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Abstract: The position, width, extinction, and electric field of localized 
plasmon modes in closely-coupled linear chains of small spheres are 
investigated. A dipole-like model is presented that separates the universal 
geometric factors from the specific metal permittivity. An electrostatic 
surface integral method is used to deduce universal parameters that are 
confirmed against results for different metals (bulk experimental Ag, Au, 
Al, K) calculated using retarded vector spherical harmonics and finite 
elements. The mode permittivity change decays to an asymptote with the 
number of particles in the chain, and changes dramatically from 1/f 

3
 to 1/f 

1/2
 as the gap fraction (ratio of gap between spheres to their diameter), f, gets 

smaller. Scattering increases significantly with closer coupling. The mode 
sharpness, strength and electric field for weakly retarded calculations are 
consistent with electrostatic predictions once the effect of radiative damping 
is accounted for. 
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1. Introduction 

Clusters of metal spheres exhibit localized surface plasmon (LSP) modes, some of which are 
red-shifted and increased in strength relative to similar isolated spheres [1]. The tunability of 
the resonances is interesting in its own right, but in addition the associated increase in 
permittivity increases the strength of electric fields and hence energy transfer by forcing 
higher field gradients, and may also allow access to regions of the permittivity function where 
damping is reduced. Isolated particles may be similarly tuned by varying the shape, but it is 
arguably easier to dynamically tune clusters by changing the spacing between particles. These 
properties imply several practical applications, including nanometric rulers [2], waveguiding 
[3], surface enhanced Raman [4], and other plasmonics applications. 

In particular, it has been suggested that the mode shifting could be employed as a 
nanometric ruler [2,5], by relating the position of the mode to the gap between particles. If a 
universal scaling law exists then interparticle distances can be measured to nanometer 
resolution by simply measuring the mode shift. In some papers [2,5] it has been suggested that 
mode shifting due to two arbitrary particles is universally exponential, however other 
experimental and numerical results for coupled gold rods [6] implied a different relationship, 
as have other studies. We shall now summarize some relevant investigations of linear chain of 
n spheres, including the special bisphere or dimer case where n = 2. Figure 1a shows an 
example of the type of geometry to be considered. 

The various studies can be categorized by considering the length scales involved, which 
are the particle radius a, the lattice spacing d, and the wavelength λ. Using the wave-vector k 
= 2π/λ, we can write three important dimensionless quantities, ka, kd, and the “gap fraction” f 

= d / (2a) −1. Often ka<<1, meaning that the particles themselves are only weakly affected by 
retardation effects. Similarly in the majority of studies we consider kd<<1, so that interparticle 
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retardation and lattice diffraction are not very significant. However the gap fraction, f, is of 
considerable importance here, as there is a significant difference between the weak coupling 
(f>>1) and strong coupling (f<<1) regimes. This can be compared to van der Waals 
interactions for bispheres [7], where the approximate limits for the non-retarded potential go 
as 1/f 

6
 at long range, but 1/f at short range. As these two scalings are very different and many 

applications operate near the cross over, any universal law should consider the two extremes. 
A mode shift of order 1/f 

3
 characteristic of dipole-dipole coupling has been demonstrated 

theoretically and experimentally for relatively well-spaced chains [8–10]. In contrast, 
numerical simulations imply that in addition to very large fields in the gap, closely-coupled 
gold bispheres exhibit a 1/f 

1/2
 shifting of the eigenvalue related to permittivity [11]. Recently 

we calculated that the fractional wavelength shift of the longitudinal mode for a moderately 
closely-coupled chain, relative to an isolated gold sphere, is reasonably approximated by an 
inverse scaling [12] as a function of the gap fraction, f. Figure 1b shows an example of how 
the mode moves with f. Our calculations also demonstrated the dependence of mode position 
with number of particles in the chain, exhibiting a near-exponential mode shift with chain 
length. Furthermore, the decay constant for this exponential was of the order of two particles 
giving an indication of the localized nature of the mode. Park and Stroud considered the 
quasistatic dispersion of infinite chain modes at a range of spacings by first calculating 
universal depolarization eigenvalues and then relating those to frequency via the Drude model 
[13]. 
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Fig. 1. (Color online) An example geometry showing a chain of n = 3 spherical metal particles 
(a), and the optimization process (b). Only longitudinally polarized excitation is considered. 
Extinction as a function of wavelength (blue line) is shown for a chain with 3 Ag spheres of 
radius a = 7.5nm and d = 16.5nm center-spacing, giving a gap fraction f = d/(2a)-1 = 0.1 
corresponding to the diagram on the left. In this example a dipole near 400nm dominates – in 
general we ignore higher order modes such as the quadrupole seen here emerging near 350nm. 
Varying the gap fraction moves the peak, as indicated by dots. In the remainder of this paper, 
we only plot the dipole peaks. 

Our aim in this article is to determine a universal scaling for the resonances of closely-
coupled chains of arbitrary length and spacing, for a number of real metals. Calculations of 
closely-coupled resonances are reasonably intensive due to singularity on contact [11], so it is 
advantageous to separate universal geometric factors from material permittivity. We will 
present a model to facilitate optimization of factors relating to resonance strength such as the 
extinction and electric field enhancement. In this article we focus on the longitudinal dipole 
resonance because it exhibits the largest changes compared to other polarizations and mode 
shapes [12]. We limit our search to spheres that are small compared to the wavelength, 
because larger radii lead to radiative damping and diffractive resonances [14] that complicate 
analysis. Conversely the spheres cannot be so small that surface scattering of the electrons is 
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an issue [1], as this would require significant modification of the permittivity. Likewise, some 
care is required in assessing the validity of bulk permittivity at very small separations [15]. 

It is of considerable practical importance to be able to predict the performance of real 
metals. We will explore a range of permittivity values by considering the metals Au, Ag, Al 
and K. These particular metals are chosen because previous studies have shown that they all 
have low damping for some regions, and they have quite different permittivity profiles [16]. 
Au is used extensively in plasmonics due to its chemical inertness, and yet it has very strong 
interband damping around the sphere resonance, requiring modes to be red-shifted to achieve 
reasonable performance. Ag is also used, especially for superlensing as it has lower damping 
at low permittivities. Al is unique in having a very short plasma wavelength with performance 
that declines with red-shifting. K has a long plasma wavelength and like the other alkali 
metals offers excellent performance over a wide range. Obviously it is less physically 
amenable due to its reactivity, but this may be acceptable in some applications [17]. We used 
dielectric tables collated in a single review [18], and we note that although there is 
considerable variation (notably for Ag) among different authors, our main results are 
universal. We have only produced results for a vacuum medium, but we do include the 
medium permittivity in the theoretical discussion. 

Our general strategy is for each combination of metal, gap-fraction f and number of 
particles n, find the peak of extinction with respect to wavelength, as shown in Fig. 1b. The 
peak is then used to extract useful parameters from this data, including the permittivity and 
the mode strength. At the same wavelength we also calculate the maximum electric field Emax, 
on the surface near the centre of the chain, as indicated in Fig. 1a. All results were calculated 
using fully-retarded vector spherical harmonics [19–21], and checked using finite element 
simulations of infinite chains [12]. Mode parameters were compared to those predicted from 
the eigenmodes of a static boundary element method [22]. We adapted this method to give the 
field enhancement parameter directly and will show how to implement it efficiently for chains 
of identical spheres. 

Before we detail our search for a universal scaling, it is useful to compare the different 
metals at different wavelengths, as seen in Fig. 2 where we show the peaks that result from 
changing the particle separation. We only show results for the bisphere (n = 2) and infinite 
chains here – later results prove that these are the limiting cases. We can compare the 
extinction and field enhancement of the different metals in this geometry, and the results are 
largely consistent with that expected for simpler geometries when comparing different 
wavelengths. Despite the rather poor performance of gold for widely spaced particles, it can 
produce larger extinction other metals in the near-infrared due to lower loss than silver and 
stronger depolarization than potassium at those frequencies (see Fig. 2a). Field enhancement 
is not particularly sensitive to the material – all strongly coupled chains have high 
enhancements, as seen in Fig. 2b. In general the electrostatic results agree quite well with the 
electrodynamics for the small spheres used here, except for an apparent wavelength shift for 
field enhancements on Au, and some damping for infinite chains which is explained by 
radiative effects. It is important to understand that actual experimental results could differ 
quite substantially from these due to differences in permittivities and non-continuum effects 
as discussed earlier. 
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Fig. 2. (Color online). Summary of peak behavior as a function of wavelength due to changes 
in particle separation. Peak extinction (a), field enhancement (b), particle separation (c) and the 
associated mode permittivity shift (d) compared to that of an isolated sphere. Electrostatic 
limits (lines) are shown for the infinite chain (dashed) and bisphere (solid). The lines are 
limited in extent by mode behavior at short wavelengths and calculation limits at long 
wavelengths. Also included are VSH-Mackowski extinctions for bispheres (dots), VSH-GMM 
field enhancements for bispheres (crosses), and FEM results for infinite chains (circles), all 
damped by radiation. Details of methods can be seen in later sections. 

To understand these results we also show how the chains could be used as a ruler, by 
plotting the gap-fractions corresponding to a range of peak wavelengths. Figure 2c shows that 
there is a substantial shifting of the peak at small gap-fractions. Next we will show how the 
dipole model allows most of the data to be collapsed onto universal curves, but to achieve this 
comparison of different metals it is necessary to compare the modes of the same permittivity. 
Specifically we compare to the permittivity shift relative to that of isolated spheres – we have 
plotted this function for reference in Fig. 2d. This may seem unusual but actually it is the most 
logical comparison since permittivity relates directly to the nature of the resonance [1,23], and 
we previously employed this strategy for a wide variety of plasmonic systems [16]. In the 
following sections we first provide a review of a dipole approximation and its application to 
the problem at hand. This serves as a useful model since the measured resonances are dipole-
like in the far-field. We briefly describe the limiting case of dipole-dipole coupling at large 
separations, and how to correct for radiative damping. Then we detail the numerical methods 
we have employed followed by results for chains of varying length and gap fraction in search 
of a universal law, and finally present some concluding remarks. 
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2. Generalized quasistatic dipole model 

It is useful to consider the general properties of LSP of a small system that may in fact be a 
cluster of individual particles. The system response at an arbitrary frequency can be described 
by the polarizability α, and a convenient model in the electrostatic limit, assuming the system 
size is much smaller than the wavelength, is [23]: 

 
( )

,b

b b

ε ε
α= AV

ε + L ε ε

−

−
  (1) 

where V is the volume of metal in the system, ε is the frequency-dependent permittivity of the 
metal, εb is the permittivity of the background, L is the depolarization that affects the position 
of the resonance, and A is a strength factor. L & A are independent of the metal but are 
geometry dependent. The strength factor was introduced by Fuchs [22], where it was shown 
that in a multimode system the strength factors add to unity. We omit the sum because we are 
mainly interested in the dominant dipole mode which is often unaffected by near-by modes, at 
least for low-loss metals. 

The polarizability α can be used to predict useful quantities in the quasistatic (small-size) 
limit, including the extinction cross-section, 

 { },e
C = k αℑ   (2) 

and scattering cross-section 

 ( (
4

2
.

6π
s

k
C α≈   (3) 

Generally, when considering small metal particles, absorption Ca = Ce-Cs dominates 
extraction of energy from the resonance, and scattering is small. Note that Eq. (3) is correct 
for dipole fields of a small system, but some care is required in applying it to a cluster such as 
a chain, since the cluster is not necessarily “small”. We will discuss this point further in the 
next section. 

The polarizability is also related to the near field enhancement of particles [24], that is the 
ratio of the surface electric field E to the incident field Ei: 

 
( )

.
i b b b

E B ε α ε
= = B

E A ε ε V ε + L ε ε

    
      − −     

  (4) 

Here we have introduced a new coefficient B, which is a property of the mode fields at a given 
observation point, and A is essentially a dipole moment of B. The coefficients mentioned have 
well-known trivial values for simple geometries, and these serve as useful limiting cases. For 
example, L = 1/3 for an isolated sphere, whereas for any small isolated ellipsoid L varies 
depending on shape but A = 1 and B = 1. However, in the case of a chain of spheres all three 
parameters vary and must be determined numerically, which we present in our results. 

We now determine the position and strength of the peaks associated with the dipole mode, 
since this is usually of most interest in a practical sense. First we must determine the peak 

position, which occurs at a particular permittivity ε= ε' +iε′′ . Note that, in contrast to 

diffractive resonances, the LSP resonance is only indirectly related to wavelength via the 

permittivity function of the metal. Assuming ε ε′ ′′− >> , the ellipsoid peak occurs when the 

real part of the permittivity approaches the pole at 

 ( )1 1/ ,
p b
ε = ε L−   (5) 

and at the exact maximum of Ce we find 
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2 2 2

.
p

d d d

d d d d

d

ε ε ε ε ε
ε ε

ε ε λ λ λ λ
λ λ

 ′′ ′ ′ ′′ ′′      ′= − ± + −     ′′ ′′       −  
  (6) 

Other quantities such as scattering and field enhancement have slightly different peak 
positions but in the quasistatic limit they align. 

Of particular interest in the present work is the pole shift relative to that of an isolated 

sphere (
s
ε ), and we express this quantity as 

 1.
p

s

ε

ε
−   (7) 

In general we find Eq. (7) useful because it partially compensates for finite size effects, and is 
more practical than the related depolarization used in Eq. (5). It is worth connecting the 

various descriptions of mode shift for sphere chains in the weak (L = 1/3) and close ( 0L→ ) 

coupling limits, including the Drude model for low-loss metals, which implies 

/ 1 ~ / 1 ~ / 1
s p p s p s

L L ε ε λ λ− − −  and 
2 2

/ ~ / ~ /
s p p s p s

L L ε ε λ λ  respectively. Hence 

depolarization and permittivity shifts are inversely related across a wide range, but the 
relationship to wavelength shift changes. However it is important to note that real metals have 
more complicated wavelength relationships which can deviate significantly from the Drude 
model, especially in the weak coupling region. Hence we must emphasize that wavelength is 
not particularly useful here and permittivity is better for determining universal scalings. 

Substituting the peak described by Eq. (6) back into Eq. (1), and assuming ε ε′ ′′− >> , the 

strength of the strongest possible dipole at a given metal permittivity is approximately 

 
2

max

( )
.b

b

iAV
ε ε

α
ε ε

′ −
≈

′′
  (8) 

Equation (8) can be used to estimate the optimum peak extinction and field enhancements if A 
& B are known, or vice-versa. Finally, it has been shown that the peak sharpness of a single 
resonance in the limit of zero scattering is absorption limited. This can be quantified by 
considering the frequency dependence of the resonance quality factor Q (centre frequency to 
bandwidth ratio), which at low damping is given by [1]: 

 
2

d
Q

d

ω ω ε
ω ε ω

′
≡ ≈

′′∆
  (9) 

Note that the peak sharpness is only indirectly related to geometric factors via the resonance 
permittivity. We now consider some corrections to the model and what sort of predictions can 
be made by coupled dipole models. 

3. Radiative corrections and weak coupling models 

It is important to consider the effect of radiative damping, because all systems of finite size 
are affected. Radiative damping in dipoles may be approximated through energy 
considerations which give the so-called radiative reaction (RR) correction to the polarizability 
[25]: 

 .
1 / 6π

RR

3

α
α

ik α
←
−

  (10) 

This expression gives a good approximation to the peak height for single spheres, even when 
scattering dominates. Unfortunately it grossly underestimates radiative pole shift, which can 
be a significant problem when the permittivity changes rapidly, as it does in real materials. 
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Nevertheless, we can cast RR in a different form that gives some physical insight as to the 

expected magnitude of damping. At resonance ( ) ( )α αℜ << ℑ , and then applying Eq. (3) and 

(10), it can be shown that at the peaks 

 .
RR

RR e

e e RR

a

C
C C

C
≈   (11) 

Equation (11) should be interpreted to mean that the non-retarded extinction 
e

C can be 

estimated from the equivalent retarded quantity by a correction involving the ratio of the 

retarded extinction RR

e
C and absorption RR

a
C , provided that the comparison is made at the 

peak. In the results section we use this equation to make a fair comparison of retarded 
calculations to the “universal” non-retarded curves. It is also reasonable to expect that a 
similar damping applies to the Q of the resonance and to the electric enhancement, whereas 
the scattering cross-section goes like 

 

2

~ .
RR

RR e

s s RR

a

C
C C

C

 
 
 

  (12) 

Equation (11) and (12) are useful because they are expected to apply to clusters in general, 
provided retardation across the cluster is not too great. 

On the other hand, it is instructive to consider the specific case of clusters with weak 
coupling, to find a limiting case for the mode permittivity. Chains with small particles that are 
weakly coupled can be adequately modeled [14] using the coupled dipole approximation. 
Note especially that because the chains that we consider in this section are well separated and 
composed of very small particles they are only weakly coupled by radiation, so interference 
effects are negligible. Most of the dipoles (except those at the ends) are observed to be similar 
in strength [12]. Thus it is reasonable to consider average per-particle polarizability so that 
chains of different length can be easily compared. The weak coupling limit of polarizability 
per-particle is given by: 

 
1

1

1 ,nα α S
−− ≈ −    (13) 

where α1 is the isolated-particle polarizability, and Sn is the lattice sum of the free-space 
Green's function. This approach has been covered quite extensively in the literature, as 
summarized in Zou [14], so we only discuss the main points here. In systems with many large 
particles very narrow diffractive (global) resonances may be observed [14], but they will not 
feature in this article because they involve strongly retarded interactions that we wish to 
avoid. Using quasistatic limits it can be shown that the lattice sum required for Eq. (13) is 
given by 

 ( )3
/ 4π ,n nS = ps d   (14) 

where p is a polarization dependent factor which is 2 for longitudinal and −1 for transverse, 

and sn is particle-number dependent and rises from 1 for bispheres up to 2ζ(3) ≈2.4 for infinite 

chains [26]. Equation (14) implies the permittivity shift is approximated by 6 3

n
πa S . In 

general, the coupled dipole model is not fully applicable to close clusters because it fails to 
account for higher multipoles that dominate the interaction [27], so we must consider more 
general methods. 

4. Methods applicable to strong coupling 

Numerical methods are required to account for the near-field interactions, and these all have 
advantages and disadvantages. Some studies have used arbitrary discretization techniques 

#122462 - $15.00 USD Received 8 Jan 2010; revised 19 Mar 2010; accepted 23 Mar 2010; published 26 Mar 2010

(C) 2010 OSA 29 March 2010 / Vol. 18,  No. 7 / OPTICS EXPRESS  7535



such as boundary elements [11], finite elements [12] and a discrete dipole approximation 
(DDA) [2], but these methods usually require very significant computational resources. DDA 
is known to have particularly poor convergence for the system under study [12], due to 
sensitivity to surface discretization. The geometry in question is relatively amenable to 
spherical harmonic expansions, either electrostatically [13] or fully retarded vector spherical 
harmonics (VSH) [12], however the mathematics of this approach is quite complicated. All 
methods struggle near contact due to large field gradients [11]. In this article we have drawn 
on the strengths of a surface integral method and VSH, along with a commercial 
implementation of the finite element method, and we now detail those methods. 

One approach we have used is to extend an electrostatic surface integral [22] to directly 
calculate mode parameters L, A and B. While some authors have approached coupled systems 
from the point of view of coupling eigenmodes of arbitrary individual particles [28], our 
spherical particles have rather trivial eigenmodes (see VSH below) and we have instead 
calculated eigenmodes of the system as a whole. Our implementation is described in detail in 
the next section. The main accuracy concerns are sufficient sampling of the integral, correctly 
integrating the singularities, and calculating the lattice sum for the infinite chain. We were 
able to calculate some results sampling up to 3000 points in the integral, sufficient to 

converge results to much better than 10
−3

 relative error, although calculations with less 
favorable particle counts limited those calculations to sparser sampling and hence reduced 
accuracy. Surface integral results are presented later, in parallel with other results for real 
metals. 

We also used Mackowski’s [19,20] well-tested public-domain implementation of coupled 
vector spherical harmonic (VSH) expansion – also known as the T-matrix method - to give a 
more realistic result incorporating the effects of retardation. The implementation does not give 
mode parameters directly – instead we estimated them from the cross-sections using equations 
developed in the model section. Despite the numerical advantages of VSH, the presence of 
nearly singular fields means that a large number of multipoles N is required to correctly 
predict closely-coupled longitudinal modes [27]. In this work we used an adaptive 
convergence test on N that required the relative absorption cross-section to converge to within 

at least 10
−3

 for at least two consecutive values of N. It is also possible to calculate electric 
fields using VSH [29,30], although this capability is not provided in Mackowski's code, so we 
used the publicly available GMM-FIELD [21], with a slight correction to the field 
normalization factors. We used a similar convergence criterion, and found that in general the 
fields converge more slowly than the cross-sections. We focused on the field on the surface 
along the chain axis, which is expected to be maximum. Near close-contact the field across 
the gap is relatively invariant. 

As an additional check we also used a commercial implementation of the finite element 
method, for which the details are published elsewhere [12]. Again, symmetry was exploited 
wherever possible, which was especially important given the expensive numerical scaling of 
this method. The implementation incorporates retardation and gives electric fields directly 
with cross-sections derived via a surface integration. We only calculated the infinite chain 
results this way, because other geometries are less symmetric and have “open” boundaries 
parallel to the scattering direction, requiring much greater resources. All implementations 
(including dipole-dipole) were validated against each other using test cases where at least one 
of the methods was known to be correct. 

We compared the four chosen metals (Au, Ag, Al, K) using all the retarded methods. In 
our retarded calculations we fixed the sphere diameter (2a) at 15nm for Au, Ag and K, but we 
reduced the Al diameter to 3nm to reduce retardation at the short wavelengths associated with 
this material. We used bulk dielectrics for all calculations due to the difficulty of including 
size-dependent effects for all methods and to avoid complicating the analysis. In isolation the 
spheres are large enough that electron scattering would be not be too great [1], and are 
sufficiently small that radiative damping is low (<10% contribution). However, in chains with 
very small separations the field singularity may induce significant electron scattering which 
would reduce the peak shift [15], and we also observed a significant increase in radiative 
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scattering for Au, Ag & K. Where possible we tested separations in the range 1/30<d/(2a)-1<1 
and chain lengths from 2 to 100 particles, but convergence often became impractically slow at 
small separations and large particle numbers, especially in regions of low metal loss. In every 
case we have focused on the most red-shifted (dipole longitudinal) mode, as this is the most 
fundamental. 

5. Surface Integral Method 

Surface integral methods are particularly effective for simple shapes such as the sphere chains 
presented here, and casting as an eigenvalue problem is a powerful framework for 
characterizing resonances. Fuchs used this approach to describe resonances of single cubes in 
the quasistatic limit [22] – here we apply it to sphere chains and elucidate how to effectively 
calculate the field enhancement coefficient B. We have ignored the effect of the host medium 
to simplify the notation. 

The self-consistent equation for the internal electric field is written 

 ( ) ( ) ( )( )
( (

0

3

ˆ
,

P r' n r' r r'
E r = dS' + E

r r'

⋅ −

−
∫
�

� � � �

� �

�

� �

  (15) 

where P = χE , 1 4ε= + πχ , dS is a surface element and E0 is the applied field. The primed 

coordinate is the source, and non-primed is observation. Using surface normal fields 

( ) ( ) ( )ˆp r P r n r≡ ⋅
�

� � �

, the eigenproblem corresponding to Eq. (15) can be written 

 
( ) ( ) ( )

,
i ij j

p Λ= G p   (16) 

where 2π1Λ= χ +−  are the eigenvalues of the interaction matrix and 

 
( )

( ) ( )( ) ( )

( ) ( )( (
( )

3

ˆ
,

i j i

ij j

i j

r r n
G = ∆S

r r

− ⋅

−

� �

� �

  (17) 

where (i) and (j) represent the indices of the unprimed and primed discretized spaces 
respectively. 

The eigenvalues implied by Eq. (16) are directly related to permittivity poles 

 
2π

.
2π

p

Λ+
ε =

Λ−
  (18) 

Equation (18) relates directly to (5) and (6) and can be used to determine depolarization L. 
The strength of the m

th
 mode in the longitudinal (z direction) can be found via 

 
( ) ( )( ) ( ) ( ) ( )( )11

,
mjj im i i

m z
A = n p p z ∆S

V

−  ∑   (19) 

which requires calculating all significant eigenvectors, or alternatively finding the complex 
limit 

 
0

lim ,
( )

2

α χ
A

Vχ χ′′→

′′ ′′
≈

′
  (20) 

where double prime indicates the imaginary part. Note that the limit given by Eq. (20) can be 
adversely affected by degenerate modes, so we calculated the eigenvalues directly via Eq. 
(19). Typically we calculated all of the eigenvalues because the number required near contact 
is substantial and it was not much more expensive to calculate all of them. The normal 
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component of the external electric field can be determined from the internal field, which in 
turn can be written as a superposition of eigenmodes, and by inspection we have derived that 

 
( ) ( ) ( ) ( ) ( )1

.
mji j im i

m zB = n p p ∆S
−  ∑   (21) 

Equation (21) seems obvious but was not mentioned in the original reference [22]. 
Now we discuss some efficient strategies for evaluating Eq. (17) for periodic linear chains 

of spheres. Although there is a vast amount of detailed literature on lattice sums and Green’s 
functions, including some that applies to sphere arrays (e.g [31].), we could not find any 
specific reference that could be rapidly adapted to the current framework. Hence we 
performed all the derivations using obvious strategies and detail the results here. The 
longitudinal mode is axisymmetric, therefore the problem can be reduced to the dimension 
along the chain, by calculating the elliptic integral over the azimuthal coordinate. For a single 
sphere this can be expressed as 

 
( ) ( )

( )
( )( )0

cos cos
2sin / 1 cos ,

1 cos

θ' θ θ' +θ
G = ∆θ' θ'K a θ' +θ

θ' +θ

 − −
  −
 − 

  (22) 

where θ is the angular coordinate in the longitudinal plane, and K is the elliptic integral as per 
the Abramowitz convention [32]. More generally, the interaction between spheres n sites apart 
is 

 

[ ] [ ]
( )

[ ] ( )
[ ] ( )

cos / 2
K E

1 cos cos cos / 2
2sin ,

1 cos cos cos / 2

q q

q q

q

q q

r θ' + r
ξ ξ

θ θ' + r θ' θ+ r
G = ∆θ' θ'

a θ+θ' + r θ' θ+ r

−
− − −

− −
  (23) 

where the sphere to sphere distance /
q

r = qd a , q is the integer sphere-sphere separation and 

K and E are the elliptic integrals with the same argument 

 
[ ] [ ]

[ ] ( )
cos cos

.
1 cos cos cos / 2

q q

θ θ' θ+θ'
ξ =

θ θ' + r θ' θ+ r

− −

− − −
  (24) 

As with all Green's functions, there is a singularity at r = r', which must be treated 
carefully in the numerical integration. One way to do this is to do a series expansion of Eq. 
(22) about the singularity, and then analytically integrate over the source coordinate: 

 ( ) [ ] [ ]( )0
ln 8 sin 1 ln / 2 .

∆θ'
G θ = θ' θ + ∆θ

a
≈ −   (25) 

Here the line on the surface has been discretized by angle with N intervals of ∆θ, which is the 
main limit on convergence near contact. We find N = 360 is sufficient to converge f = 0.033 to 

about 10
−3

, but typically we used between 2 to 8 times as many points depending on machine 
constraints. 

In the general n body problem the matrix becomes nN on a side, greatly increasing 
computational demands. Due to the periodicity of the chain, the entire matrix can be deduced 
from the first particle row block (N by nN). It is also useful to note the rotational symmetry of 
each N by N block. These facts can be used to avoid recalculating the elliptic integrals. 

However, generally matrix operations such as diagonalization or inversion require the 
entire matrix. Nevertheless, the symmetry of the bisphere and infinite chain cases can be 
exploited, by considering a single observation particle and collapsing source particles on top 
while accounting for symmetries. In the bisphere case the lattice summation of the Green's 
function is readily accomplished observing symmetries: 
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 ( )2 1
,

Σ 0
G = G G θ'− −   (26) 

and likewise, in the infinite case: 

 ( )
1

.Σ q 0 q q

q q

G = G G + G +G θ, θ'
∞ ∞

∞
=−∞ =

 = − − ∑ ∑   (27) 

We have inserted the subscriptΣ in Eq. (26) and (27) to distinguish the total interaction matrix 
from the interactions of individual spheres as given in Eq. (22) through (25). Note that the 
coordinate reversal is achieved through a trivial rearrangement of the non-reversed matrix. 

Further, calculation of the full lattice sum for the infinite chain can be truncated by 
splicing in a series expansion of the lattice sum at long-range. We conservatively truncated the 
full sum at q = 9, and used a third order series approximation to account for more distant 

neighbors, which reduces the relative norm error of GΣ∞ to about 10
−6

 in the worst case. 
Explicitly, we calculated the summation in (27) by estimating the distant part of the sum as: 

 ( ) ( )
3 9

2

2
10 0 1

1
2 sin / 2 ,

p+

q p p+
q p q

G π∆θ' g a d ζ p+
q

θ
∞

= = =

 
′→ − 

 
∑ ∑ ∑   (28) 

where the series coefficients over the index p are: 

 

( )0

2

1

3 2 2

2

2 2 2 3

3

3 4

cos

3cos 2cos cos 1

15 9
cos 9cos cos cos cos 6cos 3cos

2 2

9
24cos 24cos cos 27cos cos 30cos cos

2

35
10cos cos cos 9cos

2

g = θ

g = θ θ θ'

g = θ θ θ' + θ θ' θ+ θ

g = θ+ θ θ' + θ θ' θ θ'

θ θ' + θ θ'

− −

′− −

− − −

−

 (29) 

Equation (28) and (29) should be combined with exact near-neighbor terms as given by 
(23) and (24) to complete the estimate of the infinite lattice sum in Eq. (27). 

We used this method to calculate electrostatic limits for the universal parameters, and we 
now present the results in conjunction with those from other methods. 

6. Universal scaling results 

Firstly we consider the mode position, as shown in Fig. 3, where we have calculated the shift 
of the mode permittivity. As mentioned earlier, the mode position is significantly affected by 
just two parameters – the number of particles n, and the gap fraction f = d/(2a)-1. The effect of 
these two parameters is substantially independent. Our earlier work demonstrated an 
approximately exponential decay with particle number [12]. The dependence on gap fraction 
is more complicated, but nevertheless, all materials fall on a similar curve that goes from 1/f 

3
 

at large separations to 1/f 
1/2

 at very small separations. Any differences between the different 
metals are probably due to retardation effects associated with the non-zero size of the chain. 
While it is not obvious from Fig. 3, it is interesting to note that the effect of chain length 
eventually reduces as the particles come into contact, which is expected as the near-fields 
dominate the interaction. 
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Fig. 3. (Color online) Shift of the longitudinal dipole mode permittivity, (a) as a function of the 
gap fraction and (b) as a function of the chain length. The VSH results for finite spheres are 
indicated with markers, where different colors indicate different metals. Electrostatic limits are 
shown as lines. The dashed line in (a) is the infinite chain result, and the solid line is the 
bisphere. In (b) the lower line has a gap fraction d/2a-1 = 1, and the upper is 1/30. 

Secondly we consider the mode sharpness Q, as shown in Fig. 4. The data is reasonably 
well predicted by Eq. (9) when radiative damping is accounted for. Since the quality factor is 
inversely related to energy loss, it is reasonable to expect that Qe/Qa = Ca/Ce, as mentioned in 
Section 3. There are a few significant deviations due to the unusual permittivity of Au near the 
isolated sphere resonance and the presence of a neighboring mode in the case of Ag. With the 
outliers explained, we can have confidence that the radiative correction is appropriate. 
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Fig. 4. (Color online) Peak quality factor compared to that predicted by Eq. (9), as a function 

of the measured contribution of metal absorption to energy extraction. The line shows the 
expected relationship, and all VSH (Mackowski) results have been included as dots, covering 
all separations and chain lengths. This partially confirms the veracity of the damping correction 
used for later results. 

In Fig. 5 we consider the mode strength A, which describes how the polarizability 
compares to that of an equivalently depolarized ellipsoid. As discussed in Section 3, we 
correct for radiative damping by using Ce

2
/Ca per particle for the left hand side of Eq. (2), and 

then we find that the electrodynamic results are reasonably well bound by the electrostatic 
bisphere and infinite chains results, if the data is plotted as a function of peak shift (Fig. 5b). 
There are some deviations evident for large gap fractions (Fig. 5a) that may be attributable to 
interband transitions and neighboring modes. Deviations for infinite chains are probably due 
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to remaining retardation effects. It is interesting that the infinite chain strength reduces least 
rapidly as the peak shifts, in other words the chain suppresses the generation of higher order 
(non-radiative) modes compared to the bisphere. 
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Fig. 5. (Color online) Dipole peak strength for different chain lengths n, as a function of gap 
fraction (a), and as a function of the corresponding peak shift (b), which shows the universal 
scaling of peak extinction. Electrostatic limits are plotted as lines, for both the bisphere (solid) 
and infinite chain (dashed). Retarded calculations, corrected for scattering by using Ce

2/Ca on 

the left hand side of Eq. (2), are overlaid using markers. This includes VSH results for all 

chain lengths (dots), and finite elements for infinite chains only (circles). 

We also test how well Eq. (3) predicts scattering, as shown in Fig. 6, by considering the 
polarizability of the chain as a collective entity. This approach is reasonable, provided that the 
chain length is short compared to the wavelength. Widely spaced particles result in a long 
chain, but this case does not greatly interest us. On the other hand, a large number of particles 
could also lead to a long chain, however we did not investigate this limit fully, because 
resources did not allow and to avoid chain-end resonances. Note that for long chains the 
actual scattering is less than that predicted by (3), because the coupling between particles 
reduces, and the spheres begin to act individually. For shorter chains, the most significant 
deviations (~20%) are observed for Au, n = 2, and the closest coupling - this is probably 
influenced by higher-order modes. 
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Fig. 6. (Color online) Comparison of peak scattering predicted by Eq. (3) as a function of 

phase length of the chain, where Eq. (3) used cluster α based on (1) and (2) with uncorrected 

Ce. The curved dotted line is inversely proportional to the x axis. All VSH (Mackowski) results, 
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covering all separations and chain lengths, are shown as dots. The conclusion is that only 

optically short chains scatter like the small cluster modeled by Eq. (3). 

The maximum field enhancement coefficient B, on axis just outside the surface of the 
sphere nearest the middle of the chain, was calculated using the surface integral and compared 
to retarded results for real metals using Eq. (4). Figure 7 shows reasonable agreement, with 
very substantial enhancements compared to equivalently depolarized ellipsoids. As with the 
dipole strength there are some minor variations for infinite chains which could be explained 
by the effect of neighboring modes or radiation. Interestingly the field is weaker for longer 
chains at equivalent depolarization, which may be the result of increased symmetry. 
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Fig. 7. (Color online) Maximum electric field enhancement coefficient, for different lengths of 
chains, as a function of gap fraction (a), and as a function of the corresponding peak shift (b). 
Electrostatic surface integral limits are shown as lines with infinite chains (dashed) and 
bisphere (solid). Retarded results corrected for radiative damping are shown as markers. This 
includes VSH-GMM for all chain lengths (crosses), and finite elements for infinite chains only 
(circles). 

7. Conclusion 

Our calculations applicable across strong and weak coupling regimes demonstrate that while 
the behavior of the mode position as a function of chain geometry is indeed nearly universal 
across different materials, there is not a single scaling rule that applies across all coupling 
regimes. Our calculations certainly indicate that for the metals studied and within the validity 
of our model the scaling is not exponential with the particle gap, and does lie between 1/f 

3
 at 

long range and 1/f 
1/2

 at close range. The model presented here is separated into geometric 
factors that require intensive calculation yet are universal (depolarization L, dipole strength A, 
field coefficient B), and simple functions of the particular metal permittivity used. Provided 
that radiative damping is considered, the model accurately predicts important parameters like 
absorption cross-section and electric field enhancement. Extinction is larger for longer chains, 
but field enhancement is slightly weaker, although this is a small effect compared to the very 
large enhancements possible in depolarized systems. 
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