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We develop a way to enhance the amplitudes of the nonpropagating evanescent orders of resonant dielectric grat-
ings. We use this blazing to design gratings with spectra tailored to generate steerable sub-Rayleigh field concen-
trations on a surface. We investigate the enhancement and customization of evanescent fields necessary to create a
virtual and passive scanning probe with nomoving parts. Spot size can be decreased 1 order of magnitude below the
free-space Rayleigh limit. © 2010 Optical Society of America
OCIS codes: 050.6624, 050.1960.

The wavelength-dependent response of spatially periodic
optical structures (gratings) has been exploited for many
years, especially in spectroscopy. Gratings can be blazed
to favor the reflection or transmission of light into a
desired propagating order with high resolving power
[1]. The realization that gratings can also excite useful
subwavelength evanescent fields, necessary for achiev-
ing resolution beyond the Rayleigh limit, has generated
a number of proposals [2–4]. Here we develop an ap-
proach to enhance (“blaze”) and tailor desirable evanes-
cent fields.
The Fraunhofer equation sin θm ¼ sin θ0 þmλ=d gov-

erns the angles θm at which a grating of period d with
an incident plane wave of wavelength λ at an angle θ0
generates plane-wave orders. Writing the spatial part
of the field as expðikxyþ ikyyÞ, the Fraunhofer equation
is cast in terms of parallel (x) and perpendicular (y) com-
ponents of the incident and scattered wave vectors (k):

kxm ¼ k0 sin θ0 þ 2πm=d; kym ¼ ðk20 − k2xmÞ1=2: ð1Þ

Here k0 ¼ 2π=λ is the incident wave number and m in-
dices the generated orders. For sufficiently large jmj,
jkxmj > k0, so kym is imaginary; the sign is chosen such
that these evanescent orders decay exponentially away
from the grating. Thus Eq. (1) takes the form kym∼
ijkxmj ≈ 2iπjmj=d, independent of wavelength. This sug-
gests the possibility of sub-Rayleigh resolution, if we
can excite these large jmj orders.
By the field continuity conditions, subwavelength field

features on the grating surface require orders with sub-
wavelength variation. As these orders are evanescent,
this fine detail is not visible in the far field. In the absence
of losses or scatterers, the energy in evanescent fields
remains trapped on the surface, and so their amplitude
is not limited by energy conservation. Thus while blazing
propagating orders is well known, blazing evanescent or-
ders should be particularly effective and would provide
strong fields at a scale below the Rayleigh limit, an essen-
tial feature of superresolution [3,4]. Below, we present a

way to blaze evanescent orders and propose a method to
exploit this to provide sub-Rayleigh limit resolution.

Our approach requires multiple high-Q internal grating
resonances. These resonances, most simply described by
guided-mode resonances in a homogeneous dielectric
waveguide [5], are due to Fabry–Perot reflection be-
tween the grating top and bottom surfaces. Their high
Q is due to total internal reflection (TIR), so they couple
very weakly to the propagating orders through which en-
ergy would otherwise leak away. Rather, they couple
strongly to evanescent orders, driving them when on re-
sonance. These resonances are Fano resonances, in
which the high-Q resonance is superimposed on a broad
background characteristic of a uniform slab.

While Eq. (1) determines the wave vectors of each or-
der, it does not provide the associated amplitudes. To un-
derstand blazing we must know these amplitudes and so,
settling on a specific geometry, we performed a calcula-
tion using the modal method for one-dimensional lamel-
lar gratings [6,7]. Though our approach is general, for
convenience we restrict ourselves to TE polarization.
The single dielectric lamellar grating consists of repeat-
ing rectangles of two different dielectrics suspended in
vacuum, here taken to have refractive indices nL ¼
1:46 (SiO2) and nH ¼ 3:61 (silicon, λ ¼ 1:6 μm); see the
inset of Fig. 2(a). While both the phenomenon and the
modal method can function with substrates, for the sake
of simplicity we focus on the essential physics without a
substrate. Because the grating resonances are best de-
fined in the presence of only a single propagating order
[8], we chose to use a grating with d ¼ 0:76 μm < λ=2.

Figure 1 shows the amplitudes of several orders under
unit incidence from below versus incident angle. The pro-
pagating transmitted (specular) order (m ¼ 0) gradually
decreases as the angle tends to 90°. This trend is inter-
rupted by Fano resonances, which signify a strong
grating resonance, or anomaly, leading to a strong en-
hancement in the evanescent orders. The different ampli-
tudes of � orders, especially near glancing incidence,
distinguish this system’s asymmetrical enhancements
from other diffractive systems, such as a metal sheet with
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small holes. This is because the enhancement of each dif-
fracted order is dominated, via TIR, by a particular grat-
ing mode resonance.
Even though a single lamellar grating can thus blaze an

evanescent order to large amplitudes, this approach has
limitations. As these blazed evanescent orders are driven
through TIR by resonances of propagating fields in the
grating, they are limited to orders for which jkxj < nHk0.
We define such orders as near evanescent. The wave-
number of their field variation is less than nHk0, and they
are thus not substantially more useful for sub-Rayleigh
resolution than other techniques which use TIR, such
as dark field microscopy or immersion microscopy [9].
In contrast, far-evanescent orders (jkxj > nHk0) have

no strong connection to the resonances that drive near-
evanescent orders. Thus a novel approach is needed to
scatter the energy in blazed near-evanescent orders to
orders beyond the λ=2nH immersion limit. We have dis-
covered that this may be achieved by layering gratings of
different periods. Provided the period of the gratings is a
simple integer ratio, the structure is periodic and math-
ematically tractable. In general, the amplitude of evanes-
cent orders is inversely related to kxm and thus limited by
the highest amplitude near the middle of the spectrum,
typically in a propagating order. This is alleviated by
stacking gratings, where a blazed near-evanescent
order is the dominant incident field for the short period
grating, which then directly scatters efficiently into the
desired far-evanescent orders. As the amplitude of near-
evanescent orders can be much larger than that of
propagating orders, this permits the blazing of far-
evanescent orders, while skipping intervening, undesired
propagating and near-evanescent orders.
This enhancement, the key result in this Letter, is

demonstrated in Fig. 2, which contrasts the spectral pro-
file of the single grating [Fig. 2(a)] and the stacked grat-
ing [Fig. 2(c)] shown in the insets. Both show the
amplitude of the transmitted spectrum on the upper sur-
face of the grating under a circular incident field with unit
amplitude per angle [Fig. 2(b)]. Whereas a single grating
has practically no energy beyond nHk0, the stacked grat-
ing has a spectral envelope stronger than the incident
field that extends well into the far-evanescent region.
Choices of materials, grating periods, and duty cycle

allow considerable freedom in the frequency and inten-
sity of the far-evanescent peaks.

Strong evanescent fields, efficiently coupled to propa-
gating modes using a stacked grating opens new avenues
for high-resolution optical microscopy. For instance, in
far field optical diffraction tomography (FFODT), a grat-
ing is used to extract high spatial frequency information
restricted to the near field of a sample by converting eva-
nescent fields scattered by the sample into propagating
fields accessible in the far field [2–4]. FFODT uses an
iterative computational approach to reconstruct the en-
tire electric field at the surface from the diffracted far
field. While a FFODT prototype was demonstrated [4], its
practicality is limited by the strength of evanescent fields
that can be outcoupled from the near field of the sample.
Hence the resolution of FFODT depends on how much
fine control is possible over evanescent fields, particu-
larly far-evanescent orders. Unlike many subdiffraction
microscopy techniques [9], FFODT does not require
fluorescent dyes, scatterers, or a moving probe.

To illustrate our control over blazed evanescent or-
ders, we create a movable subwavelength optical spot.
Its spatial Fourier transform gives the complex spectrum
of the orders required to generate this spot; the incident
field, interacting with the grating, needs to generate this
spectrum. As shown in Fig. 1, only some incident angles
lead to blazed evanescent orders; we maximize this num-
ber by selecting the grating thickness. These blazed eva-
nescent orders broaden the spectrum of the incident
field, which otherwise would consist of propagating
plane waves only, leading to a smaller spot. Thus, acces-
sing more remote evanescent orders should enable a
further reduction in spot size. Indeed, stacking two grat-
ings with periods of 0:76 μm and 0:38 μm (period ratio
1:2) broadens the Fourier spectrum (Fig. 2) significantly
and decreases the spot size further by a factor of at least
3. This spot can be used as a source for optical micro-
scopy with a lateral resolution beyond the Rayleigh limit.
Subwavelength resolution normal to the grating is en-
sured by the evanescent nature of the fields.

While such spots are much narrower than the Rayleigh
limit, they are not explicitly steerable, as the location of
the peaks is fixed by the spectral envelope. However, the
spatial envelope can be moved, generating adjacent
spots, by adjusting the amplitude and phase of the blazed
orders. The Fourier space method provides a heuristic

Fig. 1. (Color online) Amplitude of transmitted specular order
(solid curve) and three near-evanescent orders versus incident
angle, showing evanescent order blazing. Incident angle range
0°, 90° maps to spectral range 0, k0. Grating is as in the inset of
Fig. 2(c).

Fig. 2. (Color online) Spectrum on the upper grating surface in
transmission of (a) single resonant grating and (c) stacked grat-
ing under (b) circular incident field of unit amplitude per angle.
The horizontal axis is divided into regions of propagating ð0; k0Þ,
near ðk0; nHk0Þ, and far-evanescent (>nHk0) orders. Insets show
the geometry of each Si (dark gray) and SiO2 (light gray) grat-
ing; 3:05 μm thick, 0:76 μm period, 25% duty cycle. The fine
grating in (c) has a thickness of 0:15 μm.
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approach to optimize grating design for a scannable
narrow spot. We desire closely spaced narrow spots
beneath a spatial envelope of comparable width; this de-
mands a stack of subperiod gratings able to create a
broad, continuous spectrum from the single grating spec-
trum shown in Fig. 2(a). A pair of stacked gratings with a
period ratio of 1:p (p integer) replicates the central
paired enhancements seen in Fig. 2(a) outward a dis-
tance proportional to p. Every pth order is directly con-
nected to the central propagating (specular, m ¼ 0)
channel and thus is relatively depleted of energy. All in-
termediate orders, connected to neither propagating nor
near-evanescent orders (modulo p), are unaffected.
A stack of different subperiod gratings is needed to fill

in as much of the spectrum as possible, creating the re-
quired spectral profile. The incident field consists of a
discrete set of incident plane waves, each exciting a re-
sonance. The complex amplitude of each incident plane
wave defines the complex amplitude of the orders it
blazes. The transmitted field is chosen such that the sum
of the blazed orders forms the closest approximation to
the complex spectrum of a narrow spot in its desired
location. The parameter space was optimized using a
Monte Carlo Markov chain, with a cost function asses-
sing the ratio of energy in the desired versus background
regions. Changing the incident field enables scanning of
the spot across the grating surface.
Our sample calculation models a stack of silicon/silica

gratings with period ratios 1:2:3:5, as in Fig. 3(b). We gen-
erate the spots shown in Fig. 4, which are all well below
the Rayleigh limit and span a unit cell of the grating.
Figure 3(a) shows the spectral amplitude of the leftmost
spot in Fig. 4; it has a width of about 3nHk0, a factor 3nH
wider than the free-space envelope. This gives a spot
width of ðλ=2Þ=ð3nHÞ ≈ λ=20, 1 order of magnitude smal-
ler than the free-space Rayleigh limit. The robustness of
the optimized spots was assessed by randomly modifying

the incident field amplitudes by 10%. Although the ampli-
tude of spots varied by up to 30%, the spotlike nature of
the fields was preserved. This demonstrates that the
spots are due to evanescent-wave interference rather
than “superoscillations” [10], which can be sensitive to
changes as small as one part in 105.

Spectroscopic uses of gratings view grating anomalies
such as Fano resonances as nuisances. Here we turn
grating resonances to our advantage, demonstrating
that stacked dielectric gratings of different periods
may be tailored to blaze evanescent grating orders and
to produce sub-Rayleigh optical field features in a con-
trollable way.

This work was produced with the assistance of the
Australian Research Council. The authors thank Hugues
Giovannini and Patrick Chaumet for useful discussions.
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Fig. 3. (Color online) (a) Spectral amplitude of the left peak in
Fig. 4. (b) Schematic of upper part of unit cell showing stacked
gratings. Primary (coarse) grating dimensions: 3:05 μm thick,
0:76 μm period, 10% duty cycle. Fine gratings on the surface
have period ratios of 1:2:3:5, thickness 0:015 μm each.

Fig. 4. (Color online) Energy density on the upper grating
surface, demonstrating multiple steerable narrow spots inde-
pendently excitable across a complete period (0:76 μm). Each
spot is substantially narrower than λ=2nH ¼ 0:22 μm.
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