cult 
questions – despite this code being prominent in the first three 
weeks of lectures and being part of a week 4 lab test. 

Table 4: Word Frequencies for Q25 (“swap”) 
 

Word All p 4-7 Sig 9 Sig 12
‘B’ 99% 0.341 96% ns 100% ns 100%
‘C’ 99% 0.341 96% ns 100% ns 100%
VALUES 88% 0.373 88% ns 100% ns 78%
SWAP 88% 0.818 96% ns 93% ns 75%
‘A’ 36% 0.427 33% ns 20% ns 56%
TEMP 24% 0.301 25% ns 7% ns 39%

 

Figure 3: The Code Used in Question 26 (“shiftR”) 

 
Table 5 shows that few of the words commonly used exhibit a 

statistically significant difference between the three performance 
bands. The double asterisks in the row for the word ‘LAST’ indicates 
a statistically significant difference, with p < 0.01, between band 



Assume that the “x” is an array of five integers. 

 
temp = x[4]; 
x[4] = x[0]; 
x[0] = temp; 

 
temp = x[3]; 
x[3] = x[1]; 
x[1] = temp; 

if ( a < b) 
{ 

if ( b < c) System.out.println 
(c); 

else 
System.out.println (b); 

} 
else 
{ 

if ( a < c) System.out.println 
(c); 

else 
System.out.println (a); 

} 

Table 5: Word Frequencies for Q26 (“shiftR”) 
 

Word All p 4-7 Sig 9 Sig 12
RIGHT 81% 0.573 87% ns 74% ns 83%
ONE 58% 0.955 60% ns 58% ns 56%
SHIFT 57% 0.649 53% ns 53% ns 64%
POSITION 49% 0.476 47% ns 42% ns 58%
LAST 43% 0.017 * 20% ** 68% ns 42%
IN 42% 0.044 * 20% ns 47% ns 58%
FIRST 34% 0.348 20% ns 42% ns 39%
RIGHTMOST 25% 0.203 33% ns 11% ns 31%
LEFTMOST 19% f 0.111 33% ns 5% ns 19%
LEFT 13% 0.937 13% ns 11% ns 14%

 
4-7 and band 9. In this case, the difference is probably because 
students in band 4-7 were less likely to describe how an element 
on the end of the array wraps around. The asterisk in the row for 
the word ‘IN’, under the column headed “p”, indicates that there 
is a statistically significant difference (p < 0.05) across all three 
performance bands. In fact, although it is not shown in the table, 
the difference is between band 4-7 and band 12 (p = 0.012). 

3.4 Q27: Reversing Array Values (“rev’) 
The code for Q27 is shown in Figure 4. A correct answer is “reverse 
the array order”. It was not acceptable for a student to say that the 
code swapped elements 0 and 4, and elements 1 and 3. Despite this 
grading requirement, Tables 1 and 2 show that students found this 
third question much easier than the first two questions. 

Table 6 shows that students who scored a perfect 12 were more 
likely to mention the array name, ‘X’. This explicit reference to a 
variable by the high achieving students is something seen in several 
more questions, but the authors have no explanation for it. 

 

Figure 4: The Code Used in Question 27 (“rev”) 

Table 6: Word Frequencies for Q27 (“rev”) 

3.5 Q28: Largest of Three Values (“large3”) 
The code for Q28 is shown in Figure 5. A correct answer is “it 
prints the largest value”. This question has been used in two earlier 
published studies [13, 21]. 

Table 7 shows that, as was the case in the previous question,  
the students who scored a perfect 12 were more likely to mention 
the variable names (e.g. “it prints the largest value in variables a, b 
and c”). The statistics for ‘A’, ‘B’ and ‘C’ are identical, so the three 
variable names are shown on a single row of Table 7. 

 

Figure 5: The Code Used in Q28 (“large3”) 

Table 7: Word Frequencies for Q28 (“large3”) 

 
 
 
 
 
 

3.6 Q29: Sort Three Values (“sort3”) 
The code for Q29 is shown in Figure 6. A correct answer is “it sorts 
the values in the variables”. Students did not need to specify that the 
code sorted the values into descending order. In fact, students were 
graded as having a correct answer even if they asserted incorrectly 
that the values were sorted into ascending order. This question has 
been used in several earlier published studies [2, 17–19]. 

Table 8 shows that, as was the case for the previous two questions, 
the students who scored a perfect 12 were more likely to mention 
the variable names (e.g. “it sorts the values in y1, y2 and y3”). 

3.7 Q30: Middle of Three Values (“mid3”) 
The code for Q30 is shown in Figure 7. A correct answer is “it prints 
the middle value”. Many students, in all three bands, gave correct 
answers that did not mention “middle”, such as “It prints the value 
that is not the minimum or the maximum”. This question was used 
in one earlier study [18]. 

Word All p 4-7 Sig 9 Sig 12
PRINT 91% 0.541 88% ns 95% ns 92%
LARGEST 68% 0.4 60% ns 71% ns 72%
‘A’ ‘B’ ‘C’ 57% 0.002 ** 44% ns 47% ** 81%
VARIABLE 51% 0.057 48% ns 39% * 67%
HIGHEST 16% 0.994 16% ns 16% ns 17%
BIGGEST 11% 0.704 14% ns 11% ns 8%

Word All p 4-7 Sig 9 Sig 12
REVERSES 95% 0.324 98% ns 89% ns 97%
ARRAY 85% 0.078 77% ns 93% ns 86%
ORDER 68% 0.772 60% ns 68% ns 75%
‘X’ 32% 0.005 ** 14% ns 18% * 64%



The variable maximum contains the maximum value stored 
in variables first, second and third. 

The variable minimum contains the minimum value stored in 
variables first, second and third. 

if (first == minimum) 
{ 

if (second == maximum) System.out.println(third); 
else 

System.out.println(second); 
} 
else 
{ 

if (second == minimum) 
{ 

if (first == maximum) System.out.println(third); 
else 

System.out.println(first); 
} 
else 
{ 

// if we get to here, 

// then minimum == third 
 

if (first == maximum) System.out.println(second); 
else 

System.out.println(first); 
} 

} 

Table 9 shows that, as was the case for the previous three ques- 
tions, the students who scored a perfect 12 were more likely to 
mention the variable names, ‘FIRST’, ‘SECOND’ and ‘THIRD’. The 
band 12 students were also more likely to use the word “middle”, 
perhaps indicating a greater willingness to use a word not explicitly 
in the code, but instead an abstraction beyond the code itself (as 
may also be the case in Q34 and Q35). 

 

Figure 6: The Code Used in Q29 (“sort3”) 

Table 8: Word Frequencies for Q29 (“sort3”) 

 
 
 
 
 
 
 
 
 

3.8 Q31: Add 1 to Array Values (“add1”) 
The code for Q31 is shown in Figure 8. A correct answer is “it 
adds 1 to every element”. This question has not been used in any 
earlier empirical study of EiPE questions, but it was asserted by 
Gluga et al. [5] that this piece of code is an especially easy piece of 
iterative code for a novice to explain. However, Tables 1 and 2 show 
that students did not find this question to be easy in comparison   
to other questions involving iterative code. A common incorrect 
answer was that the code shifted the elements by one position. 
Such an incorrect answer may stem from the well-known problem 
novices have of distinguishing between a position in an array and 
the contents of that position [4]. 

Table 10 shows that, as was the case for the previous four ques- 
tions, the students who scored a perfect 12 were more likely to 
mention the variable name, ‘X’. 

3.9 Q32: Sum Array Values (“sum”) 
The code for Q32 is shown in Figure 9. A correct answer is “It prints 
the sum of all the values in the array”. This question was used in 
three previous studies [3, 11, 15]. 

Table 11 shows the frequency with which various words were 
used by students in the three performance bands. Words such as 
‘SUM’ and ‘PRINT’ do not show high percentages because many 
students used synonyms, such as ‘TOTAL’ and ‘DISPLAY’. 

 

Figure 7: The Code Used in Q30 (“mid3”) 

Table 9: Word Frequencies for 30 (“mid3”) 

Word All p 4-7 Sig 9 Sig 12
VALUE 67% 0.427 71% ns 58% ns 72%
ORDER 65% 0.621 59% ns 69% ns 67%
‘Y1’ 54% 0.009 ** 44% ns 42% ** 75%
TO 54% 0.01 ** 71% ns 54% ns 36%
‘Y3’ 51% 0.003 ** 44% ns 35% ** 75%
‘Y2’ 40% 0.019 * 39% ns 23% ** 58%
SORT 40% 0.301 34% ns 35% ns 50%
FROM 39% 0.031 * 51% ns 42% ns 22%

Word All p 4-7 Sig 9 Sig 12
VALUE 77% 0.029 * 82% * 62% * 86%
MIDDLE 64% 0.053 63% ns 50% * 78%
MINIMUM 35% 0.245 25% ns 41% ns 39%
MAXIMUM 32% 0.487 25% ns 35% ns 36%
‘THIRD’ 29% 0.003 ** 24% ns 15% ** 50%
‘FIRST’ 29% 0.003 ** 24% ns 15% ** 50%
‘SECOND’ 29% 0.003 ** 24% ns 15% ** 50%



int z = 0; 
 

for (int i=0 ; i<x.length ; ++i ) z = z + 
x[i]; 

System.out.println(z); 

An interesting feature of the word frequencies is that, while 
there is no statistically significant difference between the bands in 
their use of the name of the array, ‘X’, the students in band 4-7 are 
much more likely to mention the auxiliary variable, ‘Z’, which may 
be an indication that students in band 4-7 are more focussed on the 
process of calculating the result, whereas students in the higher 
bands are more focussed on the final result. 

[3, 9, 10, 14, 22]. The results in this paper are the first time that 
student performance on this EiPE question has been compared to 
several other EiPE questions. Tables 1 and 2 show that this EiPE 
question ranks as the 8th easiest of the 12 EiPE questions. 

Table 12 shows the frequency with which various words were 
used by students in the three performance bands. The band 12 
students are more likely to use ‘RETURN’, ‘1’ and ‘0’. 

 

 
Figure 8: The Code Used in Question 31 (“add1”) 

 
 

Table 10: Word Frequencies for Q31 (“add1”) 
 

Word All p 4-7 Sig 9 Sig 12
1 74% 0.207 83% ns 63% ns 75%
‘X’ 47% 0.015 * 40% ns 33% ** 67%
ADDED 41% 0.26 50% ns 43% ns 31%
INCREMENT 32% 0.522 40% ns 27% ns 31%
ELEMENT 21% 0.027 * 10% ns 17% ns 36%
ONE 20% 0.225 13% ns 30% ns 17%
INCREASE 16% 0.202 7% ns 20% ns 22%

 
 

Figure 9: The Code Used in Q32 (“sum”) 

 
 

Table 11: Word Frequencies for Q32 (“sum”) 
 

Word All p 4-7 Sig 9 Sig 12
ARRAY 90% 0.637 92% ns 92% ns 86%
SUM 79% 0.021 * 64% * 84% ns 89%
PRINT 74% 0.079 72% ns 63% * 86%
IN 63% 0.066 58% ns 53% * 78%
ALL 61% 0.237 56% ns 55% ns 72%
‘X’ 55% 0.091 47% ns 47% ns 69%
‘Z’ 26% 0.005 ** 44% ** 13% ns 19%

 
3.10 Q33: Check if an Array is Sorted (“sorted”) 
The code for Q33 is shown in Figure 10. A correct answer is “It 
checks if the array is sorted”. The student did not have to specify 
that the code checked for ascending order. In fact, a student’s answer 
was marked as correct even if the student specified descending order. 
Code like this has been used in many studies with EiPE questions 

 
 
 
 
 
 
 
 
 
 

Figure 10: The Code Used in Q33 (“sorted”) 

 
 

Table 12: Word Frequencies for Q33 (“sorted”) 
 

Word All p 4-7 Sig 9 Sig 12
IF 87% f 0.067 81% ns 83% ns 97%
ARRAY 85% 0.432 81% ns 83% ns 92%
RETURN 67% 0.047 * 57% ns 60% * 83%
1 66% 0.012 * 52% ns 60% * 86%
0 66% 0.009 ** 57% ns 54% ** 86%
ASCENDING 54% 0.409 48% ns 51% ns 64%
‘INUMBER’ 40% 0.101 29% ns 37% ns 56%
SORT 23% 0.127 14% ns 20% ns 36%
DESCENDING 18% 0.852 14% ns 20% ns 19%

 
3.11 Q34: Find a Value in an Array (“ftnd”) 
The code for Q34 is shown in Figure 11. A correct answer is “It finds 
a value in an array”. This code was used in two previous studies 
[3, 13] but perhaps not with the relaxed grading criteria used in this 
study. To have an answer graded as correct in this study, a student 
only needed to articulate that the code was performing some kind 
of search of the array. The student did not need to specify three 
important aspects of the code: 

(1) if the search value is found, then the method returns the 
position of that value. 

(2) the method returns -1 if the search value is not found. 
(3) if the search value occurs more than once in the array, it is 

the final position of the search value that is returned. 

The relaxed grading criteria led to this question being the fourth 
easiest question, as shown in Tables 1 and 2. Furthermore, while 

 
for (int i=0 ; i<x.length ; ++i ) x[i] = 

x[i] + 1; public static int validate(int iNumbers[]) 
{ 

int bValid = 1; 

for (int i=0; i<iNumbers.length-1; i++) 
{ 

if (iNumbers[i] > iNumbers[i+1]) 
{ 

bValid = 0; 
} 

} 

return bValid; 

} 



public static int q34(int data[], int x ) 
{ 

int z = -1; 

for (int i=0; i < data.length; i++ ) 
{ 

if ( data[i] == x ) z = i; 
} 

return z; 

} 

this specific code was new to the students, the students had been 
taught linear search in lectures and had completed a lab test on 
an implementation of linear search during the semester. While 
the code in this EiPE question was superficially quite different 
from what was studied and tested during semester (e.g. the code 
studied and tested during semester used a while loop), the code 
studied during semester did handle the first two of the three aspects 
itemized above. 

 

Figure 11: The Code Used in Question 34 (“ftnd”) 

 

Table 13: Word Frequencies for Q34 (“ftnd”) 
 

Word All p 4-7 Sig 9 Sig 12
ARRAY 85% 0.368 80% ns 84% ns 92%
‘X’ 83% 0.415 86% ns 76% ns 86%
RETURN 80% 0.009 ** 66% ns 81% ns 94%
-1 70% 0.009 ** 51% * 76% ns 83%
POSITION 70% 0.012 * 69% ns 54% ** 86%
FOUND 38% <0.001 **** 11% ** 41% ns 61%
EQUAL 24% 0.084 37% * 16% ns 19%
FOR 21% 0.073 9% * 30% ns 25%
ELEMENT 20% 0.099 26% * 8% ns 25%
LAST 14% 0.051 6% ns 11% ns 25%

 
A student might provide a correct answer for this question by 

only understanding some of the code, which acts as beacons [1]. 
The two beacons for this question are probably the “for” loop header 
(which in the experience of these students always run across an 
entire array) and the complete “if” statement. Even if the rest of 
the code is simply ignored by a student, the student might provide 
a correct answer just from those two beacons. Traynor, Bergin, and 
Gibson [20] noted something similar about the linear search, but 
as a code-writing exercise. In an interview they conducted with a 
student, the student described his approach to answering coding 
questions in an exam: 

. . . you usually get the marks by making the answer 
look correct. Like, if its a searching problem, you put 
down a loop and you have an array and an if statement. 
That usually gets you the marks . . . not all of them, 
but definitely a pass. 

Table 13 shows the frequency with which various words were 
used by students in the three performance bands. With respect to 
the three aspects of the code enumerated above: (1) the band 12 
students were much more likely to use the word ‘POSITION’; (2) 
the band 4-7 students were much less likely to use ‘-1’; and (3) the 
band 12 students were more likely to use the word ‘LAST’ than the 
band 4-7 students (p = 0.025, which is not listed in Table 13). 

An aspect of Table 13 is that band 4-7 students were less likely to 
use the word ‘FOUND’ but more likely to use the word ‘EQUAL’. An 
inspection of complete student answers may explain this interesting 
issue – having deduced what the code does, higher band students 
are more likely to use forms of expression that abstract from the 
code itself, to describe the code in terms of what the code does, 
whereas lower band students tend to use words that are a closer 
reading of the code itself (as may well be the case in Q30, with  
the word “middle”, and also in Q35). Specifically, having deduced 
that the code searches the array, higher band students are more 
inclined to talk about the value being “found”, whereas lower band 
students are more likely to talk about the value in the array being 
“equal” to the search value. This may be an important clue as to 
why some students perform more consistently than other students 
on code explaining, and perhaps also on code writing – students 
who more actively abstract from the code (however modestly) may 
more quickly learn general lessons from specific code examples. 

3.12 Q35: Sum Positive Values (“possum”) 
The code for Q35 is shown in Figure 12. A correct answer is “It 
sums all the positive values in an array”. Students had to specify 
that only positive values are summed. This question was one of 
the most di@cult. This question was used in one previous study 
[13], in which those authors described a surprising feature of their 
students’ incorrect answers: 

. . . a common mistake was to respond that the code 
summed all the elements of the array. In making that 
mistake, students ignored the if statement within the 
loop – to do so is an egregious error. 

Surprisingly, many students in our study made that same “egre- 
gious” error. That surprising result for Q35, in both our study and 
the previous study, plus our observations about beacons [1] in the 
previous question, have led us to propose an explanation for this 
surprisingly common error. In the case of this EiPE question, a stu- 
dent may understand only some of the code. The two critical lines, 
or beacons, for this question, are probably the “for” loop header (as 
was the case in the previous question) and the line “num = num + 
numbers[i]”. If the rest of the code is simply ignored by a student, 
then that student is likely to guess – incorrectly, for this question 
– that the code sums the values of all elements in the array, not 
just the positive values. Thus an EiPE question like this question 
may expose students who are not reading all the code, and who are 
guessing based on the parts of the code they do understand. 

Table 14 shows the same issue that we noted for the words 
‘MIDDLE’ in Q30 and ‘FOUND’ in Q34 – higher band students are 
more likely to use words that abstract from the code, whereas lower 
band students tend to use words that are a closer reading of the code. 
Specifically, the band 12 students are more inclined to talk about 
values in the array that are “positive”. The band 4-7 students have 



public static int q35( int[] numbers ) 
{ 

int num = 0; 

for(int i=0; i < numbers.length; i++ ) 
{ 

if ( numbers[i] > 0 ) 
num = num + numbers[i]; 

} 

return num; 

} 

a variety of forms for expressing the same thing, and that variety 
prevents any statistically significant forms from being manifested in 
Table 14. One of those non-statistically significant forms is in three 
words – ‘GREATER’, ‘THAN’, ‘0’. The p-values for the differences 
in the usage of those three words between band 4-7 students and 
band 12 students are 0.096, 0.033* and 0.096 respectively. 

 

Figure 12: The Code Used in Q35 (“possum”) 

Table 14: Word Frequencies for Q35 (“possum”) 

 
 
 
 
 
 
 
 
 
 

3.13 Q36: Count Same Values (“same”) 
The code for Q36 is shown in Figure 13. A correct answer is “It 
prints the number of times that the same number occurs in both 
arrays”. This question was the ninth easiest question, as shown in 
Tables 1 and 2. An earlier exam question (Q18) used the same code 
for a tracing exercise, where students had to identify the final value 
in the variable “count”, when given specific initializations for the 
two arrays, “x1” and “x2”. 

Table 15 shows the frequency with which various words were 
used by students in the three performance bands. The popularity of 
the word ‘OUT’ for band 4-7 students is because they are more likely 
to write “print out” instead of just “print”. On one hand, writing 
“print out” may not be a fundamental difference in word usage, but 
on the other hand, perhaps the use of “out” is due to its origins     
in “System.out.println”. Band 4-7 students are much more likely  
to make explicit reference to the variable “count”. (Note that the 
variable name ‘COUNT’ appears in the bottom row of the table, and 
the verb “COUNT” appears near the middle of the table. Recall that 
variable names are indicated using single quotes.) That difference 

may indicate that lower band students are more focussed on the 
actual calculation, while higher band students are more focussed 
on the result of the calculation. 

 

Figure 13: The code Used in Q36 (“same”) 

Table 15: Word Frequencies for Q36 (“same”) 

Word All p 4-7 Sig 9 Sig 12
ARRAY 88% f 0.009 ** 80% ns 85% f * 100%
ALL 72% <0.001 *** 45% ** 89% ns 83%
SUM 71% 0.006 ** 50% ns 74% ns 89%
IN 70% 0.047 * 60% ns 63% * 86%
POSITIVE 55% 0.008 ** 40% ns 48% * 78%
RETURN 66% 0.204 55% ns 67% ns 78%
THAN 38% 0.084 50% ns 41% ns 22%
0 31% 0.221 40% ns 33% ns 19%
GREATER 28% 0.247 40% ns 26% ns 19%
ADDED 18% 0.101 30% ns 15% ns 8%

Word All p 4-7 Sig 9 Sig 12
NUMBER 50% 0.049 * 36% ns 46% ns 67%
TIMES 44% 0.866 48% ns 42% ns 42%
COUNT 43% 0.607 36% ns 50% ns 44%
PRINT 38% 0.802 40% ns 33% ns 42%
OUT 16% f 0.040 * 32% ns 8% ns 8%
‘COUNT’ 14% f 0.005 ** 32% f * 4% ns 6%



4 CONCLUSION 
This study is the first to compare so many Explain in Plain English 
questions on the same student cohort. The results in this paper 
provide a foundation upon which future workers may characterize 
the di@culty of their own questions, by giving to their students 
a judicious mix of their new questions and the questions in this 
paper. 

That students use many of the same words in correct answers, 
with similar frequencies, is not surprising. There are only a limited 
number of ways of answering many of these questions correctly.  
In this respect, the results in this paper are different from what has 
been reported in LIWC studies [6, 7]. This difference is possibly 
due to the LIWC studies’ use of extended responses and refiections, 
whereas the student responses to Explain in Plain English questions 
are often just a single sentence. 

However, despite the brevity of student answers in this study, 
there are some differences in how students  use words, for some  
of the questions. Students who score more highly on all twelve 
questions are more meticulous in their word usage. They are more 
likely to use words that abstract beyond the code. They are more 
likely to provide a more comprehensive explanation of all possible 
behaviours of the code. Also, and inexplicably, they are more likely 
to make explicit reference to variables, especially in non-iterative 
code. 

The results in this paper are correlations. We cannot infer causal- 
ity. Did the high scoring students in this study acquire their ways 
of expressing themselves as part of learning to program, or did 
they come into the subject already having the inclination to pro- 
vide these types of answers? We do not know. Either way, the 
higher scoring students have ways of expressing themselves that 
lower-scoring students could usefully acquire. 

Even if teachers do not use Explain in Plain English questions, the 
results in this paper might outline the words that teachers should 
listen for when students describe their code. Through those words, 
a teacher might diagnose the developmental stage of a student. 

REFERENCES 
[1] Ruven E. Brooks. 1983. Towards a Theory of the Comprehension of Computer 

Programs. International Journal of Man-Machine Studies 18, 6 (1983), 543–554. 
http://dblp.uni-trier.de/db/journals/ijmms/ijmms18.html#Brooks83 

[2] Malcolm Corney, Raymond Lister, and Donna Teague. 2011. Early Relational Rea- 
soning and the Novice Programmer: Swapping As the "Hello World" of Relational 
Reasoning. In Proceedings of the Thirteenth Australasian Computing Education Con- 
ference - Volume 114 (ACE ’11). Australian Computer Society, Inc., Darlinghurst, 
Australia,  Australia,  95–104.   http://dl.acm.org/citation.cfm?id=2459936.2459948 

[3] Malcolm Corney, Donna Teague, Alireza Ahadi, and Raymond Lister. 2012. Some 
Empirical Results for neo-Piagetian Reasoning in Novice Programmers and the 
Relationship to Code Explanation Questions. In Proceedings of the Fourteenth 
Australasian Computing Education Conference - Volume 123 (ACE ’12). Australian 
Computer Society, Inc., Darlinghurst, Australia, Australia, 77–86. http://dl.acm. 
org/citation.cfm?id=2483716.2483726 

[4] B. DuBoulay. 1989. Some Di@culties of Learning to Program. In Studying the 
Novice Programmer, E. Soloway and J. C. Spohrer (Eds.). Number 14. Lawrence 
Erlbaum Associates, 283–299. http://www.sussex.ac.uk/Users/bend/papers/ 
diffsofprogramming.pdf 

[5] Richard Gluga, Judy Kay, Raymond Lister, and Donna Teague. 2012. On the 
Reliability of Classifying Programming Tasks Using a Neo-piagetian Theory   
of Cognitive Development. In Proceedings of the Ninth Annual International 
Conference on International Computing Education Research (ICER ’12). ACM, New 
York, NY, USA, 31–38. https://doi.org/10.1145/2361276.2361284 

[6] Camilla Gobbo and Michelene Chi. 1986. How knowledge is structured and used 
by expert and novice children. Cognitive Development 1, 3 (July 1986), 221–237. 

 
https://doi.org/10.1016/S0885-2014(86)80002-8 

[7] Kyungil Kim, Jinhee Bae, Myung-Woo Nho, and Chang Hwan Lee. 2011. How do 
experts and novices differ? Relation versus attribute and thinking versus feeling 
in language use. Psychology of Aesthetics, Creativity, and the Arts 5, 4 (July 2011), 
379–388. https://doi.org/10.1037/a0024748 

[8] Changhwan Lee, Kyungil Kim, Jeongsub Lim, and Yoonhyoung Lee. 2015. Psycho- 
logical Research using Linguistic Inquiry and Word Count (LIWC) and Korean 
Linguistic Inquiry and Word Count (KLIWC) Language Analysis Methodologies. 
Journal of Cognitive Science 16, 2 (2015), 132–49. http://cogsci.snu.ac.kr/jcs/index. 
php/issues/?pageid=4&mod=document&uid=183 

[9] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a 
Relationship Between Explaining, Tracing and Writing Skills in Introductory 
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on 
Innovation and Technology in Computer Science Education (ITiCSE ’09). ACM, New 
York, NY, USA, 161–165. https://doi.org/10.1145/1562877.1562930 

[10] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and Chris- 
tine Prasad. 2006. Not Seeing the Forest for the Trees: Novice Programmers and 
the SOLO Taxonomy. In Proceedings of the 11th Annual SIGCSE Conference on 
Innovation and Technology in Computer Science Education (ITICSE ’06). ACM, New 
York, NY, USA, 118–122. https://doi.org/10.1145/1140124.1140157 

[11] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Re- 
lationships Between Reading, Tracing and Writing Skills in Introductory Pro- 
gramming. In Proceedings of the Fourth International Workshop on Computing 
Education Research (ICER ’08). ACM, New York, NY, USA, 101–112. https: 
//doi.org/10.1145/1404520.1404531 

[12] David S. Moore, George P. McCabe, and Bruce A. Craig. 2017. Introduction to the 
Practice of Statistics (9 ed.). w.h. freeman, New York, NY, USA. 10–15 pages. 

[13] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012. 
Ability to ’Explain in Plain English’ Linked to Proficiency in Computer-based 
Programming. In Proceedings of the Ninth Annual International Conference on 
International Computing Education Research (ICER ’12). ACM, New York, NY, USA, 
111–118. https://doi.org/10.1145/2361276.2361299 

[14] Judy Sheard, Angela Carbone, Raymond Lister, Beth Simon, Errol Thompson, 
and Jacqueline L. Whalley. 2008. Going SOLO to Assess Novice Programmers. 
In Proceedings of the 13th Annual Conference on Innovation and Technology in 
Computer Science Education (ITiCSE ’08). ACM, New York, NY, USA, 209–213. 
https://doi.org/10.1145/1384271.1384328 

[15] Simon and Susan Snowdon. 2011. Explaining Program Code: Giving Students 
the Answer Helps - but Only Just. In Proceedings of the Seventh International 
Workshop on Computing Education Research (ICER ’11). ACM, New York, NY, USA, 
93–100. https://doi.org/10.1145/2016911.2016931 

[16] Yla R. Tausczik and James W. Pennebaker. 2009. The Psychological Meaning 
of Words: LIWC and Computerized Text Analysis Methods. Journal of Lan- 
guage and Social Psychology 29, 1 (dec 2009), 24–54. https://doi.org/10.1177/ 
0261927x09351676 

[17] Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2012. Swap- 
ping As the "Hello World" of Relational Reasoning: Replications, Refiections 
and Extensions. In Proceedings of the Fourteenth Australasian Computing Edu- 
cation Conference - Volume 123 (ACE ’12). Australian Computer Society, Inc., 
Darlinghurst, Australia, Australia, 87–94. http://dl.acm.org/citation.cfm?id= 
2483716.2483727 

[18] Donna Teague, Malcolm Corney, Alireza Ahadi, and Raymond Lister. 2013. A 
Qualitative Think Aloud Study of the Early Neo-piagetian Stages of Reasoning 
in Novice Programmers. In Proceedings of the Fifteenth Australasian Computing 
Education Conference - Volume 136 (ACE ’13). Australian Computer Society, Inc., 
Darlinghurst, Australia, Australia, 87–95. http://dl.acm.org/citation.cfm?id= 
2667199.2667209 

[19] Donna Teague and Raymond Lister. 2014. Longitudinal Think Aloud Study of  
a Novice Programmer. In Proceedings of the Sixteenth Australasian Computing 
Education Conference - Volume 148 (ACE ’14). Australian Computer Society, Inc., 
Darlinghurst, Australia, Australia, 41–50. http://dl.acm.org/citation.cfm?id= 
2667490.2667495 

[20] Des Traynor, Susan Bergin, and J. Paul Gibson. 2006. Automated Assessment in 
CS1. In Proceedings of the 8th Australasian Conference on Computing Education - 
Volume 52 (ACE ’06). Australian Computer Society, Inc., Darlinghurst, Australia, 
Australia, 223–228. http://dl.acm.org/citation.cfm?id=1151869.1151898 

[21] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing, 
Explaining and Code Writing Skills in the Novice Programmer. In Proceedings of 
the Fifth International Workshop on Computing Education Research Workshop (ICER 
’09). ACM, New York, NY, USA, 117–128. https://doi.org/10.1145/1584322.1584336 

[22] Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Robbins, 
P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of Reading 
and Comprehension Skills in Novice Programmers, Using the Bloom and SOLO 
Taxonomies. In Proceedings of the 8th Australasian Conference on Computing 
Education - Volume 52 (ACE ’06). Australian Computer Society, Inc., Darlinghurst, 
Australia, Australia, 243–252. http://dl.acm.org/citation.cfm?id=1151869.1151901 


