“© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

Network Timing, Weathering the 2016 Leap Second

Yi Cao*,

Darryl Veitch*

*FEIT, University of Technology Sydney, Australia, Email: {Yi.Cao,Darryl.Veitch} @uts.edu.au

Abstract—We collect high resolution timing packet data from
459 public Stratum-1 NTP servers during the leap second event
of Dec. 2016, including all those participating in the NTP Pool
Project, using a testbed with GPS and atomic clock synchronized
DAG cards. We report in detail on a wide variety of anomalous
behaviors found both at the NTP protocol level, and in the
detailed timestamp performance of the server clocks themselves,
which can last days or even weeks after the event. Overall, only
37.3% of servers had Adequate performance overall.

I. INTRODUCTION

Timekeeping is a vital service provided by computer op-
erating systems. The operating system’s system clock is soft-
ware built on local hardware, which is synchronized through
timestamp exchange, via the Network Time Protocol (NTP),
to a reference timeserver over the network. For scalability,
timeservers are organised in a hierarchy, where a stratum
s timeserver itself synchronizes to a stratum s—1 server.
Anchoring the system are the stratum-1 timeservers, which
have local access to reference hardware such as GPS or atomic
clock.

Stratum-1 servers are typically assumed to be reliable and
highly accurate. If this were not true, the impact would be
potentially significant, since a good proportion of the world’s
computers are synchronized, ultimately, through accessing
public stratum-1 servers. These are hosted typically by insti-
tutions such as NIST and USNO (USA) and NMI (Australia),
research institutes, companies such as Google and Apple, and
some universities.

Network timing distributes Coordinated Universal Time
(UTC). This is a discontinuous time standard: jumps known
as leap seconds are inserted (roughly every two years) to
keep the timescale in step with the solar day. Leap seconds
are propagated through the server hierarchy, but it is well
known to system administrators and others that this process is
far from perfect. There are diverse distributed systems that
rely on sub-second synchronization for their operation, for
which confusion about an entire second could have serious
consequences. The leap second of 2012 brought down sites
such as Reddit, Yelp (YELP), LinkedIn and FourSquare, and
Qantas’ entire computer system. During the 2015 leap, some
stock exchanges took the precaution of suspending trading.
Indeed because of the cost of keeping software ‘leap second
safe’, and the risks of failure, for many years the idea of
abolishing them has been given serious consideration.

In this paper we examine the behavior of public stratum-
1 servers during the leap second event of end-December
2016. Our goal is to discover how the servers weathered
this disruptive event, and to compare against what one would
expect, both from the protocol, and clock accuracy viewpoints.

We build on the approach developed in [6] for the end-
June 2015 leap second to assess Stratum-1 servers from a
remote measurement point. We expand on the earlier work in
a number of ways. In terms of scale, we examine more servers
(459 compared to 177), over a longer period of time (64 days
compared to 22), and at far higher resolution (sampling period
of 1 per second compared to 64). The longer time period
allows a wider range of extreme behaviours to be captured,
and the higher resolution allows the timing behaviour to be
sampled closer to the leap second event itself. In terms of
protocol analysis, whereas [6] offered a fairly terse account
focussed on first and last leap warning times, here we examine
the leap header bits comprehensively, relate this to stratum
variability, and describe a complex landscape through defining
important classes of behavior. In terms of clock analysis,
we define two distinct quantities defining the leap behavior,
the Time to Jump (ToJ), as well as the ‘Time to Expected
Behaviour’ (TEB) criterion described in [6], use them to define
a ‘Leap Error Duration’ (LED) metric, and link these to the
protocol analysis.

Organization: Section II provides background on time stan-
dards, leap seconds and NTP, and discusses prior work.
Section III describes our testbed, the selection of servers, what
the datasets are and how they were collected. Section IV deals
with the server clock methodology and performance, whereas
Section V describes the protocol aspects. Overall results are
given in Section VI, and Section VII concludes.

II. BACKGROUND
A. Time Standards and Leap Seconds

The primary international time standard is the Temps Atom-
ique International (TAI). It is based on combining the outputs
of high precision atomic clocks in over 300 National Laborato-
ries, including the USA’s National Institute for Standards and
Technology (NIST), and Australia’s National Measurement
Institute (NMI). The TAI is a continuous time scale, with
each second a standard SI second, and with epoch (origin) at
HH:MM:SS = 00:00:10, Ist January 1972. It is best to think
of TAI as a real number, in units of seconds, since that epoch.
Universal Time (UT1) is a descendant of Greenwich Mean
Time, a continuous time scale whose unequal seconds allow
synchronization to the solar day. Because the Earth’s rotation
is slowing, UT1 is falling progressively further behind TAI

The primary time standard used for general timekeeping is
Coordinated Universal Time (UTC). This is a discontinuous
time scale with epoch at tya;=—10s, best thought of as TAI
to which jumps of exactly 1 second have been infrequently
applied in order to keep UTC close (within 0.9s) to UTI.
Within UTC, a positive leap second manifests as a downward

jump, slowing the clock down with respect to TAI. Negative
leap seconds are defined but have never been used.

We focus on the leap second added at the end of December
31, 2016. The leap event was completed at 00:00:00 January
Ist UTC, when TAI was t1,; = 1483228837s, and t{jpc =
ttar — 37. For convenience, we plot all timeseries against a
timescale “t”, which is a7 with its origin reset to t1,;.

The Global Positioning System (GPS) defines its own
atomic clock based continuous time scale. It is related to TAI
simply as ttar — tgps = 19s. Hence t{j;c = tips — 18, and
tutc = tgps — 17 during 2016.

B. Leap Seconds and NTP

The NTP hierarchy distributes UTC. Stratum-1 servers learn
of leap seconds through various mechanisms depending on
the reference time source. The most common is GPS, which
supports UTC and makes complete leap second information
available. A commonly used alternative, used for example by
many UNIX operating systems, is to include a ‘leap-seconds’
text file as part of NTP configuration. This file, which lists leap
second event times as well as an expiry date, is maintained by
NIST and is available from [5].

The main mechanism by which servers of higher strata
learn of leap seconds is via their server (or peer). The NTP
packet header has a 2-bit Leap Indicator (LI) field. RFC
5905 (NTP version 4), specifies that servers set LI = 01 in
response packets when a positive leap second is scheduled
in the last minute of the current month, or LI = 10 for a
negative leap second. Obsoleted RFCs 1305 (NTP v3) and
4330 (SNTP v4) however, instead state ... in the last minute
of the current day. As discussed in [6], the language in the
RFCs is ambiguous. Common practice in implementations is
to assume that warnings are issued in each response packet,
beginning during the 24 hours prior to the leap. In this paper
we adopt this as a definition of correct behaviour, though we
refine it somewhat as described later.

A related issue is when LI should be reset back to the normal
no warning value of LI = 00. NTPv3 states clearly what one
would logically expect: ‘... Immediately following insertion the
leap bits are reset.”. However, strangely, NTPv4 is silent on
this point. We return to this point when we examine warning
behavior in detail in Section V-A.

The remaining value is LI = 11 (see Section V-C) which
signals that the leap status is unknown because the server clock
is unsynchronized. It is here that there is a direct connection
with the (8 bit) Stratum field of the NTP header. According to
the NTPv4 standard, a system clock (at startup or at any other
time) should set both LI = 11, and S = 16, which also means
unsynchronized. However in transmitted packets, the standard
requires that stratum 16 is represented as S = 0. In practice
we see a variety of stratum values of our ostensibly Stratum-1
servers, including 0 and even 16, as detailed in Section V-B.

C. Prior Work

There are many informal reports available on-line detail-
ing implementation issues with leap seconds, describing bad

behavior of client systems, related operating system bugs,
configuration problems, and so on. We refer the reader to
Malone [6], [2] and references therein.

There have been a number of surveys on the NTP net-
work, in particular those of Mills [3] (1989), Guyton and
Schwartz [1] (1994), and Minar [4] (1999), who also surveys
prior surveys. While these reviews provide interesting accounts
on features of the timing network and its growth, there is very
little peer-reviewed work on stratum-1 server behavior, and
still less on leap seconds.

Apart from Veitch et al. [6] whose approach we follow,
the most substantial work is that of Malone [2]. It provides a
longitudinal study covering the leap second events from 2005
to 2015, and forms an interesting reference for the evolution
of the NTP landscape over this period. The technical focus
is on protocol aspects, in particular the values of the LI
bits over time, for a subset of both Stratum-1 and Stratum-
2 servers taken from the NTP Pool Project and ntp.org (see
Section III-B). The study is quite coarse grained, with a
probing resolution of one per hour, compared to one per
second here. It does not examine the server clocks themselves,
and, of course, like [6] does not report on the 2016 leap
second. We compare against the findings of Veitch et al. and
Malone in more detail in Section V-A.

III. THE EXPERIMENT:

In this section we describe the experimental infrastructure,
servers selection, the experiment itself and its data.

A. Testbed Hardware

Since the servers we will examine are stratum-1 servers,
normally the root references for the Internet’s timing system,
an authoritative evaluation demands a reliable high quality
local reference and sound methodology.

Our timing hardware is built around a roof mounted Trimble
Acutime™GG receiver. Via a custom built Timing Distributor
system the Pulse Per Second (PPS) signal from the GG is
passed at TTL levels to an Stanford Research Systems FS725
atomic clock in order to stabilize it on long time scales.

The PPS output of the atomic clock is fed back to the
Distributor, which then provides PPS-only outputs at RS422
levels for DAG cards, and RS232 levels for our local server.

We use two PCs to host NTP clients which connect to the
servers under test via a Gigabit Ethernet LAN. For each client,
the NTP timing packets are copied by a dedicated fully passive
tap. We use IX-TP-CU3 GigEth copper taps from NetOptics,
which output each direction of the duplex GigEth link on a
separate port.

To receive, store and timestamp the tapped packets we use
high performance four-port Endace DAG 7.5G4 capture cards.
These GigEth cards lock to the PPS input from the Distributor,
and provide hardware timestamping with a 3-sigma accuracy
of 100 ns, and a quantization resolution of 7.5 ns.

It is important that the DAG cards not themselves react to
the leap second event. To ensure this the GG was configured
to output time according to the GPS timescale, which does
not follow leap seconds.

B. Server List

We assembled a list of servers from five sources:
Org: the public Stratum-1 URL list maintained at ntp.org
Pool: servers participating in the NTP Pool Project
LBL: servers caught in a capture at the LBL border router
Au: the set of Australian public facing servers
Misc: miscellaneous servers that seemed worth including.

From each source we assembled an initial raw list of IP
addresses of servers which appeared to be Stratum-1. Close
to the experiment launch, this was reduced to an active list by
removing servers which did not respond to NTP client request
packets.

For the Org servers, the raw list included all those Stratum-1
IPv4 servers appearing on the webpage on October 24th 2016.
In the case of the Pool servers, the complete server list (for
all ntppool zones) as at November 16th 2016 was downloaded
from the NTP Pool Project website, and filtered for IPv4
Stratum-1 servers. The data set from the Lawrence Berkeley
National Laboratory (LBL) mined a an extensive collection of
NTP packet traces, covering the period from August 2014 to
April 2016, for packets from IPv4 Stratum-1 hosts. The raw
Au list includes, we believe, the majority of public servers in
the country, to which we added a server in our laboratory, and
five from the National Measurement Institute (NMI) which are
not publically accessible, but to which we have access. Finally,
the Misc list contains servers which appeared at ntp.org in the
past, some servers suggested by Google, and others used by
CAIDA’s Ark monitoring network absent from other sources.

The resulting raw and active list sizes from each source are
given in Table I. In a small number of cases no useful data
was ultimately obtained with respect to the leap second event.
The third row of the table shows the number of servers for
which we actually have relevant data.

The final list of servers with data, which we call ListLeap,
contains 459 unique servers. The breakdown according to
source is shown in Figure 1. There is a large overlap, of around
45%, between the Org and Pool lists, and given these two
sources, the LBL ‘dragnet’ brought in only an additional 82
servers. For this reason, and because of the popularity of the
NTP Pool service which is global in scope, we speculate that
ListLeap contains a significant percentage of the global public
facing Stratum-1 server population.

For load balancing and other reasons described below, the
aggregate active server list was split for the purposes of the
experiment (see Table II). Listl was allocated to Client 1
and consists mainly of the active Org servers. The remaining
servers form List2, and were handled by Client 2.

‘ [[Org | Pool | LBL | Au [Misc |

raw 325 | 283 589 15 14

active 202 | 268 265 14 11

with data || 197 | 258 257 14 10
TABLE 1

THE NUMBER OF SERVERS OBTAINED PER SOURCE.

Fig. 1. A breakdown by source of the 459 unique servers in ListLeap. Bold
denotes source totals.

Compared to the 459 servers studied here, for the 2015 leap
second [6] reported on a set of 176 servers, consisting mainly
of the Au servers and a subset of 156 Org servers. In that work
only Org servers marked as OpenAccess were used, however
as this information is often out of date or otherwise inaccurate,
in this paper our raw list included the full Org list.

[Client [[#in-list [#with-data] start | end [days]
1 229 223 29 Nov.’16 |2 Feb.’17 | 64
2 250 236 14 Dec.’16 |2 Feb.’17 | 49
TABLE 11

THE EXPERIMENT WAS SPLIT OVER TWO CLIENTS.

C. Experiment and Data Sets

The goal of the experiment was to obtain a high resolution
view of the response of ListLeap servers to the end-December
2016 leap second event. In order to establish a baseline of
normal behavior, and also to allow for relevant events which
may occur well away from the leap itself, a window of one
month to each side was selected. As shown in Table II,
Client2’s half of the experiment was launched late, due to
hardware problems.

Two events resulted in a loss of data. On Dec. 20 the DAG 2
capture file became corrupted. By combining a backup with
the ongoing capture file, the final damage was limited to a
gap of around 3 hours for the servers in List2. On Dec.21
power was accidently cut to the floor housing the testbed and
the entire experiment had to be restarted, resulting in a loss
of around 10 hours of data.

Each client launched independent instances of a request—
response exchange deamon to each of the servers in its list
in parallel, using a per-server customized polling period. Our
default target was to poll every 7 =1 second, a much finer
grained sampling than the 7 = 64s used in [6]. Since this
is much smaller than the usual minimum value of 16s for
ntpd clients, it was possible our traffic would be blocked. We
performed calibration runs in order to determine the smallest
period out of 7={1,4, 16, 64, 256, 1024} seconds accepted by
each active server. For the with-data servers the final result was

336

» 334
£

— 332
330

328

340f

335

330

325

0
t [min]

-40 -20 0 20 40 60 80
t [min]

Fig. 2. Introduction to server behavior and the methodology for jump and TEB determination. Left column: Good server (To] = TEB = first sample past
t = 0). Middle: a NotGood server as the leap is delayed (ToJ not at first stamp past ¢ = 0), but is however Clean (ToJ = TEB). Right: A NotGood server
which is delayed and not clean: post-leap instability resulting in TEB > TolJ. The vertical dashed line marks the leap-second event in the rightmost two plots.

respectively {385,25,39,10,0,0} using the above periods.
This resulted in a total of over 3.68 billion NTP packets
collected over both clients.

For an NTP packet ¢ which completes its round-trip from
the client to server and back, and is successfully matched
on return, we obtain a 4-tuple stamp {T;, Ty, Te s, T} of
timestamps. Here T} ;,T,; are the (incoming and outgoing
respectively) UTC timestamps made by the server and are
extracted from the returning NTP packet, as are the LI bits and
the server Stratum field from the NTP header. The DAG times-
tamps 1;, ;, Ty ; are on the GPS timescale. We convert them in
postprocessing to a continuous ‘pre-leap UTC’ timescale via
turcaooie = tops — 17 (see Section II-A).

We found that only 5 active servers were running NTPv3
(all of which returned data), the remainder used NTPv4.

IV. SERVER CLOCK BEHAVIOUR

In this section we examine the behavior of the server clocks
before and after the leap second. We look not only in the
neighborhood of the leap second, but also over the entire
trace to establish a detailed context. We adopt and extend the
methodology of [6].

A. Methodology

From the timestamp data we estimate, for each server, the
time series of round-trip time R; = T} ; — 1, ;, server change:
C; = (DI — Df)/?, and server error E; = C; + L;. Here
DiT = Ty, — T, and Dj = Ty; — T.; are the estimated
outgoing and incoming delays, and L; = L(T¢ ;), where L(t)
is a step function rising from 0 to 1 at ¢ = t},;. The series C;

(resp. FE;) consists of errors in the server clock with respect
to the DAG timescale (resp. UTC), together with ‘noise’ due
to path routing changes and congestion. We use R;, which is
independent of server timestamps and of the leap second event,
to judge path conditions independently of server behavior.

We illustrate the methodology through the examples appear-
ing in Figure 2. The server shown in the left column is well
behaved, and so the top plot shows the leap behavior in C;
one would expect. More precisely, the detected jump position
(black circle) at ¢ = 0.59s is at the first stamp past ¢ = 0,
and the previous stamp was at t = —0.44, before ¢ = 0 as
required. We call this observed delay the Time to Jump (ToJ).
Here ToJ = 0.59s, being smaller than the sampling period
7 = 1, is consistent with a server that jumped at ¢ = 0. The
jump value is confirmed by inspecting E; (middle plot), whose
variability is steady about ¢ = 0 in a sub-ms band, showing
no evidence of perturbations about the leap. Note that F; is
centred about —1.0 ms rather than zero due to path asymmetry,
not server error. The level shift event in F; at around —6 min
coincides precisely in position with a shift in R;, but is smaller
in magnitude. It is therefore entirely consistent with a path
change which was asymmetric in terms of the outward and
inward one-way delays, and does not imply any issue with
the server.

The overlayed black curves are the sliding median filtered
version of the underlying timeseries. This non-linear filtering
preserves level shift transitions, making it very effective in
this context, as it allows short term congestion effects to be

greatly damped without interfering with jump behavior. We
use a window size of W = 9 stamps.

The middle column exhibits a server where the jump occurs
cleanly, but is 910s late, and is far from the first stamp past
the leap second, since ToJ = 910s is orders of magnitude
larger than the sampling period 7 = 1. Looking more closely,
bursts of variability in E; of magnitude ~ 5ms can be seen,
however these correspond closely with bursts in R; of twice
the magnitude, implying symmetric congestion rather than any
leap-induced server anomalies. Hence the initial ToJ = 910s
value can be taken as the time at which the server timescale
returned to the expected post leap-second behavior (blue circle
in E;). We call this latter delay the Time to Expected Behavior
(TEB), and in this case the two are equal. More generally they
are related as TEB > Tol.

The right column shows a server where not only is the initial
jump late with ToJ = 383.6s, but there are additional errors
beyond it of a few ms in amplitude (visible in E; but hidden
in C;) resulting in TEB = 48.6 min (blue circle). The R; plot
confirms that this oscillation then recovery event in E; does
not result from path effects but is associated with the leap
event at the server, and also that the level shift afterward at
around 69min is not a continuation of leap second effects, but
is consistent with the level shift seen in R; at that exact time.

The Tol value is easy to determine because of the dramatic
size, 1 second, of the target event. To do so we use a simple
downward jump detection method, thresholded on 0.6s, after
first median filtering the signal (recall this will not affect the
jump position, nor its size). We define Tol to be the first such
jump looking forward from ¢ = 0, and if this occurs at the
first sample, we look backward from ¢ = 0 to check if it
began before the actual leap second. Such pre-jumps occured
in 9 cases. This approach is robust, and only fails in cases
where the jump itself is not uniquely defined, or not defined
at all. There were 24 such ToJ-indeterminant cases which
cover a variety of extreme behaviors including periodic jumps,
continuous skew, chaotic jumping of magnitudes ranging from
1 to 108 seconds, and eternal ‘staircases’ where each step is
a full second.

The case of TEB is far less straightforward. One reason is
the very wide range of behavior one finds, there is no simple
rule that can classify all of it. Another important reason is
that many servers have recurrent anomalies which can also
intersect the leap event. Our philosophy was to attempt to
measure server reaction to the leap second itself, rather than
to classify the server’s timing quality more generally. Thus,
if server behavior was apparently unaffected by the leap, then
even if its behavior was continuously poor, its leap second
behavior would still be classified as good. A third reason is
non-local effects. In many cases the immediate neighbourhood
of the leap appears very clean (apparently To] = TEB),
easily passing automated tests over a predefined windows
(even quite wide ones), but when looking much further ahead,
‘aftershocks’ of diverse forms are seen. These can have large
amplitudes and continue for long periods, for example some

i 1 1 1
10° 102 10* 108
LED [s]

|
102

Fig. 3. The CDF of LED, with black dots highlighting servers that are not
Good but Clean. To each NotClean server a red line is drawn connecting it to
its jump value, thus visualizing [ToJ, LED]. Pre-jump servers are highlighted
with blue triangles, and ToJ-indeterminate servers are red in the top right.

servers reverse their leap and return to the UTC2016 timescale
after a few hours, before finally settling down. In these cases
we would set ToJ to the first jump, and TEB to just after the
final aftershock.

Each server was closely examined using the above approach
to determine (ToJ, TEB) values which genuinely reflected a
leap-second related jump and subsequent recovery, rather than
any other cause. More precisely, for each server the TEB was
set to correspond to the earliest time at which the variations in
median filtered E; following a leap fell below the magnitude
of the path noise as revealed by R;, taking into account the
degree of short term variability of each time series. In a
small number of cases, the nature and/or amplitude of the
variability due either to path changes, congestion, or server
errors unrelated to the leap event, make the exact value of TEB
too difficult to determine. Such servers were then classified as
TEB-indeterminant. If a server was ToJ-indeterminant, then is
it automatically TEB-indeterminant.

B. Results
From the measured (ToJ, TEB) we define Leap Error Du-
ration (LED) as LED = max(0, TEB) — min(0, ToJ). LED is
positive even for pre-jump servers, and for others LED = TEB.
The empirical CDF of LED is reported in Figure 3. The
range of values is such that a log scale is required. At the

100

proportion set

A

-30 -25 -20 -15

o

t (day)
Fig. 4. Leap bit dynamics. The proportion of responses in which bits were set to either LI=01 or 11, aggregated over all servers. Results are aggregated into
time bins 1 hour wide in the left plot (covering the entire experiment), and 16s wide in the zoom about the leap second at ¢ = 0 on the right. The dashed
grey line at —17.5 days shows where Client 2’s experiment began.

extremes, for ToJ-indeterminant servers the value is set to the
experimental duration (49 or 64 days), and for the other TEB-
indeterminant servers the time of the last packet is used.

We partition servers which are not ToJ-indeterminate into
3 natural classes, following the examples from Figure 2 from
left to right. We classify a server as Good if both ToJ and TEB
fall on the first stamp past the leap second. This corresponds
to no evidence of incorrect behavior. A total of 305 servers
out of 459 (66.4%) were found to be Good. This definition
respects the limitations of sampling and so is not based on
the size of ToJ. In some cases servers do not respond in the
vicinity of the leap second, so a Good server can sometimes
have a large ToJ (though in an availability sense this is still not
ideal behaviour, even if no erroneous timestamps have actually
been observed). We call a jump Clean if To] = TEB. Clearly
Good servers are Clean.

Our second class is servers which are Clean, but not Good.
There are 48 (10.0%) of these. They are highlighted by black
dots in Figure 3 and only start appearing, not surprising, from
around 1 second. There are a wide variety of jump delays
exhibited in this category, some very large. The final class are
servers which are NotClean, that is To] < TEB. There are 82
(17.9%) of these, highlighted in Figure 3 via the red dot and
line which visualizes the [ToJ, LED] interval for such servers.
It is apparent that there are a variety of different sub cases
for servers with large TEB, where the jump can be delayed
either not at all, slightly, or severely. This class includes the
20 TEB-indeterminant servers that are not ToJ-indeterminant.

Of the 9 pre-jump servers, 4 come from Google servers
which implement a slewing strategy over an interval
[—10,10]hr. Two other servers where found implementing
slewing strategies, but each was considerably delayed.

V. PROTOCOL BEHAVIOR

To begin, we wish to gain a general idea of when servers
are setting the LI bits, and to what value. Figure 4 provides
a view of this aggregated across servers, but preserving the
critical temporal dimension. Since response rates vary, we plot
the proportion of responses which have bits set, rather than the
total number, in each of bin of size 1hr and 16s in the main and

—— LI =01 (leap warning)
— LI'=11 (clock unsync) -

-28 -24 -12 6 0 4

t (hour)

zoomed plot respectively (note that Malone [2] plots rather the
proportion of servers with at least one response set per bin).

In the case of warnings, we see low levels in general except
during the 24hr preceeding the leap second, and shortly after
it. However there is also some sustained activity of low volume
at other unrelated times. In the case of unsync, we see that
they are always relatively rare (note the log scale), but not as
rare as one would expect, and surprisingly only show a small
increase in activity around the leap second. The plot does not
show results for LI=10 because, remarkably and happily, no
warnings of negative leap seconds were found in the entire
data set.

To investigate further we look at the individual server level.
We begin by looking at leap warning responses, because these
are the most closely related to leap second events, even if they
appear far from the (centred) leap second event time ¢ = 0. In
contrast, unsync responses could occur following any server
reboot, and strata can vary for many reasons.

A. Warnings : LI=01

Looking at a scatterplot of warning packets across time for
all servers, a wide variety of behaviors was seen. The following
definitions help to extract useful structure from this picture.
Note that the arrival time of a response packet 7 is taken
to be Tf;, which is after the timestamp is actually made. In
this section we avoid misclassification by ignoring any stamp
whose DAG times straddle an interval boundary.

Good

i) all warnings fall within [—24hr, 0)

ii) all responses between first and last warnings are warnings
iii) first warning arrives before t =—3x1024 = 3072 s.
Ok

i) all warnings fall after ¢ = —24hr

ii), iii) as for Good.

Extreme (Ex)

Warnings outside [—24hr, 0] > 1% of total responses.
None

No warnings at all.

The intent of Good is to capture servers which are both
NTPv4 compliant, and behave as one would expect. Condition

4 Al A

459
148
ok
208
86
- J

Fig. 5. Relationship of the LI warning classes.

(iii) ensures warnings are sent in time, even for clients with
large polling period of 7=1024s suffering a consecutive pair
of lost responses. Because NTPv4 does not disallow warnings
after the leap second, Ok relaxes Good to forgive this. The Ex
class captures servers sending enormously more warnings than
expected. The threshold of 1% was based on inspection of the
CDF of the warning to total response ratio, and corresponds
to some 54,000 warnings over the trace duration.

The relationship between the classes is shown in Figure 5.
We see that 93 of the 208 Ok servers (45%) send warnings
after the leap second (compared to under 13% in [6]), but of
these only |Ok N Ex| = 7 send an extreme number. Overall,
only 208 out of 459 servers (45%) are NTPv4 compliant, and
the Good servers form only 25%. Of the 251 servers that are
NotOk (NotOk = AlI\Ok), 92 send no warnings at all, 11 are
Extreme, and the remainder in general would be Ok, except for
a small number of warning sent prior to ¢t = —24hr. These
latter would presumably not induce any undesirable effects,
and could be included in a more generous definition of a (non-
compliant) Ok.

Of the 5 NTPv3 servers, 1 was in Ex, 3 in None, and 1 was
Ok. None were Good, the required class for compliance.

To gain more detailed insight, we now look into the tempo-
ral behavior within the Ok class. The histogram of Figure 6
shows that most servers begin warnings close to ¢ = —24hr as
expected, but a fair percentage start only later, in particular 4%
at the last hour. This is also visible in the zoom on Figure 4.

0.4 1
03 1
02 1

0.1
0 L L L l P | 1

-24 -20 -15 -10 -5 0
t[hr]

Fig. 6. Histogram of Ok warning start times.

0.8}
w 0.6
o
Q04+t

0.2}

-100 -50

0.95 8
0.9F 8

CDF

0.85 1

0.8

102 10° 10 10° 10°
t[s]

Fig. 7. CDF of Ok warning end times. Top: the body of the distribution

including the minimum. Bottom: a logarithmic view of the full tail.

This effect has been noted by Malone [2] and [6], and reflects
the variety of implementations in service.

Now consider the times at which the Ok servers ceased their
leap warnings. From the CDF tail (lower plot) of Figure 7,
95% had ceased after an hour, but of the remainer, 5 servers
still sent a warning by the end of the trace. Two servers
sent their last warning right at the end of January, which
could be significant in terms of implementation behavior
(the experiment was continued into February to allow such
observations).

B. Stratum

‘We nominally expect the ListLeap servers to be S1 (Stratum
1) whenever they are available. In practice a wide variety of
behaviours are seen. The following classes are illuminating
and provide background for Section V-C.

Constant

Only one stratum value is ever seen.

Bi

Only two stratum values are ever seen.

Unsync

At least one response is SO (i.e. St = 0, stratum unsync).
Extreme (Ex)

Servers whose ratio of stratum changes to total responses,
outside the interval [—24hr, 0], is more than 0.1%.

Figure 8 gives the relationships between these classes and
their populations, subdivides the Constant class according to
stratum, and shows the 11 servers with stratum 16 responses
(these should not occur) as triangles. The Constant servers
are ideal in that they have no stratum unsync (S0) responses,
neither due to background system issues, nor leap second
related. The Ex class have very unstable strata, a background
effect which has nothing to do with the leap second.

C. Unsync : LI=11

The value LI = 11 is set, not in response to leap second
events, but if the clock becomes unsynchronized. We do expect

Al
459

Constant
154

137 (S1) =

Unsync
2

92

Fig. 8. Relationship between the Stratum classes.

synchronization loss about the leap second in some cases, and
this is visible as the modest, thin spike in Figure 4 at £{=0.
Furthermore, the standard suggests that unsynchronised clocks
should result in responses with both LI = 11 and Stratum= 0
(S0) set. To explore this we define the following classes.

None
No reponses are set to LI unsync.

Extreme (Ex)
Servers whose ratio of LI unsync reponses to total responses,
outside the interval [—24hr, 0], is more than 0.001%.

SO0Agree
Servers where each response with LI=11 has Stratum O and
vice versa (and assuming at least one unsync response).

The Ex class threshold is at an abrupt change point in
the empirical CDF of the ratio, and translates to roughly 2
reponses per day. Most servers in the class exhibited extremely
high unsync rates, the worst 10 or so of which are essentially
responsible for the background rate seen in Figure 4.

The diagram of Figure 9 overlays the Stratum Unsync class
over the above LI11 classes. The LI and Stratum indicators of
unsync do correspond closely, in particular perfect agreement
is seen in |[SOAgree| + |None\ Unsync| = 116 + 148 = 264
cases (57.5%). Furthermore, for each server in Unsync\None,
every SO response has LI11 set, however outside SOAgree
there are extra LI11 responses. Perfect disagreement is found
in the 6 servers in None N Unsync (SO with no matching LI11),

(Al)

459
40

- J

Fig. 9. Relationship between the LI11 classes and stratum Unsync.

Looo0000000 o0 Boo 0 00609000000 |0
160 ggoooooooooo $33338830080080093%
° 880000 D80888800900000ODDODDOBDOODODD
ooo9888§88838882888"888@888§888300o§ooo 3
0003883 Sggb BTBBIYBITBY ¥BY00000080008F
140 - inRQRRQRRQRRQRRQRnQRRRRRQDQRRQRRQRRQR%
o
i
888880488°0°00°3°8338388388388¢
8800 5000000000
120 - 8 §§3§3<>o<>ooo<>8<>30 _
8
8 o 0 00 o 0o
08 %
2500
100 8 -
IS
H
T N
() 8
2 80 2880 -
g §
» b
S
8
60 [: R —
8
§ 3
0588
L 2889]
40 838,
8
888
K1t
20 - $o _
8
L
Ok I g o) ° ° °
-20 -10 O 1.0) 20 30 40
position relative to jump [s]
Fig. 10. Jump-centred scatterplot showing unsync responses. Circle: both

LI11 and SO set; Diamond: LI11 only; Triangle: SO only. Clock classes of
(Good, Clean-but-NotGood, NotClean) shown as (blue, black, red).

and the 57 = 40+ 17 servers in the white area and Ex\Unsync
(LI11 with no SO).

We now focus on synchronization loss related to the leap
second by restricting to servers with unsync responses (LI11
and/or SO) in a window of [—1hr, 1hr] about ¢ = 0. There
are 163 such, which cut across the SOAgree, Ex, and ‘perfect
disagree’ classes. Figure 10 provides a zoomed scatterplot of
such servers showing each unsync response. Since we have
observed that the LI11/S0 behavior follows the observed jump
point rather than ¢ = 0, in this plot the jump points of all
servers have been aligned. The servers are ordered according
to the (hidden) ToJ value, with the earliest jump at the bottom.
The Clock-Good servers (blue) mainly show a small number
of LI11 unsync reponses only (no SO, diamonds), both before
and after the jump, and do not have members in Ex. The
Clean but NotGood servers (black) and the NotClean servers
(red) on the other hand, have many more unsync responses,
mainly occurring after the jump only (except for servers in
Ex), and they are a mixture of SOAgree (circles) and LI11-
only behavior. When looking over the full window and beyond,

Protocol Clock Overall

Server Set # OKLIF (1}00 d] NoneITISIO] Agree % Csotrrlcslzlsni) Good |CleanNG | NotClean Ideal Adequate
ListLeap 459 || 208 | 115 | 154 264 137 305 48 82 36 (7.8)% | 171 (37.3)%
Pool 258 123 | 76 79 145 61 168 31 49 19 (7.4)% 97 (37.6)%

Org 197 83 33 60 106 54 128 26 39 11 (5.6)% 69 (35.0)%
Au\\Lab 13 10 3 7 9 6 13 0 0 2 (15.4)% 10 (76.9)%
NL 66 37 17 25 34 35 45 10 9 10 (15.2)% | 32 (48.5)%
ListLeap\NL | 393 171 98 129 230 102 260 38 73 26 (6.6)% 139 (35.4)%
USNO (US) 15 8 5 8 10 10 9 3 3 4 (26.7)% 6 (40.0)%
NIST (US) 13 10 3 2 4 10 12 0 1 0 10 (76.9)%
VNIIFTRI (RU)| 7 2 2 2 3 2 2 0 4 2 (28.6)% 2 (28.6)%

NMI (AU) 5 5 2 5 5 4 5 0 0 2 (40.0)% 5 (100)%
NICT (JP) 4 2 1 2 4 2 2 2 0 1 (25.00% 1 (25.00%

SP (SE) 4 0 0 0 0 4 0 4 0 0 0
TABLE III

PERFORMANCE BREAKDOWN PER SERVER SOURCE. CLEANNG MEANS "CLEAN BUT NOT GOOD”.

unsync responses continue for longer in the NotClean case, as
expected. For each of the NotClean servers the TEB values fall
outside the range of the chosen zoom, however we observed
that in all cases unsync responses ceased before the TEB value,
and well before in all but a few cases.

VI. OVERALL RESULTS

We conclude by combining the results above into an overall
evaluation, including a breakdown over server subsets of
importance, including the Org and Pool sources, and the 66
National Laboratory (NL) servers contained in ListLeap.

The following definitions provide measures of desired be-
havior integrating across all protocol and clock aspects of
direct relevance to leap second performance. They refine and
extend the ‘Perfect’ definition of [6].

Ideal
Clock-Good & LIO1-Good & LI11-None & St-Constant(S1).

Adequate
Clock-Good & LI01-Ok \ St-Constant(not S1).

Table III displays the results. Overall, only 37.3% of servers
are Adequate compared to the 61% reported in [6] for the
analogous ‘Perfect’ category. As expected, NL servers, at
48.5%, do better than the non-NL servers at 35.4%, but the
gap is far less than one might hope. From the clock point
of view alone only 45 NL servers (68.2%) are classed as
Good, not far above the 56.6% of non-NL servers. The Pool
servers outperform Org servers in both the Adequate and Ideal
categories, but the difference is marginal. In the lower part of
the table the six most populous NLs are given. Here the NMI
achieves a perfect Adequate score and the best Ideal rating. In
constrast NIST is the 2nd most Adequate, but the least Ideal.

VII. CONCLUSION

We have reported on the behavior of a substantial number
of public facing Stratum-1 servers as they passed through the
end-December 2016 leap second event and beyond. Using a
testbed with authoritative timing, and high resolution probing,
we were able to examine and judge the clock performance
of these servers as well as their leap second related protocol
performance, in a unified way.

Our main finding is that in each of the leap second related
criteria: Clock behavior, LI warnings, and unsync state in
the vicinity of the clock’s jump, large minorities of servers
are performing inadequately, or worse. A complex variety of
erroneous behaviors are displaying across the dimensions of
clock jump position and quality, timely leap warnings (only
45.3% NTPv4 compliant), stable synchronization state, and
stratum stability. Overall, only 37.3% of servers have Adequate
performance, and only 7.8% could be classed as Ideal over
the entire experiment. Even among National Laboratories the
performance is not very much better. Moreover, a significant
minority of servers have extremely poor behaviour, including
106 servers (23.0%) which either have no clear jump at all
(ToJ-indeterminate), else aftershock behavior which extends
well beyond the initial jump (Unclean). From the point of
view of our methodology their behavior is usually flagrant
and easy to detect, however most clients would be unable to
distinguish timing problems arising from most such servers,
from other effects such as variable path conditions. The case
for abolishing leap seconds is supported by these findings.

ACKNOWLEDGMENT

Partially supported by Australian Research Council’s Link-
age Projects funding scheme #DP170100451. Many thanks to
Vern Paxson for his work in providing the LBL dataset, and
Ask Hansen at The NTP Pool Project for his help in recovering
the list of NTP Pool servers. Thanks also to Greg Dowd and
Michael Wouters for their insights.

REFERENCES

[1] J. D. Guyton and M. FE. Schwartz. Experiences with a survey tool for
discovering network time protocol servers. In Proc. USENIX Summer
Conference, pages 257-265, 1994.

D. Malone. The Leap Second Behaviour of NTP Servers. In Proceedings
of the Traffic Monitoring and Analysis workshop. IFIP Digital Library,
April 7-8 2016. http://tma.ifip.org/2016/#program.

D. L. Mills. On the accuracy and stablility of clocks synchronized
by the network time protocol in the internet system. In Computer
Communication Review, number 1, pages 65-75, 1989.

N. Minar. A Survey of the NTP Network, 1999.
http://xenia.media.mit.edu/ nelson/research/ntp-survey99/ntp-survey99-
minar.ps.

NIST. ftp://time.nist.gov/pub/leap-seconds.3629404800.

D. Veitch and K. Vijayalayan. Network Timing and the 2015 Leap
Second. In Proc. of PAM 2016, Heraklion, Crete, Greece, March 31
- April 1 2016.

[2]

(3]

(4]

[5]
(6]

