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Abstract: We investigate the modes of coupled waveguides in a hexagonal
photonic crystal. We find that for a substantial parameter range the coupled
waveguide modes have dispersion relations exhibiting multiple intersec-
tions, which we explain both intuitively and using a rigorous tight-binding
argument.
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1. Introduction

Coupled photonic crystal waveguides (CPCWs) have received substantial attention due to their
ability to guide slow light with significant control over dispersion [1–3]. The unique properties
of CPCWs have led to high bandwidth delay lines [4] and directional couplers with extremely
short coupling lengths [5] needed to create ultra compact devices [6]. Analysis of the under-
lying coupled waveguide modes (CWMs) is critical to understanding how these properties are
achieved. Coupled waveguides in uniform media are well understood: the fundamental mode
is always even, the second mode is odd [7, 8] and the dispersion curves of the two modes do
not cross. de Sterke et al. [9] showed that the fundamental CWM of square lattice PCWs can
be either even or odd, and that this depends on the number of rows between the waveguides.
Since the coupling coefficient is given by C = (βeven −βodd)/2, the existence of an odd funda-
mental CWM in square photonic crystals (PCs) led to the realisation of structures with negative
coupling coefficients exhibiting discrete negative refraction [10].

There are key differences between square and hexagonal lattice CPCWs which make the
hexagonal case a more interesting, and ultimately more challenging, problem to study. First,
there exist two distinct geometries for coupled waveguides, the inline case with an odd number
of rows between PCWs [inset Fig. 1(b)], and the staggered case with an even number of rows
between PCWs [inset in Fig. 1(a)]. The inline case has reflection symmetry since the centers of
the cylinder defects in the two waveguides line up. No such symmetry exists for the staggered
case as the cylinder centers do not line up. The two waveguide configurations exhibit different
behaviour at the Brillouin zone (BZ) edge. Figure 1 shows that in the staggered arrangement,
the even and odd dispersion curves intersect at the BZ edge, while they are well separated in
the inline configuration. This behaviour was reported previously [11, 12], and has resulted in
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Fig. 1. Dispersion curves of CWMs for (a) PCWs separated by four rows (staggered ge-
ometry) and (b) PCWs separated by five rows (inline geometry). The purple dashed curve
and the solid green curves are for a single waveguide and for CPCWs, respectively. The red
shaded area indicates the projected bands and the green area is the braided region, separated
from the typical region by the blue dashed curve.
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staggered CPCWs being proposed for use as slow light couplers [11].
Here, we take a more general interest in CWMs in hexagonal lattices. We consider a PC with

a background index of nb = 3, air holes of radius rc = 0.3d, where d is the period, and use Hz

polarisation. We create the PCWs by altering the refractive index of rows of holes to nd = 1.5.
Figure 1 shows that for both the inline and staggered geometries, the dispersion curves, which
were computed using the generalised fictitious source superposition method [13], differ on
either side of the dashed blue curve. We refer to the area to the right of this curve (green
background) as the braided region as the dispersion curves of the coupled modes are interwoven
around the single waveguide mode leading to multiple degeneracies. At these degeneracies the
PCW modes do not couple. Such a point in the dispersion curve can be used to design compact
demultiplexers [14]. The presence of the braiding means that the coupling coefficient depends
not only on the geometry of the system but also depends strongly on the Bloch wavevector kx.
The degeneracies here are not accidental, but are associated with how the mode of the PCW
decays in the bulk PC separating the waveguides. We refer to the region to the left of this curve
as typical, since the modes display similar properties to those in a square lattice.

Unlike square lattices, where the symmetry of the fundamental mode depends on the spacing
between the waveguides, the symmetry of the fundamental mode in hexagonal lattice CWMs
changes both with the spacing and with the Bloch wavevector, i.e. the symmetry of the funda-
mental mode varies across the BZ. As the spacing between the waveguides increases by two
rows an extra crossing appears within the braided region. In this paper we analyse the intrica-
cies of CWMs in hexagonal CPCWs. We do this in Section 2 by providing a physical argument
as to why such degeneracies should exist inside the BZ, and explain how they depend on the
parameters of the CPCWs and the underlying bulk PC. In Section 3 we provide a rigorous anal-
ysis of the CWMs using a perturbative method based on the modes of the single uncoupled
PCW. We discuss our results in Section 4. The Appendix provides some proofs for Section 2.

2. Physical Argument

Deep inside the band gap, the interaction between waveguides is weak, allowing us to use a tight
binding approximation. In this regime, the splitting of the coupled modes occurs symmetrically
around the single waveguide mode. This splitting is proportional to the J overlap integral [7],

J =

∫
δε E1(r) ·E∗

2(r)d
2r =

∫
δε (Ex1(r)E∗

x2(r)+Ey1(r)E∗
y2(r))d

2r. (1)

---

(a) kxd=2 (Typical Region).

- --

(b) kxd=2.67 (Braided Region).

- --

.

(c) kxd = π (BZ Edge).

Fig. 2. |Ey| fields of the even single PCW mode for a PCW centered at y = 0. The scale has
been chosen so as to emphasize the weak fields which are involved in coupling the PCWs.
The value of kxd for Fig. 2(b) corresponds to a crossing at spacing 4.
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Here δε is the perturbation formed by one of the waveguides. For the PCW mode that has
a Hz field that is even (odd) with respect to its center, there is a nodal line at the center of
the PCW for the Ex (Ey) component, so the dominant contribution to the splitting is from the
Ey (Ex) component. This means that the magnitude of the coupling depends on only one field
component of the single PCW mode.

Figure 2 shows the relevant electric field for the even mode of a PCW, situated at y= 0. When
moving away from the waveguide in the braided region, the field has nodal lines (at four rows
away in Fig. 2(b) and at one, three and five rows away in 2(c)). If the second waveguide is situ-
ated on such a nodal line the waveguide coupling is small and their dispersion curves intersect.
In the typical region [Fig. 2(a)] the envelope of the field simply decays exponentially in y/d
and intersections do not occur. In the braided region [Fig. 2(b)] the mode decays exponentially
but with an underlying periodic feature, the novel element considered here.

The nature of this decay is best explained by considering the complex bands of the bulk
PC. The complex bands arise by finding the k values, real or complex, associated with a real
frequency. Since complex bands are continuous when the frequency is varied, a bandgap can
be considered to be a frequency interval with only complex bands but no real ones. PCWs are
periodic in x therefore their modes propagate with a fixed value of a (real) kx. When describing
how the modes decay in the bulk we thus choose to make ky complex while keeping kx real.
The modes of a bulk PC are Bloch modes which acquire a Bloch factor μ after translation
along a lattice vector. For a propagating Bloch mode |μ |= 1, while for an evanescent solution
|μ | < 1. For this lattice we define the lattice vector, eee2 = [d/2, d

√
3/2], shown in Fig. 5(a).

When translating along the lattice vector −eee2, the Bloch factor is given by μ = e−i kkk·eee2 , and
thus the imaginary part of the Bloch vector kkk denotes the decay rate.

The complex band diagrams shown in Fig. 3 are for three different values of kxd, with the
color representing decay rate of the Bloch mode: Fig. 3(a) is for kxd = 0.31 in the typical
region, (b) is for kxd = 2.51, in the typical region for d/λ < 0.2531 and in the braided region for
d/λ > 0.2531, while (c) is at the BZ edge and completely within the braided region. Figure 3(b)
and 3(c) show that in the braided region there are two equally dominant evanescent Bloch
modes. The presence of either one or two dominant evanescent Bloch modes defines the typical
and braided regions respectively. The line separating these regions in Fig. 1 corresponds to
the bifurcation point in the complex band-structure. This extends the work of Mahmoodian et
al [15] to complex bands.

To illustrate the behaviour of the bands within the braided region, we consider how the field

0 2 4

Fig. 3. Complex band diagrams at different slices of kx for the bulk hexagonal lattice. Dark
blue indicates real bands, while other colours indicate complex bands. (a) kxd is in the
typical region; (b) kxd intersects the blue dashed curve in Fig. 1; (c) kxd is at the BZ edge.
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decays along lattice vectors in the bulk PC. As shown in Fig. 3 in the braided region, for a given
value of kx there are two complex Bloch modes with the same decay rate, κ , with opposite signs
of Re(ky) (which we refer to as ky). Thus, when translating m times by the bulk lattice vector
−eee2, we acquire a Bloch factor

μm
± = e−imkkk·eee2 = e−i kx md/2e±i ky md

√
3/2e−κ md

√
3/2, (2)

where ky refers to the real part of the Bloch vector. Since we are interested in coupled PCW
modes we assume the single PCW mode has been computed and analyze how the mode decays
in the bulk. As described in the Appendix, we can write the single PCW mode in the bulk region
as a superposition of the decaying bulk Bloch modes, ϕi. In the braided region there are two
leading order Bloch modes which decay at the same rate. We ignore all but these modes. Taking
their amplitudes as c1 and c2, after decaying along m lattice vectors the field of the PCW is

ψ(r0 +me2) = c1ϕ1(r0)e
−i kx md/2e−i ky md

√
3/2e−κ md

√
3/2 +

c2ϕ2(r0)e
−i kx md/2eiky md

√
3/2e−κ md

√
3/2. (3)

We show in the Appendix that in the braided region, ϕ2(x,y) = ϕ∗
1 (−x,y) and that the modes

have equal magnitudes with c2 = eiϑ c∗1, thus we choose the origin such that r0 = (0,y0) and get

ψ(r0 +me2) = 2e−κ md
√

3/2e−i kx md/2Re
[
c1ϕ1(r0)e

i(ky md
√

3/2)+iϑ/2
]
. (4)

Therefore in the barrier region the PCW mode consists of a decaying envelope modulating
a periodic oscillation. When a second waveguide is situated on a zero of this oscillation, the
PCWs do not couple and their modes are degenerate. Though the relative phase ϑ is known
only after computing the single PCW mode, Eq. (4) shows that the serpentine nature of the
coupled PCW bands is due to the interference of the two evanescent Bloch modes in the barrier.

We now examine the symmetry of the CWMs. Dossou et al [16] showed that the fundamental
mode of coupled point defects has the same symmetry as the underlying bulk Bloch mode. We
have observed the same behaviour here for CWMs. Two CPCWs separated by � rows have
cylinder centers which are a distance (�+1)eee2 apart. The fundamental mode is a superposition
of the two individual PCW modes such that the phase difference between the two PCWs is that
of the underlying bulk Bloch mode. Since the underlying bulk PC has two Bloch modes, we
combine these as in Eq. (4) and write

|Ψ〉= |ψ1〉± e−i kx (�+1)d/2 |ψ2〉 (5)

where |ψ1〉 is the mode of the single waveguide, ψ2(r) = ψ1(r+(�+1)e2), shown in Fig. 5(b),
and the sign is given by sgn[Re(c1ϕ1(r0)ei(ky (�+1)d

√
3/2)+iϑ/2)]. The effect of the real part of the

exponent is to flip the sign of the fundamental mode as kx moves along the BZ. A special case
occurs when kxd = π , i.e. at the BZ edge. As shown in the Appendix, the single PCW mode
can be written as a real valued function at the BZ-edge and thus we have c1 = c2. Figure 3(c)
shows that at kxd = π there are two dominant evanescent Bloch modes (the third is separated by
a reciprocal lattice vector) where Re(ky) = ±π/(d

√
3) along the entire bandgap. Thus Eq. (4)

becomes

ψ(r0 +me2) = 2e−κ md
√

3/2e−i kx md/2c1ϕ1(r0)cos(mπ/2). (6)

We find the coupling goes to zero for all odd m causing the degeneracy seen in Fig. 2(c).
For even m the coupling is locally maximized. Using Eq. (5), the modes at the BZ-edge are
|Ψ〉 = |ψ1〉± i |ψ2〉. This is illustrated by the Hz field densities in Fig. 4(a)–4(d). Here, both
modes have fields that are completely imaginary in one PCW, but are real in the other.
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Fig. 4. Hz fields for two degenerate coupled waveguide modes separated by two rows at
kxd = π . (a) The real part of both modes is identical. (b) The imaginary part of mode 1. (c)
Imaginary part of mode 2. (d) Both modes have the same absolute value.

3. Formulation of the perturbation theory

To analyse the behaviour of the modes in the braided region rigorously, we now present a
perturbation analysis of the coupled PC waveguide modes. Given the mode of a single PC
waveguide, this method allows the computation of the coupled waveguide mode frequency
splitting relative to the single waveguide mode. The perturbation approximation is derived from
a rigorous dispersion equation which is presented in the next two sections.

3.1. Computation of the modes of the unperturbed photonic crystals

We fix the normalized frequency d/λ and the component kx ∈ R of the wave vector kkk. Let
k0 = 2π/λ and n0 denote respectively the free space wave number and the refractive index of
the PC background medium. The infinite two-dimensional PC is modelled as a periodic stack
of grating layers [see Fig. 5(a)]. The fields Hz,1(x,y) near the upper interface Π1 and Hz,2(x,y)
near the lower interface Π2 of a grating layer can be represented by plane wave expansions [17]:

Hz,s(x,y) =
+∞

∑
p=−∞

χ− 1
2

p

[
f−p,s e−i χp (y−ys) + f+p,s ei χp (y−ys)

]
eiαp (x−xs), for s = 1,2, (7)

where s = 1 and s = 2 refer respectively to quantities related to the interfaces Π1 and Π2. The
points P1 = (x1,y1) and P2 = (x2,y2) are the chosen phase origins [see Fig. 5(a)]. The symbols

αp and χp are defined as αp = kx +2π p/d and χp =
(
n2

0 k2
0 −α2

p

)1/2
, ∀p ∈ Z.
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Fig. 5. (a): Geometry of the PC unit cell, defined by the basis vectors eee1 and eee2. Points
P1 and P2 are the phase origins of the plane wave expansion respectively at the upper
(Π1) and lower (Π2) interfaces of a grating layer. (b): Schematic of a PC with a double
waveguide, a composite of 5 elements characterized by their scattering matrices: RRRW , TTTW
for the waveguides, RRRB, TTT B for the barrier between the waveguides and RRR∞ for the semi-
infinite PCs.
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The transfer matrix T relates the fields at upper and lower interfaces of the grating. If we
denote by fff−1 fff+1 , fff−2 and fff+2 the column vectors whose elements are respectively the plane
wave expansion coefficients f−p,1, f+p,1, f−p,2 and f+p,2 in Eq. (7), then the Bloch modes are given
by the condition

T

[
fff−1
fff+1

]
= μ

[
fff−1
fff+1

]
(8)

where μ is the phase factor μ = e−i kkk·eee2 . Thus the Bloch modes are the eigenvectors of the
transfer matrix T of a single grating layer; T can be diagonalized as T = FL F−1 where

F =

[
FFF− FFF ′

−
FFF+ FFF ′

+

]
and L =

[
ΛΛΛ 000
000 ΛΛΛ′

]
. (9)

In Eq. (9) the columns of F represent the eigenvectors which constitute the Bloch modes [17].
The left partition F−and F+ contain the downward propagating modes, whereas the right
partition contains the upward propagating modes. The matrix L is diagonal and comprises
the eigenvalues μ , partitioned into downward (ΛΛΛ) and upward propagating (ΛΛΛ′) modes. The
grating layer in Fig. 5(a) has up-down symmetry, i.e., it is invariant by the transformation
(x,y) �→ (x,−y), assuming without loss of generality that the coordinate origin is the midpoint
between P1 and P2. This transformation changes a downward propagating mode into an upward
propagating mode and vice-versa. It also permutes the fields [and their plane wave expan-
sions (7)] at the lower interface and upper interfaces. To obtain the new plane wave expansion,
for instance, at the upper interface, we must take into account (x−x2) = (x−x1)−d/2, i.e., P1

and P2 are shifted horizontally by a half period, together with (−y−y2) =−(y−y1). It follows
from these properties that the downward and upward propagating modes can be chosen such
that they satisfy the symmetry relations

ΛΛΛ′ ΛΛΛ = e−i kx dIII,

[
FFF ′
−

FFF ′
+

]
=

[
QQQ0 FFF+

QQQ0 FFF−

]
and QQQ0 = diag

(
ei pπ)

p∈Z = diag ((−1)p)p∈Z . (10)

3.2. Photonic crystal waveguides

To derive a dispersion equation for the double waveguide in Fig. 5(b), we model the structure
as a composite of 5 elements: the upper and lower waveguides, a barrier consisting of � periodic
PC layers, and upper and lower semi-infinite PCs. Each element is characterised by its reflec-
tion and transmission matrices under plane wave incidence. Since the phase origins P1 and P2

are shifted horizontally, incidence by downward propagating plane waves (on the upper inter-
face) and by upward propagating plane waves (on the lower interface) have different scattering
matrices; primed symbols apply to the matrices of the latter case. Let RRRW , TTTW , RRR′

W and TTT ′
W

denote the plane wave scattering matrices of a single waveguide. The scattering matrices of the
barrier are denoted RRRB, TTT B, RRR′

B and TTT ′
B. The Fresnel reflection matrices of semi-infinite PCs are

represented by RRR∞ and RRR′
∞. From Botten et al. [17], the scattering matrices of the barrier and

the semi-infinite PCs can be computed using the Bloch modes of the unperturbed PCs

RRR∞ = FFF+FFF−1
− and RRR′

∞ = FFF ′
−FFF ′

+
−1 (11a)

RRRB = FFF ′
+

(
−RRR21 +ΛΛΛ′−�

RRR21 ΛΛΛ�
)(

III−RRR′
21 ΛΛΛ′−�

RRR21 ΛΛΛ�
)−1

FFF−−1 (11b)

TTT B = FFF−
(
III−RRR′

21 RRR21
)

ΛΛΛ�
(

III−RRR′
21 ΛΛΛ′−�

RRR21 ΛΛΛ�
)−1

FFF−−1 (11c)

RRR′
B = FFF−

(
−RRR′

21 +ΛΛΛ�RRR′
21 ΛΛΛ′−�

)(
III−RRR21 ΛΛΛ�RRR′

21 ΛΛΛ′−�
)−1

FFF ′
+
−1 (11d)

TTT ′
B = FFF ′

+

(
III−RRR21 RRR′

21

)
ΛΛΛ′−�

(
III−RRR21 ΛΛΛ�RRR′

21 ΛΛΛ′−�
)−1

FFF ′
+
−1 (11e)
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with RRR21 = −FFF ′
+
−1FFF+ and RRR′

21 = −FFF−−1FFF ′
−; RRR21 and RRR′

21 are the Fresnel reflection matrices
for Bloch mode incidence on a semi-infinite homogeneous background material. The scattering
matrices RRRW , TTTW , RRR′

W and TTT ′
W can be computed by solving a grating diffraction problem. How-

ever these scattering matrices can be obtained analytically if a waveguide is created by remov-
ing a row of cylinders: since the waveguide is homogeneous and has the same refractive index
as the background, RRRW = RRR′

W = 000, TTTW = exp(i kx d/2)QQQ0 PPP and TTT ′
W = exp(−i kx d/2)QQQ0 PPP with

PPP = diag (exp(i χp h)) and h = d
√

3/2. In the general case of waveguide gratings, RRRW 
= 000 and,
at the upper waveguide, we have the plane wave scattering relations

⎧⎪⎨
⎪⎩

f̂ff
+
1 = RRRW f̂ff

−
1 +TTT ′

W fff+1
fff−1 = TTTW f̂ff

−
1 +RRR′

W fff+1
f̂ff
−
1 = RRR′

∞ f̂ff
+
1

=⇒

⎧⎪⎨
⎪⎩

f̂ff
+
1 = (III−RRRW RRR′

∞)
−1 TTT ′

W fff+1
f̂ff
−
1 = RRR′

∞ (III−RRRW RRR′
∞)

−1 TTT ′
W fff+1

fff−1 =
(

RRR′
W +TTTW RRR′

∞ (III−RRRW RRR′
∞)

−1 TTT ′
W

)
fff+1

(12)

Similarly for the lower waveguide we obtain

fff+2 =
(

RRRW +TTT ′
W RRR∞

(
III−RRR′

W RRR∞
)−1

TTTW

)
fff−2 . (13)

We have the relations across the barrier between the two waveguides

fff+1 = RRRB fff−1 +TTT ′
B fff+2 and fff−2 = TTT B fff−1 +RRR′

B fff+2 . (14)

We now use the symmetry relations (10) to halve the size of the eigenproblem and so get some
insight about the symmetry of the modes. It follows from Eq. (10) that the scattering matrices
in Eqs (11a)–(11e) and Eq. (13) satisfy the symmetry properties (note that QQQ−1

0 = QQQ0)

RRR′
B = QQQ0 RRRB QQQ0, TTT ′

B = ei�kx dQQQ0 TTT B QQQ0 and RRR′
21 = RRR21. (15)

Next, we translate horizontally the bottom phase origin P2 of the barrier by Δx = �d /2; the
new phase origin is aligned vertically with the top phase origin P1 which is useful for analyzing
the field symmetry. With the new phase origin, the expression for the vector of plane wave
coefficients fff 2 is

f̃ff 2 = diag

(
e

iαp �d
2

)
fff 2 = e

ikx �d
2 QQQ�

0 fff 2. (16)

Substituting the relations (15) into Eq. (14), together with Eq. (16) gives
(

fff+1 ±QQQ�+1
0 f̃ff

−
2

)
=

(
RRRB ± e

ikx �d
2 QQQ0 TTT B

)(
fff−1 ±QQQ�+1

0 f̃ff
+
2

)
(17)

with both relations holding simultaneously. A similar treatment for the Fresnel-type equa-
tions (13) and its counterpart in Eq. (12), together with the symmetry relations

RRR′
∞ = QQQ0 RRR∞ QQQ0, (18)

RRRW +TTT ′
W RRR∞

(
III−RRR′

W RRR∞
)−1

TTTW = QQQ0

(
RRR′

W +TTTW RRR′
∞
(
III−RRRW RRR′

∞
)−1

TTT ′
W

)
QQQ0. (19)

yield

fff−1 = RRR fff+1 and QQQ�+1
0 f̃ff

+
2 = RRRQQQ�+1

0 f̃ff
−
2 . (20)

Hence (
fff−1 ±QQQ�+1

0 f̃ff
+
2

)
= RRR

(
fff+1 ±QQQ�+1

0 f̃ff
+
2

)
(21)
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where

RRR = RRR′
W +TTTW RRR′

∞
(
III−RRRW RRR′

∞
)−1

TTT ′
W . (22)

Substituting expression (21) into Eq. (17) leads to

AAA(σ)
(

fff+1 +σQQQ�+1
0 f̃ff

+
2

)
= 000, with AAA(σ) = III−

(
RRRB +σe

ikx �d
2 QQQ0 TTT B

)
RRR (23)

where σ = 1 gives one equation and σ =−1 gives the other, both of which are simultaneously
true. For a pair of coupled waveguide modes, fff+1 or f̃ff

+
2 are not zero, so if AAA(σ) is singular then,

in general, AAA(−σ) is not. Thus the dispersion equation is given by detAAA(σ) = 0 while the mode
symmetry follows from fff+1 −σ QQQ�+1

0 f̃ff
+
2 = 000. In particular when � is odd we have QQQ�+1

0 = III so

that fff+1 = σ f̃ff
−
2 and, from Eq. (20), fff−1 = σ f̃ff

+
2 , i.e., the waveguide mode has even symmetry

when σ = 1 and odd symmetry when σ = −1. In practice, the nonlinear eigenvalue problems
can be solved by searching for the roots of the determinant of the matrix AAA(σ).

As the thickness parameter � increases, RRRB tends to RRR∞ while TTT B tends to zero since the bulk
PC is in a band gap. We obtain the single waveguide dispersion equation as �→ ∞

AAA0 fff+1 = 000 with AAA0 = III−RRR∞ RRR. (24)

3.3. Perturbation theory

We assume that the propagation constant kx is fixed while the normalized frequency ν = d/λ
is unknown. The dispersion equation (23) for the double waveguide problem is equivalent to
finding a frequency ν and a mode xxx such that AAA(σ ,ν)xxx = 000. Similarly, for a single waveguide,
we write the dispersion equation as AAA0(ν0)xxx0 = 000. To find a solution through a perturbation
analysis, we consider the problem (23) as a perturbation to Eq. (24) and introduce the notation

ν = ν0 +δν , xxx = xxx0 +δxxx and AAA(σ ,ν) = AAA0(ν0 +δν)+δAAA(σ ,ν0 +δν). (25)

The term δAAA, which accounts for the perturbation due to the finite width of the barrier between
the waveguides, is defined below in Eq. (33). The equation AAA(σ ,ν)xxx = 000 is thus that for

(AAA0(ν0 +δν)+δAAA(σ ,ν0 +δν)) (xxx0 +δxxx) = 000. (26)

As a first order analysis, we can derive the leading order equation
(

AAA0(ν0)+
∂AAA0

∂ν
δν +δAAA(σ ,ν0)

)
(xxx0 +δxxx) = 000. (27)

The size of the matrix AAA0 = III −RRR∞ RRR is the number of plane wave orders included in our
calculations. When the plane wave orders are truncated to just the propagating plane wave or-

ders, then the matrices RRR∞ and RRR are unitary when the background PC is in a bandgap (as a

consequence, RRR∞ RRR is also unitary). For the PCs considered here, there are either one or two
propagating plane wave orders. The most interesting cases, corresponding to the braided re-

gion, have two propagating plane wave orders. Then the unitary matrix RRR∞ RRR has two orthog-

onal eigenvectors xxx(1)0 and xxx(2)0 associated respectively with eigenvalues γ1 and γ2. The single

waveguide equation AAA0xxx = (III −RRR∞ RRR)xxx = 000 has a solution if 1 is an eigenvalue of the matrix

RRR∞ RRR. Let assume, for instance, that the eigenvector xxx(1)0 is associated with the eigenvalue γ1 = 1
and construct the solution of the double waveguide as the perturbation

xxx = xxx0 +δxxx = xxx(1)0 + c(1) xxx(1)0 + c(2) xxx(2)0 with |c(1)| � 1 and |c(2)| � 1. (28)
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By substituting this expression in Eq. (27) and using the fact that AAA0(ν0)xxx(1)0 = 000, we are led to
the first order perturbation equation

δν
∂AAA0

∂ν
xxx(1)0 = −δAAA(σ ,ν0)xxx(1)0 − c(2)AAA0(ν0)xxx(2)0 . (29)

and by taking the inner product with xxx(1)0 , we find

δν = −xxx(1)0

H
δAAA(σ ,ν0)xxx(1)0

xxx(1)0

H ∂AAA0
∂ν xxx(1)0

(30)

since xxx(1)0

H
(AAA0(ν0)xxx(2)0 ) = (1− γ2)xxx(1)0

H
xxx(2)0 = 0. The superscript H denotes the Hermitian

transpose, i.e., the conjugate transpose. A matrix norm is used in the analysis below and any
type of norm can be considered since, in a finite dimensional space, all matrix norms are equiv-
alent. From Eqs. (11a)–(11c) and (15), we can derive the leading order estimates with respect
to the small parameter ‖ΛΛΛ�‖

RRRB = RRR∞ +O(‖ΛΛΛ�‖2) (31)

TTT B = FFF−
(
III−RRR2

21

)
ΛΛΛ�FFF−1

− +O(‖ΛΛΛ�‖2) =
(
III− (QQQ0 RRR∞)

2)FFF−ΛΛΛ�FFF−1
− +O(‖ΛΛΛ�‖2) (32)

and it follows that

δAAA(σ ,ν) = AAA(σ ,ν)−AAA0(ν) =−σ e
ikx �d

2 QQQ0
(
III− (QQQ0 RRR∞)

2)FFF−ΛΛΛ�FFF−−1 RRR+O(‖ΛΛΛ�‖2) (33)

so that, to leading order, the numerator xxx(1)0

H
δAAA(σ ,ν0)xxx(1)0 is given by

xxx(1)0

H
δAAA(σ ,ν0)xxx(1)0 = −σ xxx(1)0

H
QQQ0

(
III− (QQQ0 RRR∞)

2)FFF−
(

e
ikx d

2 ΛΛΛ
)�

FFF−−1 RRRxxx(1)0 (34)

or

xxx(1)0

H
δAAA(σ ,ν0)xxx(1)0 = −σ xxx(1)0

H
QQQ0

(
III− (QQQ0 RRR∞)

2)FFF−
(

e
ikx d

2 ΛΛΛ
)�

FFF−−1 RRR−1
∞ xxx(1)0 (35)

since, from Eq. (24), RRR∞ RRRxxx(1)0 = xxx(1)0 . The denominator term xxx(1)0

H ∂AAA0
∂ν xxx(1)0 is also derived from

Eq. (24)

xxx(1)0

H ∂AAA0

∂ν
xxx(1)0 = −xxx(1)0

H ∂
(

RRR∞(ν)RRR(ν)
)

∂ν
xxx(1)0 . (36)

From unitarity and mode orthogonality RRRH TTT ′+TTT H RRR′ = 000, for propagating plane orders only
(see Ref. [18, Eq. (24b)]), it follows that the matrix exp(i kx �d/2)QQQ0 TTT RRR−1 is skew-hermitian,

and as a consequence its leading term is also skew-hermitian. Thus xxx(1)0

H
δAAA(ν0)xxx(1)0 is a pure

imaginary number. The denominator xxx(1)0

H ∂AAA0
∂ν xxx(1)0 in Eq. (36) is also pure imaginary at ν = ν0.

We prove this by using RRR∞ RRRxxx(1)0 =
(

RRR∞ RRR
)H

xxx(1)0 = xxx(1)0 and the fact that the derivative of a

parameterized family of unitary matrices UUU(ν) is skew-hermitian at ν = ν0 if UUU(ν0) = III since,
from UUU(ν)UUUH(ν)= III, we have 000=

(
UUU(ν)UUUH(ν)

)′
=UUU ′(ν)UUUH(ν)+UUU(ν)UUU ′H(ν) and in par-

ticular UUU ′(ν0)+UUU ′H(ν0) = 000. The parameterized family UUU(ν) = (RRR∞(ν0)PPP(ν0))
H RRR∞(ν)PPP(ν)

satisfies such a property. Since the denominator does not depend on the length �, to study the
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impact of the barrier thickness � on the frequency shift δν in Eq. (30), we just have to analyze
the numerator (35). Since RRR∞ is unitary, we can show that Eq. (35) can be written as

xxx(1)0

H
δAAA(σ ,ν0)xxx(1)0 = σ xxx(1)0

H (
QQQ0 RRRH

∞ QQQ0 −RRR∞
)

QQQ0 FFF+

(
e

ikx d
2 ΛΛΛ

)�
FFF−1
+ xxx(1)0 (37)

and when only one propagating plane wave order exists, Eq. (30) simplifies to a scalar problem:

δν = σ
Im(R∞)

∂
(

R∞(ν)R(ν)
)

∂ν

(
e

ikx d
2 μ1

)�
(38)

which is a generalisation of Eq. (20) in Ref. [19].
In the cases where two propagating plane wave orders are considered, there are two evanes-

cent modes with Bloch factors μ1 and μ2, and Eq. (37) takes the form

xxx(1)0

H
δAAA(ν0)xxx(1)0 = σ

(
a1

(
e

ikx d
2 μ1

)�
+a2

(
e

ikx d
2 μ2

)�
)
. (39)

If one of the evanescent Bloch modes is dominant, i.e., for instance, |μ1|> |μ2|, when � is large
enough |μ2|� becomes negligible with respect to |μ1|� and we get

δν ≈ σ a1

(
e

ikx d
2 μ1

)�
. (40)

When μ1 is associated with a dominant evanescent mode (as in Eqs (38) and (40)) the quantity
(exp(i kx d/2)μ1) must be real. Otherwise, as shown below, we can find μ2 
= μ1 such that
|μ2|= |μ1|. If (exp(i kx d/2)μ) is real and negative, we get an oscillatory dependence since the
sign of δν depends on the parity of �.

Indeed when (exp(i kx d/2)μ1) has a nonzero imaginary part, if ϕ1(x,y) is an associated
Bloch mode, from the invariance of the PC lattice with the geometric transformation (x,y) �→
(−x,y), it follows that for lossless PC, ϕ2 = ϕ∗

1 (−x,y) is a Bloch mode associated with kx and

e
ikx d

2 μ2 =
(

e
ikx d

2 μ1

)∗ 
= e
ikx d

2 μ1. (41)

This also means that |μ1| = |μ2|, i.e., ϕ1(x,y) and ϕ2(x,y) form a pair of linearly independent
dominant evanescent Bloch modes. If fff−1 and fff+1 are vectors of plane wave components of
the mode ϕ1(x,y) in the plane wave expansion (7), then ϕ2 = ϕ∗

1 (−x,y) has as components
fff−2 = QQQ0 fff+1

∗
and fff+2 = QQQ0 fff−1

∗
; matrix QQQ accounts for the fact that the transformation (x,y) �→

(−x,y) shifts the phase origins x0 = d/4 and x′0 =−d/4. Furthermore, when (exp(i kx d/2)μ1)

and (exp(i kx d/2)μ2) form a conjugate pair, to satisfy the requirement that xxx(1)0

H
δAAA(ν0)xxx(1)0

be purely imaginary, it is sufficient that the prefactors a1 and a2 in Eq. (39) satisfy a2 = −a∗1.
Varying � shows that this condition is also necessary. Thus for a pair of dominant evanescent
modes, Eq. (39) becomes

xxx(1)0

H
δAAA(ν0)xxx(1)0 = σ

(
a1

(
e

ikx d
2 μ1

)�−a∗1
(

e−
i kx d

2 μ∗
1

)�
)

(42)

= 2σ i |a1| |μ1|� sin

((
arg(μ1)+

kx d
2

)
�+ arg(a1)

)

which shows that xxx(1)0

H
δAAA(ν0)xxx(1)0 /|μ1|� is periodic with respect to �; in particular for some

values of � xxx(1)0

H
δAAA(ν0)xxx(1)0 = 0, i.e., δν = 0, although this root is physically meaningful only
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Table 1. Crossing points (kx d,d/λ ) of the even and odd CWM dispersion curves in Fig. 1,
according to the dispersion results in Fig. 1 (columns “converged results”) and the roots of
δν(kx,d/λ , �) (columns “perturbation theory”)

Crossing points for �= 4 Crossing points for �= 5
Converged results Perturbation theory Converged results Perturbation theory
(2.0789,0.3174) (2.0971,0.3155) (2.0531,0.3176) (2.0727,0.3158)
(2.5392,0.3085) (2.5428,0.3073) (2.3934,0.3113) (2.3992,0.3101)
(2.5492,0.2956) (2.5500,0.2950) (2.4107,0.2985) (2.4121,0.2979)

(π,0.2905) (π,0.2898) (2.8900,0.3037) (2.891,0.3027)
(π,0.3028) (π,0.3016) (2.8985,0.2913) (2.8988,0.2907)

when � is an integer; if that is the case we have a crossing between the even (σ = 1) and odd
(σ =−1) dispersion curves of the double waveguides.

Figure 6 shows the root � of δν versus kx d ∈ [0,π] when (kx,ν0) varies along the dispersion
curve of a single waveguide; the crossing points correspond to integer values of the root �. The
results in Table 1 show that the first order perturbation theory agrees well with full numerical
calculations. The perturbation theory is not accurate near kx d = 1.8555 where the dispersion
relation of a single waveguide is degenerate. For the PCs studied here, such degeneracy occurs
outside the braided region so that the perturbation theory is valid inside this region.

For kx d = π , all even values of � > 0 are a root. Our theory explains this property. Since
kx d = ±π are equivalent wave vector components (same quasi-periodicity with respect to
eee1), in addition to ϕ2 = ϕ∗

1 (−x,y), ϕ̃2 = ϕ∗
1 (x,y) is also a permissible Bloch mode and since

exp(iπ d/2) = i, it follows that {i μ1, i μ2} = {i μ1, i μ2}∗ = {−i μ∗
1 ,−i μ∗

2}; from the assump-
tion that i μ1 and i μ2 form a conjugate pair, this implies that μ1 = −μ∗

1 , i.e., μ1 is real and
μ2 =−μ1. Here Eq. (42) is imaginary if a1 is real. Thus when kx d = π , Eq. (42) becomes

xxx(1)0

H
δAAA(ν0)xxx(1)0 = σ a1

(
(i μ1)

�− (−i μ1)
�
)
= 2σ ia1 |μ1|� sin

(
π �

2

)
(43)

so that xxx(1)0

H
δAAA(ν0)xxx(1)0 = 0 when � is even.

4. Discussion and conclusion

We have given a detailed description of coupling of hexagonal lattice PCW modes, showing
that their dispersion curves intertwine due to the beating of two equally dominant evanescent
Bloch modes in the barrier regions. This work highlights that there is a hierarchy in the under-
standing of coupled waveguides. In the simplest case involving two conventional waveguides
the fundamental mode is always even and the second mode is odd. In the tight-binding limit
these modes can be understood as even and odd superpositions of the modes of the individual
waveguides. In square lattices, the modes are similar, but the fundamental mode can be odd and
the second mode can be even. In the hexagonal lattices we have considered here the coupled
modes can be considered complex superpositions of the modes of the individual waveguides,
with coefficients which depend on the wavenumber, leading to the braiding effect. While the
rigorous perturbation theory from Section 3 explains the observed behaviour very well (see Ta-
ble 1), considerable insight may be obtained from intuitive description using the complex bands
of the barrier region in Section 2.

Though all results described here were obtained for one particular structure, in which only
the parameter �, defining the thickness of the barrier separating the waveguide, was varied, the
behaviour is generic and applies to coupled waveguides in any type of hexagonal lattice. Sim-
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Fig. 6. Roots � of the correction term δν(kx,d/λ , �) when (kx d,d/λ ) varies along the
dispersion curve of a single waveguide (purple dashed curve in Fig. 1). The roots occurring
at � = 4 and � = 5 are indicated by green and cyan dots respectively (see Table 1 for their
coordinates). The blue and red curves correspond, respectively, to the upper and lower
frequency modes in the braided region in Fig. 1. The former enters the braided region at
kx d = 1.998, the latter at kx d = 2.048).

ilarly, though the treatment here approximates the PCs as being two-dimensional, our results
are generic and apply equally well to slab geometries.

Finally, the braiding leads to complicated dispersion relations, which may have implications
for the study of slow light or for the creation of geometry induced, frequency selective in-
dex media. In practice the braiding may be somewhat difficult to observe since increasing the
spacing between the waveguides, increases the number of intersection points, but decreases the
amplitude of the oscillations.

A. Appendix

In this Appendix, we give detailed justifications of the modal properties discussed in Section 2.

A.1. Dominant evanescent modes

We assume that the waveguide propagation constant kx ∈R and the normalized frequency d/λ
are fixed. We consider that we have a directional band gap at d/λ and kx. We denote the PC
Bloch modes ϕn(x,y) associated with wave vectors of the form kkkn = [kx,ky] = [kx,βn + iκn]

with βn,κn ∈ R. Let eee1 = [d,0] and eee2 = [d/2,d
√

3/2] be the lattice vectors of the hexagonal
lattice. As discussed in Section 3.1, for fixed values of d/λ and kx, the mode ϕn(x,y) can be
obtained by solving an eigenproblem where the Bloch factor

μn = e−ikkk·eee2 = e−i kx d/2e−iβnd
√

3/2eκn d
√

3/2 (44)

is the unknown eigenvalue. The cases |μn| = 1 and |μn| 
= 1 correspond respectively to propa-
gating and evanescent Bloch modes. From the band gap assumption, we only have evanescent
modes which are classified according to their direction of decay. When |μn| < 1, the evanes-
cent mode is downward decaying and is denoted ϕ−

n (x,y) with the associated eigenvalue |μ−
n |.

Similarly, ϕ+
n (x,y) represents a upward decaying mode associated with eigenvalue |μ+

n |. The
waveguide is modeled as a diffraction grating of thickness h = d

√
3/2 occupying the domain
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{(x,y) | −h/2 < y < h/2} and surrounded by two semi-infinite PC regions. Let Ψ(x,y) repre-
sent a waveguide mode associated with the waveguide propagation constant kx and the normal-
ized frequency d/λ . Following grating diffraction theory, we represent the field Ψ(x,y) in each
semi-infinite as modal expansion of bounded states as

Ψ(x,y) =

{
∑∞

n=1 c+n ϕ+
n (x,y), if y > h/2

∑∞
n=1 c−n ϕ−

n (x,y), if y <−h/2
(45)

We number the evanescent modes such that 1 > |μ−
1 | ≥ |μ−

2 | ≥ |μ−
3 | ≥ . . . and 1 < |μ+

1 | ≤
|μ+

2 | ≤ |μ+
3 | ≤ . . . , i.e., they are numbered from the least evanescent to the most evanescent.

If |μ−
1 | > |μ−

2 | and |μ+
1 | > |μ+

2 |, the contribution from the evanescent modes ϕ−
1 (x,y) and

ϕ+
1 (x,y) dominate the series in Eq. (45) for large values of |y| so that the waveguide field

|Ψ(x,y)| decays by a factor |μ−
1 |= |μ+

1 | across each row of PC cylinders [as in Fig. 3(a)].
There are two dominant evanescent modes if |μ−

1 |= |μ−
2 |> |μ−

3 | and |μ+
1 |= |μ+

2 |< |μ+
3 |. As

we now show, for lossless PCs, a pair of dominant evanescent modes occurs when (β1d
√

3/2)
is not a multiple of π . The hexagonal lattice is invariant by the geometric transformation T :
(x,y) �→ (−x,y), since T eee1 =−eee1 and T eee2 = eee2 − eee1 are both lattice vectors. It follows that if
ϕ1(x,y) is a Bloch mode associated with a wave vector kkk = [kx,β1+ iκ1], then, for a lossless PC,
ϕ∗

1 (x,y) is also a Bloch mode associated kkk = [−kx,−β1 + iκ1] thus, because of the symmetry,
ϕ∗

1 (−x,y) is a Bloch mode which is associated with a permissible wave vector: kkk = [kx,−β1 +

iκ1]. If (β1d
√

3/2) is not a multiple of π , we can derive from the definition (44) that ϕ1(x,y)
and ϕ∗

1 (−x,y) have the same decay rate κ but different phase factors; thus we can take ϕ2 as
ϕ2 = ϕ∗

1 (−x,y) and conclude that both ϕ1 and ϕ2 are dominant modes.
For a pair of dominant evanescent modes ϕ1 and ϕ2 such that (β1d

√
3/2) is not a multi-

ple of π , we can assume, without loss of generality, that ϕ2 = ϕ∗
1 (−x,y). As shown below,

we can then derive that the coefficients c1 and c2 in the series (45) satisfy |c1| = |c2| (if
Ψ(x,y) is non-degenerate). Thus β2 = −β1 and |c1|= |c2| generate a beating between the two
evanescent Bloch modes that leads to a field pattern consisting of a decaying envelope mod-
ulating a periodic oscillation in Figs. 2(b) and 2(c). We now show that |c1| = |c2|. The field
Ψ∗(−x,y) is also a waveguide mode associated to kx and d/λ ; thus if the waveguide mode
Ψ(x,y) is non-degenerate then there exist γ ∈ C such that |γ| = 1 and Ψ∗(−x,y) = γ Ψ(x,y).
Since ϕ2 = ϕ∗

1 (−x,y), the first terms of the modal expansion of Ψ∗(−x,y) are Ψ∗(−x,y) =
c∗1 ϕ2 + c∗2 ϕ1 + · · · Since ϕ1 and ϕ2 are linearly independent and Ψ∗(−x,y) = γ Ψ(x,y), we
deduce that c∗2 = γ c1 and c∗1 = γ c2 and this implies that |c1|= |c2| since |γ|= 1.

A.2. Field at the band edge

A special case occurs when kx is at the edge of the (one-dimensional) BZ edge. For lossless
PCs, kx d = π and kx d = −π are equivalent. The field Ψ∗(x,y) is then also a waveguide mode
associated with kx and d/λ and if Ψ(x,y) is non-degenerate then there exist γ ∈ C such that
|γ|= 1 and Ψ∗(x,y) = γ Ψ(x,y). Let γ̂ be a square root of γ , then γ̂ Ψ(x,y) is a real since

Ψ∗(x,y) = γ̂2 Ψ(x,y)⇔ Ψ∗(x,y) =
γ̂
γ̂∗

Ψ(x,y)⇔ (γ̂ Ψ(x,y))∗ = γ̂ Ψ(x,y). (46)

We can then consider the chosen mode Ψ(x,y) to be real. As a consequence, the dominant term
(c1 ϕ1(x,y)+ c2 ϕ∗

1 (−x,y)) must have real values. This implies that c1 and c2 are real since, as
discussed in Sect. A.3, ϕ1(x,y) can be chosen to be real if it is non-degenerate. Since |c1|= |c2|
we then have c2 =±c1. The choice c2 =−c1 cancels the field (c1 ϕ1(x,y)+c2 ϕ∗

1 (−x,y)) along
x = 0, but this would contradict the fact that in Fig. 2, the component Ey is strong around the
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cylinder center (x,y) = (0,0). Thus we must have c2 = c1. When translating the bulk lattice
vector eee2, � times, we acquire a Bloch factor

μ�
1 = e−i�kx d/2 e−i�β1 d

√
3/2 e�κ1 d

√
3/2 = (−i)� (−i)� e�κ1 d

√
3/2 = (−1)� e�κ1 d

√
3/2 (47)

μ�
2 = e−i�kx d/2 ei�β1 d

√
3/2 e�κ1 d

√
3/2 = (−i)� (i)� e�κ1 d

√
3/2 = e�κ1 d

√
3/2 (48)

and the corresponding dominant field is

c1 (ϕ1((x,y)− �eee2)+ϕ2((x,y)− �eee2)) = c1

(
μ�

1 ϕ1(x,y)+μ�
2 ϕ2(x,y)

)
(49)

= c1 e�κ1 d
√

3/2
(
(−1)� ϕ1(x,y)+ϕ1(−x,y)

)
(50)

For all odd �, the field cancels at the cylinder centers on the row y = −�
√

3/2 and the
coupling goes to zero for all odd causing the degeneracy seen in Fig. 2(c).

A.3. Properties of the phase factor at the band edge

When kx d = π , ϕ(x,y), ϕ(−x,y), ϕ∗(x,y) and ϕ∗(−x,y) are all permissible Bloch modes, i.e.,
they satisfy the same quasi-periodicity condition with respect to the lattice vector eee1. They are
associated with the wave vectors kkk = [±kx,±β + iκ ]. Since exp(±i kx d/2) = ±i, the wave
vectors kkk = [±kx,±β + iκ ] correspond to at least two different phase factors μ [see Eq. (44)].
Indeed we have the three situations

1. If exp(−iβd
√

3/2) = exp(iβd
√

3/2), i.e., if (βd
√

3/2) is a multiple of π , then we have
a pair of opposite pure complex phase factors. We have ϕ∗(−x,y) = γ ϕ(x,y), with γ ∈C,
if there is no degeneracy.

2. If exp(−iβd
√

3/2) = −exp(iβd
√

3/2), i.e., if (βd
√

3/2) ≡ ±π/2, then we have a
pair of opposite real phase factors. We have ϕ∗(x,y) = γ ϕ(x,y), with γ ∈C, if there is no
degeneracy; furthermore, by following the arguments used for Eq. (46), it turn out that
ϕ(x,y) can be chosen as a real valued function.

3. If exp(−iβd
√

3/2) 
= ±exp(iβd
√

3/2), then we have quadruple Bloch factors μ , −μ ,
μ∗ and −μ∗.

Our numerical calculations confirm the occurrence of the first two cases; in the first gap of the
hexagonal lattice, the dominant eigenvalues μ1 and μ2 are a pair of opposite real numbers while
some higher order eigenvalues form a pair of opposite imaginary complex numbers. However
we have not observed the last case, with quadruple evanescent modes having the same decay.

Acknowledgements

The authors thank P.Y. Chen and Dr A.A. Sukhorukov for useful discussions. Support of the
Australian Research Council through its Centres of Excellence Program is acknowledged.

#135606 - $15.00 USD Received 23 Sep 2010; revised 12 Nov 2010; accepted 13 Nov 2010; published 19 Nov 2010
(C) 2010 OSA 22 November 2010 / Vol. 18,  No. 24 / OPTICS EXPRESS  25360




