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Abstract  

 

E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in 

the epithelium. The ectodomain of the native structure is comprised of five repeated 

immunoglobulin-like domains. All E-cadherin crystal structures show the protein in 

one of three alternative conformations: a monomer, a strand-swapped trans 

homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate 

to forming the strand-swapped trans homodimer. However, previous studies have 

indicated that even once the trans strand-swapped dimer is formed, the complex is 

highly dynamic and the E-cadherin monomers may reorient relative to each other. 

Here, molecular dynamics simulations have been used to investigate the stability and 

conformational flexibility of the human E-cadherin trans strand-swapped dimer. In 

four independent, 100 ns simulations, the dimer moved away from the starting 

structure and converged to a previously unreported structure, which we call the Y-

dimer. The Y-dimer was present for over 90 % of the combined simulation time, 

suggesting that it represents a stable conformation of the E-cadherin dimer in solution. 

The Y-conformation is stabilised by interactions present in both the trans strand-

swapped dimer and X-dimer crystal structures, as well as additional interactions not 

found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously 

unreported, stable conformation of the human E-cadherin trans strand-swapped dimer 

and suggests that the available crystal structures do not fully capture the 

conformations that the human E-cadherin trans homodimer adopts in solution.  
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Introduction 

 

E-cadherin is a type I classical cadherin that facilitates calcium-dependent adhesion 

between epithelial cells (Takeichi 1990). This transmembrane glycoprotein is crucial 

for embryonic development and morphogenesis (Takeichi 1988), as well as 

suppression of tumour growth and malignant invasion (recently reviewed in (van Roy 

2014)). Figure 1 shows the crystal structure of the full mouse E-cadherin ectodomain. 

It contains two E-cadherin monomers, each consisting of five repeated 

immunoglobulin-like domains (termed EC domains, numbered 1–5 from N-terminus 

to C-terminus). Each EC domain is approximately 110 amino acids long. The EC 

domains are connected by an approximately 10 amino acid-long linker that binds Ca2+ 

in vivo (Takeichi 1988; Harrison et al. 2011). The monomers form a strand-swapped 

trans homodimer. Several experimental studies have confirmed that type I classical 

cadherins form a trans homodimer between EC1 domains in solution (Patel et al. 

2003; Troyanovsky et al. 2003; Harrison et al. 2005; Zhang et al. 2009). This 

dimerisation interface has been extensively characterised crystallographically 

(Shapiro et al. 1995; Boggon et al. 2002; Häussinger et al. 2004; Brasch et al. 2011; 

Harrison et al. 2011), with structures mainly reported showing a monomer, a strand-

swapped dimer or what is suggested to be a kinetic intermediate to forming a strand-

swapped dimer, the X-dimer. Table 1 shows fourteen E-cadherin crystal structures 

that are available in the Protein Data Bank (PDB).  

 

The crystal structures of E-cadherin (and most other type I cadherins) containing the 

native Trp2 show the six highly conserved N-terminal residues (called the adhesion 

arm or A*/A-strand) in either an “open” (Häussinger et al. 2004; Parisini et al. 2007; 
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Harrison et al. 2010; Harrison et al. 2011) or a “closed” conformation (Nagar et al. 

1996; Pertz et al. 1999; Harrison et al. 2010). In the open conformation, Trp2 binds 

within a hydrophobic pocket on the opposing monomer and forms a strand-swapped 

dimer in the crystal. The hydrophobic pocket is formed by Lys25, Glu89, Asp90 and 

Met92 (Parisini et al. 2007). In the closed conformation, Trp2 binds into the 

hydrophobic pocket within its own monomer. In the crystal lattice, the closed 

monomers form an adhesive dimer mediated by inter-domain contacts, called the X-

dimer. (Nagar et al. 1996; Pertz et al. 1999; Harrison et al. 2010). Experimental 

studies indicate that the X-dimer is a kinetic intermediate in the formation of the 

mature strand-swapped type I cadherin dimer (Sivasankar et al. 2009; Harrison et al. 

2010; Li et al. 2013). Indeed, mutating Trp2 or the residues forming the hydrophobic 

pocket abolishes strand-swapping (Tamura et al. 1998; Ozawa 2002; Mohamet et al. 

2011) and may stabilise the X-dimer conformation (Harrison et al. 2010).  

 

It is widely accepted that type I cadherins share a conserved adhesion mechanism, yet 

the details remain unclear. This is largely due to the dimerisation pathway involving 

multiple discrete steps (Dalle Vedove et al. 2015). However, some features of the 

strand-swapped adhesion mechanism have been inferred from the available crystal 

structures. Cadherins are translated as inactive protein precursors; extra N-terminal 

residues are thought to hinder the formation of a salt bridge between Glu89 and Asp1, 

which prevents Trp2 from docking into its own hydrophobic pocket, or that of another 

monomer. Removing the N-terminal pro-domain renders the cadherin active and able 

to bind Trp2. These interactions are primarily stabilised by: a) a salt bridge between 

Glu89 and Asp1, and b) stacking interactions between Trp2, and Glu89 and Met92. 

The equilibrium between the closed (intra-) and open (inter-) forms may be affected 
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by Pro5 and Pro6, which are sterically constrained in the closed conformation 

(Parisini et al. 2007). Crystallographic structures can only provide snapshots of the 

protein in specific conformations; limiting the amount of information gained about the 

multistep dimerisation mechanism. For this reason, molecular dynamics simulations 

have previously been used to gain insight into the mechanism of E-cadherin 

dimerisation.  

 

Three studies have used molecular dynamics (MD) simulations of mouse E-cadherin 

in solution to study the conformational changes and the role of calcium binding in the 

dimerisation process. Simulations of the monomer and dimer conformations indicate 

that Ca2+ binding promotes N-terminal strand-swapping (Vendome et al. 2011), while 

other simulations of the monomer confirmed that Ca2+ is required to stabilise and 

rigidify the structure (Cailliez and Lavery 2005). Simulations of a strand-swapped 

crystal structure suggested that the relative orientation of the monomers was dynamic 

(Cailliez and Lavery 2006) and indicated that the strand-swapped dimer may adopt a 

different conformation in solution to that observed in the available crystal structures. 

However, these simulations were only 12.5 ns in duration and the structures had not 

converged to a well-defined alternative conformation. In this study, four 100 ns 

simulations of a crystallographic human EC1–EC2 E-cadherin, modelled in the 

strand-swapped dimer, have been performed. These simulations converge to reveal a 

previously unreported conformation of the strand-swapped dimer: the Y-dimer. This 

conformation has an extensive inter-domain interface that is stabilised by inter-

molecular contacts present in both trans strand-swapped dimer and X-dimer crystal 

structures, and additional interactions not present in E-cadherin crystal structures.  
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Methods 

 

System setup 

 

There is no publically available structure of the full human strand-swapped dimer. 

However, the Protein Data Bank (PDB) does contain structures of the human EC1–

EC2 monomer (PDBid: 2O72) solved to 2.00 Å resolution (Parisini et al. 2007), and 

the mouse EC1–EC5 E-cadherin strand-swapped dimer (PDBid: 3Q2V) resolved to 

3.40 Å (Harrison et al. 2011). The EC1–EC2 domains of mouse and human E-

cadherin have 98.1 % sequence similarity and 87.3 % identity, as determined using 

the Basic Local Alignment Search Tool (Altschul et al. 1990).  We constructed a 

model of the human strand-swapped dimer by superimposing the structure of the 

human EC1–EC2 domains on the corresponding EC1–EC2 domains of the mouse 

strand-swapped homodimer. The root mean squared deviation (RMSD) between the 

human and mouse EC1–EC2 domains was 1.2 Å. To avoid incorporating 

inappropriate charges in the truncated EC domains, the C-termini were capped with 

NH2. The coordinates of the crystallographic Mn2+ and Ca2+ present in the mouse 

structure were retained in the human strand-swapped dimer model. While classical 

force fields reproduce parameters such as the overall ionic charge and ionic radius, 

they cannot differentiate between coordination states or factors influenced by the 

quantum mechanical properties of each ion. Furthermore, like many biomolecular 

force fields, the GROMOS 54A7 force field does not contain specific parameters for 

Mn2+. Due to these limitations, the parameters for Mg2+ were used as an Mn2+ 

mimetic. Mg2+ has the same net charge as Mn2+ and the ionic radius of the two ions 

differs by only 0.02 nm. The model EC1–EC2 dimer was placed in the centre of a 
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rectangular box and periodic boundary conditions were applied so that there was at 

least 2 nm between the protein and its periodic image. The system was solvated with 

simple point charge (SPC) water (Berendsen et al. 1981) and neutralised with 527 Na+ 

ions and 519 Cl- ions, to give an overall concentration of 150 mM NaCl. 

 

Molecular dynamics simulation parameters 

 

The simulations were performed using the GROningen MAchine for Chemical 

Simulation (GROMACS) (van der Spoel et al. 2005) package, version 3.3.3 (Lindahl 

et al. 2001), and the GROMOS 54A7 force field (Schmid et al. 2011). Each system 

was simulated under periodic boundary conditions in a rectangular simulation box. 

The temperature of the system was maintained by coupling the protein, together with 

the solvent and ions, to an external temperature bath at 300 K with a coupling 

constant, τT = 0.1 ps, using a Berendsen thermostat (Berendsen et al. 1984). The 

pressure was maintained at 1 bar by weakly coupling the system to an isotropic 

pressure bath using an isothermal compressibility of 4.5 x 10-5 bar-1 and a coupling 

constant, τP = 0.5 ps. During the simulations, the length of all covalent bonds were 

constrained using the LINCS algorithm (Hess et al. 1997). The SETTLE algorithm 

(Miyamoto and Kollman 1992) was used to constrain the geometry of water 

molecules. To enable a 4 fs time step to be used, the mass of hydrogen atoms was 

increased to 4 a.m.u. by transferring mass from the atom to which it was attached. 

This allows the use of a larger time step to integrate the equation of motion without 

significantly affecting the thermodynamic properties of the system (Feenstra et al. 

1999). Non-bonded interactions were calculated using a twin-range cut-off. 

Interactions within the short-range cut-off of 0.8 nm were updated every time step. 
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Interactions within the long-range cut-off of 1.4 nm were updated every second step, 

together with the pair list. To correct for the truncation of electrostatic interactions 

beyond the 1.4 nm long-range cut-off, a reaction field correction was applied using an 

effective dielectric permittivity value, εr = 78.5 (Tironi et al. 1995). The atomic 

coordinates and energies were saved every 50 ps for analysis. All images were 

produced using Visual Molecular Dynamics (VMD) (Humphrey et al. 1996).   

 

To initiate the simulations, the system was energy minimised using a steepest descent 

algorithm and equilibrated over 5 ns. The position restraints were successively 

released during equilibration. Four independent, unrestrained simulations of 100 ns 

duration were performed, each starting with a different random velocity. These are 

referred to as MD1 to MD4. To investigate the influence of the presence of Mg2+, the 

choice of force field, and the choice of MD engine on the dimer conformation, four 

additional simulations were performed. The simulation conditions were identical to 

the original simulations except a) two replicate simulations lacked Mg2+, b) one 

simulation was performed using GROMACS version 5.1.4, and c) one simulation was 

performed using GROMACS version 5.1.4 and the Amber99SB-ILDN protein 

(Lindorff-Larsen et al. 2010) force field.  

Analysis 

Root-mean-square deviation (RMSD). The backbone atoms of the protein (Cα, C, N 

and O) were fit to a reference conformation using a least-squares method. The RMSD 

of these atoms was then calculated for each frame in a trajectory, using the method 

employed by Kabsch (Kabsch 1976). Unless otherwise stated, the reference 
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conformation was the first frame of the unrestrained simulations. The average RMSD 

and standard deviation were calculated for each simulation.  

 

Cluster analysis. The four trajectories were combined into a single data set containing 

1600 structures for cluster analysis. The cluster algorithm of Daura et al. (Daura et al. 

1999a; Daura et al. 1999b) was used to group conformations sampled during the 

simulations into clusters, using a backbone neighbour RMSD cut-off of 2.5 Å.  

 

Dimer interface contact maps. To define which residues form the dimer interface, the 

relative proportion of simulation time that each residue on one monomer was within 

4 Å of each residue on the opposing monomer was calculated for the human E-

cadherin EC1–EC2 crystallographic construct (the starting structure for the 

simulations) and the final 60 ns of each simulation. The data was normalised against 

the total number of frames.  

 

Results  

 

Conformations of the human EC1–EC2 E-cadherin strand-swapped dimer in 

solution 

 

The backbone RMSD of the dimer during each of the four 100 ns simulations of the 

human EC1–EC2 strand-swapped dimer, with respect to the starting structure, is 

shown in Fig. 2. Representative snapshots indicating the time evolution of the dimer 

during simulation MD1 are also shown (Fig. 2). Consistent with Fig. 2, the Mg2+ and 

inter-domain Ca2+ ions remained bound throughout MD1–MD4. During all 



 12 

simulations, the relative conformation of each monomer shifts significantly during the 

first 30 ns, reflected by the large increase in the RMSD during this period. The 

backbone RMSD then stabilises at a value between 12.5 and 24 Å over the remaining 

70 ns, depending on the simulation. In all replicates, the RMSD stabilises after 

approximately 40 ns of simulation. The average RMSD after 40 ns for each 

simulation was 16.9 ± 1.3 Å (MD1), 20.1 ± 1.1 Å (MD2), 17.9 ± 2.9 Å (MD3) and 

19.7 ± 1.3 Å (MD4).  

 

We used cluster analysis to confirm that the large backbone RMSDs represented a 

conformational change between the monomers, and to identify the prevalent 

conformations of the dimer in solution. A total of 1600 structures from the combined 

simulations were fit to the strand-swapped starting conformation, and then clustered 

using a 2.5 Å backbone RMSD cut-off. The most populated cluster contained 90.9 % 

of the structures from the combined simulations. The central conformation from this 

cluster is shown in Fig. 3b. It is significantly different than the strand-swapped 

starting conformation, as shown in Fig. 3a. The middle structure from the most 

populated cluster represents the most dominant conformation of the human E-

cadherin dimer in our simulations. Because of its characteristic shape, we refer to this 

structure as the Y-dimer. This is the first time that the Y-dimer conformation of the E-

cadherin strand-swapped dimer has been reported. The second- and third-most 

prevalent conformations were present for 1.7 % and 1.3 % of the combined trajectory 

respectively (see Online Resource Fig. 1). 

 

To confirm that the dimer converges to the Y-dimer conformation in all simulations, 

we calculated the backbone RMSD between the starting structure and central 
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conformation of the most populated cluster. Figure 4 shows the RMSD plotted over 

the duration of each simulation. As expected, the plot follows an inverted trend 

compared to the RMSD calculated with respect to the starting strand-swapped 

conformation (Fig. 2). The RMSD in Fig. 4 is relatively high during the first 20–

30 ns, reflecting the reorientation of the monomers as they form the Y-dimer 

conformation. The spike down to 0 Å RMSD for MD2 at approximately 22 ns 

corresponds to the reference structure that was used to perform the calculation. In 

each independent simulation, the RMSD stabilises after approximately 30 ns, as the 

Y-dimer conformation is adopted. To illustrate the relatively small difference in the 

converged conformation across each simulation, the backbone RMSD for the last 

frame of each simulation, calculated with respect to the Y-dimer, was 4.8 Å (MD1), 

4.3 Å (MD2), 5.6 Å (MD3) and 3.2 Å (MD4). The standard deviation between these 

structures is 1.0 Å. Taken together, the data indicate that the conformation of the 

human E-cadherin EC1–EC2 strand-swapped dimer has converged to the Y-dimer 

conformation in all simulations.  

 

Characterising the Y-dimer interface 

 

The Y-dimer, shown in Fig. 3b, is the most prevalent conformation adopted by the E-

cadherin strand-swapped dimer in all of our simulations. It is clear from Fig. 3 that 

there is a larger contact interface between the EC1 domains of each monomer in the 

Y-dimer than there is in the starting structure (Fig. 3a), or any of the other 

conformations identified here (see Online Resource Fig. 1c–d). Figure 5a gives a 2-

dimensional contact map of the residues involved in the dimer interface. It shows the 

frequency that each residue on one monomer is within 4 Å of each residue on the 
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opposing monomer for the starting structure (the human crystallographic construct) 

(Fig. 5a). In Fig. 5b, the contact map is calculated over the final 60 ns of MD1. The 

contact maps for all four independent simulations are remarkably similar (Online 

Resource Fig. 2b–e).  

 

The contact maps are largely symmetric along the x = y diagonal, reflecting the paired 

interactions that take place upon dimerisation. For example, Trp2 of one monomer 

binds in the hydrophobic pocket of the opposing monomer, and vice versa. The inter-

molecular contact map shown in Fig. 5a reflects the N-terminal inter-domain 

interactions characterised crystallographically in the trans strand-swapped dimer. 

These are isolated to EC1 and include interactions between Trp2 and residues around 

the hydrophobic pocket (Lys25, Glu89, Asp90 and Met92), namely those between 

Trp2 and Lys25, Ser78, His79, Ala80, Glu89, Asp90, Pro91, Met92 and Ile94. The 

contact map also captures interactions between the opposing contact residue pairs: 

Asp1—Asn27; Val3—Lys25; Trp2—Ser37; and Pro5—Ile24, and their neighbouring 

residues.  

 

The inter-molecular interactions seen in the initial strand-swapped conformation are 

retained and expanded when the human E-cadherin dimer shifts from this 

conformation to the Y- conformation during the simulations. There are seven red–

orange regions in Fig. 5b (and Online Resource Fig. 2c–e), which correspond to 

frequent (above 50 %) inter-molecular interactions in the Y-dimer. These regions lie 

along the x = y diagonal for residues 1–10; around the residues involved in inter-

molecular Trp2 binding (crystallographically characterised as Trp2, Lys25, Glu89, 

Asp90 and Met92); and around the opposing contact residue pair 19—140.  
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The frequent interactions shown in the contact maps reflect those that maintain the Y-

conformation of the dimer in each simulation. The interactions seen along the x = y 

diagonal for residues 1–10, form the adhesion arm of each monomer and are 

dominated by hydrophobic interactions between Trp2, Val3, Ile4, Pro5, Pro6 and Ile7 

(see Online Resource Fig. 3). In our simulations, Trp2 binds to the hydrophobic 

pocket of the opposing monomer. This, together with recurrent inter-molecular 

hydrogen bonds between Asp1—Asn27 and Val3—Lys25, anchors the N-terminus 

and serve as a pivot point during dimer conformational change from the starting 

structure to the Y-dimer. Hydrogen bond formation between Ser8 of the opposing 

monomers stabilises the C-terminal end of the adhesion arm. This interaction is 

formed while the dimer is shifting from the starting strand-swapped conformation to 

the Y-dimer, and remains stable throughout the simulations. Figure 5B also shows 

contacts between Lys19 and Asn140, which can be attributed to hydrogen bonding 

between the side chain of Lys19 and proton-accepting groups on Asn140 (see Online 

Resource Fig. 4). Asn140 is located on the EC2 domain near the calcium-binding site. 

These inter-molecular interactions near the calcium-binding site are reminiscent of the 

interactions between E-cadherin monomers in the X-dimer conformation.  

 

For comparison, we used a mouse E-cadherin crystal structure (PDBid 3LNG) 

(Harrison et al. 2010) to generate a contact map of the X-dimer interactions Online 

Resource Fig. 5). The X-dimer is structurally distinct from the strand-swapped dimer: 

a key difference is that Trp2 does not dock into hydrophobic pocket of the other 

monomer. This is demonstrated by the small degree of overlap between its contact 

map and that of either the starting structure or the Y-dimer. One common feature of 
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both the Y-dimer and X-dimer contact maps are the interactions between and around 

residue pair 19—140 (see Online Resource Fig. 2b–f). As Trp2 does not bind to the 

opposing monomer in the X-dimer (there are no contacts between Trp2 and the 

hydrophobic pocket residues Lys25, Glu89, Asp90 and Met92 in Online Resource 

Fig. 2f), the X-dimer contact map shows only two interactions along the adhesion 

arm: between residue pair 5—4 and 5—21. All other interactions in the X-dimer 

contact map are between residues near the calcium-binding sites. When taken 

together, these findings reinforce the conclusion that our simulations have converged 

on an unreported conformation of the E-cadherin trans dimer: the Y-dimer.  

 

Discussion 

 

Previous simulations have suggested that the E-cadherin trans strand-swapped dimer 

adopts different conformations in crystal structures and solution (Cailliez and Lavery 

2006). We performed four independent MD simulations, 100 ns each, to investigate 

the conformations adopted by a human E-cadherin crystallographic trans strand-

swapped dimer construct in solution. RMSD calculations, cluster analysis and inter-

molecular contact maps indicate that the simulations have converged to a single 

structural conformation of the E-cadherin trans strand-swapped dimer that has not 

been reported previously, referred to as the Y-dimer. In this conformation, the 

characteristic, biologically-relevant strand-swapping (Trp2 exchange) exhibited by 

mature E-cadherin trans dimers is retained. The Y-dimer also has extensive inter-

molecular contacts along the length of EC1. Only one of these contacts (between 

Lys19 and Asn140) is shared between the Y-dimer and the other biologically-relevant 

crystal structure of the E-cadherin dimer, the X-dimer. This interaction, and other 



 17 

interactions that exclusively define the Y-dimer interface, have not been studied 

experimentally (for example, in mutational studies).  

 

In MD simulations performed by Cailliez and Lavery, the structure of a mouse E-

cadherin strand-swapped dimer diverged from the starting crystal structure (Cailliez 

and Lavery 2006). Cailliez and Lavery reported that the EC1 domains of each 

monomer came together over the 12.5 ns simulation. The average structure over the 

final 2.5 ns of this simulation appears to represent a conformation intermediate 

between our initial human strand-swapped starting conformation and the Y-dimer 

characterised here. To investigate whether the Y-dimer conformation observed in 

MD1–MD4 was dependent on the choice of MD engine or force field, two additional 

simulations were performed. Here, the simulation conditions were identical to MD1–

MD4, except one simulation used GROMACS 5.1.4 in conjunction with GROMOS 

54a7, while the other used GROMACS 5.1.4 and the Amber99SB-ILDN protein 

(Lindorff-Larsen et al. 2010) force field. As shown in Online Resource Fig. 6, the Y-

dimer was formed in both of these simulations.  

 

It is important to note that our starting structure contained Mg2+ ions as a mimetic for 

the Mn2+ ions present in the EC1–EC5 mouse E-cadherin crystal structure. An Mn2+ 

mimetic was not present in the simulations performed by Cailliez and Lavery. To 

investigate the effect of these ions on the dimer conformation we observed in our 

simulations, we performed two additional simulations in which the Mg2+ ions were 

removed. After 30 ns of simulation the Mg2+-free dimer diverged from the strand-

swapped starting conformation and moved towards the Y-dimer conformation (see 

Online Resource Fig. 7). The backbone RMSD of the Mg2+-free dimer was 
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comparable to that observed with bound Mg2+. Furthermore, Trp2 strand-swapping 

was retained. These simulations of the E-cadherin strand-swapped dimer in solution 

show that the structure converges to the Y-dimer irrespective of the presence of a 

divalent cation in the position observed in the full mouse E-cadherin crystal structure. 

This work suggests that the E-cadherin trans strand-swapped dimer conformation 

captured crystallographically may differ from the conformation in solution.  

 

The Y-dimer interface displayed unique, persistent hydrophobic contacts along the 

EC1 adhesion arm—between Trp2, Val3, Ile4, Pro5, Pro6 and Ile7 of each monomer 

(see Fig. 5, Online Resource Fig. 2). Mutational studies of residues unique to the Y-

dimer interface could further validate the presence of the Y-dimer experimentally. For 

instance, we anticipate that mutating the hydrophobic residues along the adhesion arm 

(Trp2, Val3, Ile4, Pro5, Pro6 and Ile7) to hydrophilic residues would disrupt the Y-

dimer interface, altering any structural results obtained by methods such as nuclear 

magnetic resonance spectroscopy. Work by Vendome (Vendome et al. 2014) using 

double electron-electron resonance (DEER) spectroscopy reports a single distance 

measurement of 7 nm between the nitroxide-labelled 135C residue for wild-type E-

cadherin. This was the upper limit of accurate peak width determination, as stated in 

the paper. The predicted distance based on a wild-type strand-swapped E-cadherin 

crystal structure was approximately 6.3 nm. The approximate distance between 

unlabelled residue 135 of each monomer in the Y-dimer conformation (data not 

shown) is 4 nm. In Vendome and co-workers’ paper, E-cadherin monomers were 

deemed “invisible” in the DEER experiment, and the mobility and orientation of the 

spin labels is not fully described. However, it is interesting to note that the crystal 

structure of a mouse (neural) N-cadherin amino acid-insertion mutant solved in 
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Vendome and co-workers’ study resembles the Y-dimer conformation seen in the 

simulations performed here. The predicted crystallographic and DEER-measured 

distance between nitroxide-labelled residues 135 for the N-cadherin amino acid-

insertion mutant was approximately 4 nm (Vendome et al. 2014); the same as the 

unlabelled distance in the Y-dimer. Furthermore, it has been proposed that structures 

of human and mouse E-cadherin captured in crystals could reflect local minima on a 

relatively shallow free energy surface (Parisini et al. 2007). Our simulations may 

sample a different region of the free energy landscape, adding to the discrepancy 

between the mouse crystal and DEER structures, and the human Y-conformation seen 

in this study. Overall, this suggests that further work is needed to fully understand the 

conformation that the human E-cadherin trans strand-swapped dimer adopts in 

solution, and under physiological conditions.  
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Tables  

 

PDB 

code 
Asymmetric unit 

Sequence 

alterations 
Organism, Reference 

1Q1P Open monomer r2–213 
Mus musculus,  

(Häussinger et al. 2004) 

2O72 Open monomer r1–213 
Homo sapiens, 

(Parisini et al. 2007)  

2QVF Open monomer r1–213 
Mus musculus,  

(to be published) 

3LNE Open monomer r1–213; K14E 
Mus musculus,  

(Harrison et al. 2010)  

3Q2L 
Strand-swapped 

dimer 
r1–213; V81D 

Mus musculus,  

(Harrison et al. 2011)  

3Q2V 
Strand-swapped 

dimer 
r1–536 

Mus musculus,  

(Harrison et al., 2011) 

3Q2N 
Strand-swapped 

dimer 
r1–213; L175D 

Mus musculus,  

(Harrison et al., 2011) 

1EDH X-dimer r3–213 
Mus musculus,  

(Nagar et al. 1996)  

1FF5 X-dimer r(-1)–218 
Mus musculus,  

(Pertz et al. 1999) 

3LNF X-dimer 
r3–213; W2A, 

K14E 

Mus musculus,  

(Harrison et al. 2010) 
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3LNG X-dimer r2–213 
Mus musculus,  

(Harrison et al. 2010) 

3LNH X-dimer r5–213; W2A 
Mus musculus,  

(Harrison et al. 2010) 

3LNI X-dimer r1–213; E89A 
Mus musculus,  

(Harrison et al. 2010) 

3QRB X-dimer r1–213; P5A, P6A 
Mus musculus,  

(Vendome et al. 2011)  

Table 1 Details of fourteen E-cadherin crystal structures available in the PDB 
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Figures 

 

Fig. 1 The crystal structure of the full mouse E-cadherin ectodomain (PDBid: 

3Q2V)(Harrison et al. 2011) showing the resolved residues. Each monomer consists 

of five extracellular cadherin (EC) domains. Trp2 from each of the N-terminal EC 

domains binds to the acceptor pocket in the opposing domain to form a strand-

swapped dimer (see inset). Trp2 and acceptor pocket residues are shown in stick 

representation. Ligand calcium and manganese ions are shown as yellow and purple 

spheres, respectively. E-cadherin monomers are in orange or blue cartoon 

representation 
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Fig. 2 Backbone RMSD of the E-cadherin strand-swapped dimer during each of the 

four 100 ns simulations, with snapshots showing the time evolution of the dimer 

conformation during the first simulation (MD1). The RMSD was calculated with 

respect to the crystallographic human strand-swapped dimer construct. The snapshots 

show the initial (0 ns) structure in a transparent representation for reference, and the 

dimer at a given time point in the simulation in opaque representation. Each monomer 

is shown in orange or blue cartoon representation, with Mg2+ shown as purple spheres 

and Ca2+ as yellow spheres. Solvent molecules were excluded from the figure for 

clarity 
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Fig. 3 The starting conformation (a) and the central conformation from the most 

prevalent cluster (b) of the E-cadherin strand-swapped dimer for the combined 

simulations determined using cluster analysis with a 2.5 Å RMSD cut-off. We refer to 

the structure shown in B as the Y-dimer 

 

 

Fig. 4 Backbone RMSD of the E-cadherin strand-swapped dimer for each simulation, 

calculated with respect to the Y-dimer 
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Fig. 5 Contact maps for the dimerisation interface of (a) the starting structure, which 

was the crystallographic human EC–EC2 strand-swapped dimer construct, and (b) the 

dimer from the last 60 ns of MD1. The contact map was calculated as the normalised 

frequency for which each residue of one monomer is within 4 Å of each residue of the 

opposing monomer. The data was calculated across all residues of both monomers. 

The data is normalised against the total number of frames in the simulation. The inset 

in each plot shows an enlarged version of the contact frequency data for residues 1–

40. The insets do not hide any data points on the larger maps 
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Figure 1: The starting (a) and most prevalent (b–d) conformations of the E-cadherin 
strand-swapped dimer for the combined simulations, determined using cluster 
analysis with a clustering cut-off of 2.5 Å (backbone RMSD) on 1600 structures. The 
structure shown in b corresponds to the Y-dimer. Each monomer is shown as either 
blue or orange ribbons. Ca2+ and Mg2+ ions are shown as yellow and magenta spheres, 
respectively.  



 
 
Figure 2: Dimerisation interface contact maps for (a) the starting structure, (b–e) the 
structure from 40–100 ns of simulation MD1 to MD4, and (f) a murine E-cadherin X-
dimer crystal structure (PDB code 3LNG). The data are shown as the frequency that 



each residue on one monomer is within 4 Å of each residue on the opposing monomer 
in the dimer. For plots B–E, the data is normalised against the total number of frames, 
giving a relative frequency of 0–1 for each data point. The inset in each plot shows an 
enlarged version of the contact frequency data for residues 1–40. The insets do not 
overlap with any data points.  
 
 

 

 
Figure 3: Representative structures of the E-cadherin EC1–EC2 strand-swapped 
dimer conformation at the start (a) and end (b) of the simulations. The A-strand is 
shown as sticks, coloured by residue type. Green indicates polar residues, white 
indicates non-polar residues and red indicates acidic residues.  
 

 

 
Figure 4: Representative snapshot showing the locations of Lys19 on one monomer 
and Asn140 on the opposing monomer in the Y-dimer conformation. Lys19 and 
Asn140 are shown as sticks, coloured by atom type.  



 

 
 
Figure 5: X-dimer crystal structure (PDB code 3LNG) (Harrison et al. 2010) used to 
generate the X-dimer contact map (Figure S2F). Each monomer is shown as either an 
orange or a blue ribbon; Ca2+ are shown as yellow spheres; and Trp2 from each 
monomer is shown in stick representation, coloured by atom.  
 
 

 
Figure 6: The E-cadherin strand-swapped dimer forms a Y-dimer in simulations 
using (a) GROMACS 5.1.4 and (b) GROMACS 5.1.4 and the Amber99SB-ILDN 
force field. The Y-dimer and its associated ions are opaque; as a reference, the 
starting strand-swapped dimer protein conformation is transparent.  
 



 
Figure 7: Root-mean-square deviation of the E-cadherin trans strand-swapped dimer 
with and without bound Mg2+. The snapshots show the starting and end conformations 
of the dimer from the simulations without Mg2+.  


