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IN2LAMA: INertial Lidar Localisation And MApping

Cedric Le Gentil, Teresa Vidal-Calleja and Shoudong Huang

Abstract— In this paper, we introduce a probabilistic
framework for INertial Lidar Localisation And MApping
(IN2LAMA). Most of today’s lidars are based on spinning
mechanisms that do not capture snapshots of the environment.
As a result, movement of the sensor can occur while scanning.
Without a good estimation of this motion, the resulting point
clouds might be distorted. In the lidar mapping literature, a
constant velocity motion model is commonly assumed. This is
an approximation that does not necessarily always hold. The
key idea of the proposed framework is to exploit preintegrated
measurements over upsampled inertial data to handle motion
distortion without the need for any explicit motion-model. It
tightly integrates inertial and lidar data in a batch on-manifold
optimisation formulation. Using temporally precise upsampled
preintegrated measurement allows frame-to-frame planar and
edge features association. Moreover, features are re-computed
when the estimate of the state changes, consolidating front-end
and back-end interaction. We validate the effectiveness of the
approach through simulated and real data.

I. INTRODUCTION

The past few years saw the emergence of a new kind

of business: mapping as a service. Companies like Kaarta1

or GeoSLAM2 use multi-sensor localisation and mapping

algorithms to map various environments and provide their

customers with detailed 3D models of the areas of interest.

One can imagine the use of such services for applications

in architecture, archaeology, structure surveillance, etc. This

work presents INertial Lidar Localisation And MApping

(IN2LAMA), a probabilistic framework for localisation and

mapping based on a 3D-lidar range scanner and a 6-DoF-

Inertial Measurement Unit (IMU), which aims at contributing

to the automation of such services.

Unlike outdoor scenarios, where a GPS can provide

substantial spatial information, an accurate position is not

readily available for indoor localisation systems, in particular

without the help of any additional infrastructure. In various

fields, lidars proved to be the most appropriate tool for esti-

mating the real world geometry. Despite delivering reliable

range measurements, most of today’s lidars have spinning

mechanisms. If the motion is not properly handled, any

movement of the sensor during a scan collection will intro-

duce motion-distortion. For example, when considering scans

as snapshots, any movement will distort the resulting point

clouds. In other words, it corresponds to the assumption of

no motion during sweeps. This problem has been addressed
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Fig. 1: Estimated map and trajectory in a real office environment
versus the actual picture of the place. The map is colourised
according to the post-processed normal vectors of the point cloud.

in the literature. For instance in [1], the authors proposed a

2D registration of 2D laser scans assuming constant velocity

during the sweep. Using such a motion model, the scope

of the standard Iterative Closest Point (ICP) [2] is extended

to estimate both the pose and the velocity of the system.

This makes the system able to correct the motion distortion

partially.

A constant velocity model is a common approach in the

lidar mapping literature as it can be seen in [3] and [4].

On the other hand, to work around the motion distortion

issue, our method does not consider the lidar measurements

as snapshots of the environment, but as extremely high

frequency individual 3D-point measurements.

Moreover, the method in [4] proposes a continuous state

representation based on control-points and interpolates lin-

early in between. More than handling motion distortion

in this kind of rolling-shutter sensors, continuous state

estimation can be used to fuse data from multiple non-

synchronised sensors. In [5], the trajectory is modelled

as a linear combination of temporal basis functions and

allows fusion of visual and inertial measurements. While

these methods provide greater representability compared to

traditional discrete models, their performances rely on the

veracity of the models assumed.

Another approach that relies on continuous state estima-

tion is presented in [6]. In this method, the state can be

queried at any point in time. The key idea behind this

approach is the use of a computationally efficient Gaussian

Process (GP) regression over a discrete maximum a posteriori

estimation. One could think that a solution for the IMU-lidar

pair could rely on estimating a continuous trajectory from the

slowest sensor (IMU) and querying the pose at the frequency

of the fastest one (lidar). Unfortunately for us, an accurate

position cannot be recovered by using only IMU readings.

Inertial sensors have been extensively used in combination

with visual sensors for localisation. Originally proposed



for visual-inertial fusion in [7] and [8], the preintegrated

measurements allow the pre-processing of IMU readings to

be independent from the initial pose and velocity. The aim

is to prevent repetitive integration of inertial readings every

time the linearisation point changes. In a calibration context,

our earlier work [9] extended this concept to handle non-

synchronised sensor readings through the continuous repre-

sentation of inertial measurements. Using the preintegration

over upsampled IMU readings provides inertial information

for each of the lidar 3D-points during a sweep. We named

these new measurements Upsampled Preintegrated Measure-

ments (UPMs). The present paper reuses this paradigm in a

localisation and mapping context to handle motion distortion

by tightly coupling inertial and laser data, thus, without the

need for an explicit motion-model.

Similar to visual-inertial systems, lidar-inertial systems

require a front-end that handles the exteroceptive sensor data

for mapping and data association. For instance, the maps

generated in [10] and [11] make use of surfels to represent

the environment. Surfels provide rich information of surfaces

given dense enough point clouds. The method proposed in

this work provides frame-to-frame feature extraction and

matching techniques for sparse data collected with lidars

such as the Velodyne VLP-163. Given the low vertical

resolution of such devices, our front-end was designed using

a channel-by-channel feature extraction in a similar fashion

to the one developed in [3].

Other front-end methods, such as the ones in [3] and

[12], aim at undistorting the incoming point clouds before

registering them into the map. Prior knowledge of the actual

motion is used to perform the undistortion. Although nec-

essary for real-time operations, such assumptions carry the

risk of propagating the errors of inaccurate initial conditions.

The proposed method does not address the problem of real-

time operation. Instead, our framework considers the full

trajectory in a batch-optimisation, reducing the sensitivity

to initial condition errors.

The main contribution of this work is a probabilistic

formulation for lidar-inertial localisation and mapping. It

tightly integrates IMU and lidar data in a batch on-manifold

optimisation formulation. It is based on the IMU’s UPMs [9]

to characterise motion in lidar sweeps without the explicit

need for a motion model. Using temporally precise UPMs

allows frame-to-frame feature matching in the presence of

motion distortion through the manipulation of planar and

edge features. Moreover, there is a strong back and forth

interaction between the front-end and back-end; features are

re-computed when required based on the current solution

during the optimisation.

The structure of this paper is as follows. Section II gives an

overview of the proposed localisation and mapping method.

Section III provides the technical details of the back-end.

Section IV explains the front-end part, considering both the

feature extraction and the data association. The performance

of the proposed method is presented in Section V through

3https://velodynelidar.com/vlp-16.html
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Fig. 2: Factor graph representation of an IN2LAMA framework

example. Im = {Rm
W , vm

W , pm
W , b̂m

f , b̂m
ω , δ̂t

m
} represents the

IMU pose, velocity, biases and time-shift correction associated to
the lidar frame Xm at τm. The factor l2,4 represents a loop closure.

simulated and real data experiments. Finally, Section VI

presents the conclusion and future work.

II. IN2LAMA OVERVIEW

Let us consider a system with a rigidly mounted 3D lidar

and a 6-DoF IMU, where Rc and pc respectively represent

the relative rotation and translation from the IMU frame to

the lidar frame. The system moves in the environment and

the lidar provides 3D-points xi at time ti, grouped into M
frames. We denote Xm the set of points contained in the mth

frame4. Fm is a subset of Xm that represents lidar feature-

points. A feature is a point belonging to a distinctive type of

surface (e.g. plane or edge). The set of feature associations

A contains tuples of 3 or 4 lidar feature-points depending

on whether they are edges or planes.

The inertial data include a 3-axis accelerometer and a 3-

axis gyroscope, that provide respectively the raw readings fq
and ωq at time tq (q = 1, . . . , Q). To associate individual

lidar points with IMU readings, GP regression is used to

infer inertial readings on each IMU DoF independently at any

given time t: continuous f̂(t) and ω̂(t) readings are estimated

using GPs.

The proposed method aims to estimate the IMU orientation

Rm
W , position pm

W and velocity vm
W for each lidar frame,

as well as the IMU biases (bm
f , bm

ω ) and time-shifts δmt
between the two sensors. The subscript W represents the

earth-fixed world reference frame FW . The superscript m

denotes the mth frame from the lidar and τm corresponds to

the timestamp at the beginning of the mth lidar frame.

In the following, S indicates the state to be estimated: S =
(R0

W , · · · ,RM
W , p1

W , · · · ,pM
W , v0

W , · · · ,vM
W , b̂0

f , · · · , b̂M
f ,

b̂0
ω, · · · , b̂M

ω , δ̂0t , · · · , δ̂Mt ) with b̂m
f , b̂m

ω , and δ̂mt the biases

and time-shift corrections associated to the mth lidar frame

(more details are given in Section III). Note that p0
W is

not part of the state as one IMU position needs to be set

arbitrarily to define the world frame.

The localisation and mapping problem is formulated as a

Maximum Likelihood Estimation (MLE):

S∗ = argmin
S

− log(p(S|Z)) = argmin
S

C(S), (1)

with Z representing the available measurements and C the

optimisation cost function. Represented as the factor graph

in Fig. 2, and under the assumption of zero-mean Gaussian

noise, it can be solved by minimising geometric distances da

4A frame does not necessarily correspond to a 360-degree scan.



associated with lidar features, biases factors, and time-shift

factors. That is

C(S) =
∑

a∈A
‖da‖2Σda

+
∑M

m=0
‖rmt ‖2Σrm

t

+

∑M

m=1

(

‖rmf ‖2Σ
r
m
f

+‖rmω ‖2Σ
r
m
ω

)

, (2)

with rmf , rmω , and rmt corresponding respectively to the mth

accelerometer biases factor, gyroscope biases factor, and

time-shift factor. Note that Σ• is the covariance matrix of

the variable •.

A. Upsampled Preintegrated Measurements

The proposed method relies on the use of UPMs, which

have been introduced in [9] based on principles originally

presented in [7] and [8]. UPMs are used to constrain the

motion in lidar scans. The original preintegrated measure-

ments are

∆pi
m =

∑i−1

k=κ

(

∆vk
m∆tk +

∆Rk
m

2
(f(tk - δmt ) -bm

f )∆tk
2
)

∆vi
m =

∑i−1

k=κ
∆Rk

m(f(tk - δmt ) -bm
f )∆tk

∆Ri
m =

∏i−1

k=κ
Exp

(

(ω(tk - δmt ) -bm
ω )∆tk

)

, (3)

with {κ ∈ N|tκ = τm}. Then

pi
W = pm

W +∆ςimvm
W +

1

2
∆ςim

2
g +Rm

W∆pi
m (4)

vi
W = vm

W +∆ςimg +Rm
W∆vi

m (5)

Ri
W = Rm

W∆Ri
m, (6)

where:

• g is the known gravity vector in FW .

• ∆tk = tk+1 − tk and ∆ςim = ti − τm.

• Exp(.) is the exponential mapping from axis-angle

representations (so(3)) to rotation matrices (SO(3))5.

These measurements become UPMs when they are computed

over interpolated IMU readings. The interpolation allows the

computation of preintegrated measurements for any given

time and therefore tackling the non-synchronisation of the

sensor readings. The interpolation method employed in this

paper is the GP regression [13] with constant mean functions

and isometric Matern covariance functions for each indepen-

dent IMU DoF.

III. IN2LAMA BACK-END

The cost function associated with the MLE consists of

three terms or factor types; lidar, IMU biases, and inter-

sensor time-shift.

A. Lidar factor

Lidar factors correspond to distance residuals computed

between lidar feature-points and their corresponding feature-

points from other lidar frames. As we will explain in the

front-end section, the set of feature associations A contains

tuples of 3 (point-to-edge constraints) or 4 feature-points

(point-to-plane constraints).

5The expressions for Exp mapping transformation can be found in [8].
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lidar frames at time t•. The continuous line arrows represent the
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For the lidar factors, point-to-line or point-to-plane dis-

tances are used. The matched points found in A are projected

in the world frame FW using the calibration parameters,

UPMs for each of the points and the current estimates of

the IMU poses and velocities (Fig. 3). Therefore a point

xi ∈ Xm is projected into FW using (4) and (6)

xi
W = Ri

W (Rcxi + pc) + pi
W (7)

Let us denote an edge association a3 ∈ A. a3 =
{xi,xj ,xk} with xi ∈ Fm, xj ∈ Fn, xk ∈ Fo and

n, o 6= m. These points are projected in FW via (7) to get

xi
W , x

j
W and xk

W . The point-to-line distance

da3
=

‖
(

xi
W − x

j
W

)

×
(

xi
W − xk

W

)

‖2
‖
(

x
j
W − xk

W

)

‖2
(8)

is used as an edge feature residual.

Let us denote a plane association a4 ∈ A. a4 =
{xi,xj ,xk,xl} with xi ∈ Fm, xj ∈ Fn, xk ∈ Fo, xl ∈ Fp

and n, o, p 6= m. These points are projected in FW via (7)

to get xi
W , x

j
W , xk

W and xl
W . The point-to-plane distance

da4
=

(

xi
W − x

j
W

)⊤
(

(

x
j
W − xk

W

)

×
(

x
j
W − xl

W

)

)

‖
(

x
j
W − xk

W

)

×
(

x
j
W − xl

W

)

‖2
(9)

is used as a plane feature residual. As in [9], the variance

of lidar residuals depends on the state. Therefore, the noise

covariance propagation through the Jacobians needs to be

executed regularly during the optimisation.

B. IMU biases and inter-sensor time-shift

The accelerometer and gyroscope biases, bf and bω

respectively, are modelled by Brownian motion as in [14].

The computation of the UPMs also takes into account a

time-shift to compensate potential inter-sensor timestamping

inaccuracies. Unfortunately, the biases and time-shift are not

perfectly known at the time of preintegration. Hence we

adopted the first-order expansion presented in [8] to include



a bias and time-shift correction into our method:

∆Ri
m(bω,δt)

≈∆Ri
m(b̄m

ω ,δ̄mt )Exp
(∂∆Ri

m

∂bω
b̂m
ω +

∂∆Ri
m

∂δt
δ̂mt

)

∆vi
m(bf ,bω,δt)

≈∆vi
m(b̄m

f
,b̄m

ω ,δ̄mt ) +
∂∆vi

m

∂bf
b̂m
f

+
∂∆vi

m

∂bω
b̂m
ω +

∂∆vi
m

∂δt
δ̂mt

∆pi
m(bf ,bω,δt)

≈∆pi
m(b̄m

f
,b̄m

ω ,δ̄mt ) +
∂∆pi

m

∂bf
b̂m
f

+
∂∆pi

m

∂bω
b̂m
ω +

∂∆pi
m

∂δt
δ̂mt ,

(10)

with bm
f = b̄m

f + b̂m
f , bm

ω = b̄m
ω + b̂m

ω , and δmt = δ̄mt + δ̂mt .

Note that •̄ denotes the prior knowledge of the value and •̂
represents the correction. The residuals

rmf = b̄m
f + b̂m

f − b̄m−1
f − b̂m−1

f (11)

rmω = b̄m
ω + b̂m

ω − b̄m−1
ω − b̂m−1

ω (12)

are used in the biases factors to impose the Brownian motion

constraint. We consider Gaussian noise around the prior time-

shift knowledge. Therefore the residual rmt = δ̂mt constitutes

the time-shift factors.

IV. IN2LAMA FRONT-END

The front-end of the proposed method aims at populating a

set A of lidar feature-point associations to allow lidar frame

matching.

A. Feature extraction

The features used here are of a similar nature to the

ones developed in [3]: planar and edge points. The features

proposed by the authors in [3] have been designed for fast

computation, but they suffer from a lack of score consistency.

For example, in [3], a point belonging to a planar surface

perpendicular to the laser viewpoint will have a lower

smoothness score than the same planar surface observed from

a different viewpoint angle. The planar surfaces, however,

should have the same score to encourage good feature

association from frame-to-frame. As the proposed method

does not aim for real-time computation, we propose a feature

extraction technique based on linear regression. We also

introduce inward and outward edges as opposed to the unique

edge feature in [3].

The vertical resolution of most of today’s lidars have

steered the design of our feature extraction algorithm towards

a channel-by-channel method in a similar way than [3].

Given an N-channel lidar, each lidar frame Xm is split into

N “lines”, Nm
l (l = 1, · · · , N ), according to the 3D-points’

elevation. All the points are given a curvature score. The

curvature computation aims at fitting lines to two subsets of

points adjacent to the point under examination xi ∈ Nm
l ,

and then to retrieve the cosine of the angle between these

two lines. The subsets, Li and Ri contain the D previous

and following measurements in Nm
l .

First, the points need to be reprojected into the lidar frame

at τm (Fm
L ) to remove motion distortion according to the best

current estimate of the state S
xi
Lm

= R⊤
c

(

Rm
W

⊤
(

Ri
W (Rcxi + pc) + pi

W − pm
W

)

− pc

)

.

(13)
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Fig. 4: Geometric feature extraction based on linear regression. The
points around a given azimuth are assumed to belong to a local
plane. On that local plane, linear regression is performed consid-
ering points in Nm

l on both sides of the point under examination
xi ∈ Nm

l . The curvature score is equal to cos(β) with β the angle
between the two fitted lines.

The curvature scores are computed under the approx-

imation that around a certain azimuth the consecutively

measured 3D-points belong to the same plane. As shown

in Fig. 4, and given αi the new azimuth of xi
Lm

; the points

in Li and Ri are projected on a planar space around αi

xk
Pi

=|xi+k
Lm

|sin(αi+k − αi), (14)

ykPi
=|xi+k

Lm
|cos(αi+k − αi), (15)

with k = −D, · · · , D.

XLi
=







1 x−D
Pi

...
...

1 x0
Pi






,XRi

=







1 x0
Pi

...
...

1 xD
Pi






, (16)

YLi
=

[

y−D
Pi

· · · y0Pi

]⊤
and YRi

=
[

y0Pi
· · · yDPi

]⊤
,

group the projected points coordinates according to the two

adjacent subsets Li and Ri. In the rest of this section, •
represents either Li or Ri. A line of slope s• and y-intercept

q• can be fitted to the subset • with

[

q• s•
]⊤

=
(

X⊤
• X•

)−1
X⊤

• Y•, (17)

and an associated unit direction vector can be obtained as

v• =
[

1√
1+s2

•

s•√
1+s2

•

]⊤
. (18)

The score ci = v⊤
Li
vLi

represents the cosine of the angle

between the two fitted lines. As a consequence, ci is close

to 1 when the underlying surface is planar and decreases

with the sharpness of edges. The error values

ei• =
1

D + 1

∑

k|ki∈•

∣

∣

∣
ykPi

− q• − s•x
k
Pi

∣

∣

∣
(19)

are used to reject points or to detect border of occlusions.

As in [3], surfaces close to being parallel to the laser

beams are rejected as features. We also use a system of bins

and a maximum number of features per bin on each laser line

to ensure the features are spread over the whole scan. The

points with the highest scores in Nm
l are classified as planar

points and the lowest scores as edges. The edge orientation,

inward (pointing toward the lidar) or outward (pointing away

from the lidar), can be defined by looking at the value of the

regressed line parameters. All the planar features in Nm
l with

l = 1, · · · , N , are grouped into a set Pm, the inward edges

in Em
I and outward edges in Em

O .



A B C

Fig. 5: Different data association strategies between a frame Xm

(dashed line) and its previous frame Xm−1 (plain line). The top
row represents the data association. The bottom is the results after
minimising point-to-plane distances. A uses 360◦ frames with back-
association. B uses frames greater than 360◦, with back-association.
C extends B with back-and-forth-association. C ensure consistency
of the lidar scans whereas A and B do not.

B. Data association

Scan registration requires matching features from frame-

to-frame. For a pair of lidar frames i and k, after reprojecting

both frames into FW and for each point of Pi, the method

looks for the 3 nearest neighbours in Pk. For points in E i
I and

E i
O, only the 2 nearest neighbours are searched respectively

in Ek
I and Ek

O. The Kd-tree implementation in PCL [15]

is used for the nearest neighbour searches. Thresholds are

applied on matching distances to validate a data association

and therefore remove some outliers. The collinearity of the

3 closest feature-points of a plane feature is checked for the

same reasons. All the valid associations are included in A as

tuples of 3 or 4 depending on the type of feature matched.

We consider scans greater than 360◦ (520◦ in our imple-

mentation) and do the data association both from i to k and

from k to i, to ensure consistency of the lidar scans. Fig. 5

shows the motivation for such a choice through a simplified

2D example.

C. Back-end/front-end integration

The computation of the feature scores, therefore the data

association, depends on the knowledge of the IMU poses

and velocities to undistort the point clouds. These poses

and velocities are part of S . As a consequence, if the state

changes, the data association might not be relevant any more.

Hence, the proposed method relies on a strong integration

between front-end and back-end in order to re-compute the

lidar features and data association as the state changes over

time during the batch optimisation.

V. EXPERIMENTS AND RESULTS

Experiments on simulated and real data have been con-

ducted to demonstrate the performances of the proposed

method. The full framework has been implemented in C++

using Ceres [16] for the on-manifold optimisation.

A. Simulation

A sensing system (IMU and lidar with given extrinsic

calibration) moving according to predefined trajectories in a

virtual room (constituted of 7 planes) has been simulated. All

the simulated trajectories have a duration of 14.5s and have

been generated from sine functions with random frequencies

and amplitudes.

The simulated sensing system has been modelled to match

the characteristics of the system used in our experimental

results (Section V-B):

Fig. 6: Estimated map and trajectory in the simulated environment.
Left: Estimated map of the 7-sided room with a corner cropped out
to show the trajectory inside. Centre: Estimated trajectory (position
and rotation). Right: Estimated position in black against ground
truth in pink. The average distance travelled in each simulation is
27.32m.

• 16-channel (±15◦) lidar rotating at 10Hz with a density

of 300k point per second and noise of ±3cm.

• 3-axis accelerometer and 3-axis gyroscope sampling at

100Hz with noise of 0.02m/s2 and 0.097◦/s.

The extrinsic calibration between sensors is randomly gen-

erated for each run. The results are evaluated over a 10-run

Monte Carlo simulation.

For this evaluation, the framework uses feature-matching

with 4 previous frames. In other words, each Xm is matched

individually with Xm−i with i = 1, · · · , 4. Although there

are multiple links in between the factor graph nodes, we call

this set-up “odometry”, as there are no explicit loop closures.

Among all the trials, the average velocity is 1.88m/s and

the maximum velocity is 4.96m/s. The Monte Carlo runs

show an average final position error of 0.32m ± 0.31 and

an average final orientation error of 0.39◦ ± 0.28. Divided

by the distance travelled in each of the simulations, the

relative position error is 1.33% ± 1.2. Fig. 6 shows one of

the simulation trials. These results show the robustness of

our estimation method in the presence of fairly aggressive

motion, both regarding linear and angular velocities. Through

this set-up, we see a small drift as in general odometry

systems. Although it is a simulated setting, data association

is not given. Therefore the front-end might contain outliers.

Planar features close to edges can be misassociated with

the planar points from the neighbouring plane. This set-up

shows the need for a more robust outlier rejection mechanism

but demonstrates the rightfulness of our back-end and the

observability of the state.

B. Real data

The hardware used for the real data experiments comprises

a Velodyne VLP-16 and a low-cost Xsens MTi3 IMU. The

snark driver6 and the ROS Xsens driver7 were used to collect

the lidar and IMU data respectively. Lidar points and IMU

measurements were logged with their associated timestamps.

Note that there is no explicit mechanism for synchronisation

between lidar and IMU data.

1) Odometry: This set-up aims to benchmark our method

against a constant velocity feature matching framework. The

method in [3] was chosen due to its top performance for

lidar systems in the odometry benchmark of Kitti dataset

[17]. Multiple environments are used for this evaluation:

6https://github.com/acfr/snark
7http://wiki.ros.org/xsens driver



Mean point-to-plane distance (mm)
[3] IN2LAMA

a) 20.7 13.0

b) 69.8 12.3

TABLE I: Quantitative comparison on datasets a) and b). The errors
displayed correspond to the mean point-to-plane distances between
the floor points and the floor plane.

a) Lab environment with smooth trajectory

b) Lab environment with “dynamic” trajectory

c) Staircase in between two floors

All the datasets were collected walking at around 1.2m/s.

In the first dataset (Fig. 7a)), both [3] and our method

perform relatively well producing similar results. This dataset

was collected in such a way that the constant velocity

assumption made in [3] is fairly respected. In the second

dataset, as the movement alternates between acceleration

and deceleration, the constant velocity assumption is not

respected. Fig. 7b) shows that our method can handle such

movement where the map generated by [3] becomes blurry.

The staircase dataset is very challenging for both methods

as per the nature of the sensor used. At a point in the

recording, the information contained in the lidar scans is very

little. It creates a lack of geometrical constraints in between

two consecutive scans. Therefore, as shown in Fig. 7c), both

methods drift.

From the map generated on datasets a) and b), we man-

ually segmented the floor points. From these floor point

clouds, we ran a RANSAC-based plane fitting algorithm

[18]. The values shown in Table I correspond to the mean

point-to-plane distance between each floor points and the

fitted plane model.

The results presented here can be explained by two main

factors. On one hand, [3] is designed for real-time operations

and uses a constant velocity model, on the other hand,

our method does not formulate any assumptions about the

sensors’ motion and both the trajectory and map are simul-

taneously estimated through a unique batch optimisation.

These results show the advantage provided by the UPMs

and a batch optimisation to build accurate maps. In fairness,

however, our framework uses the extra information given by

the IMU, as opposed to only the information provided by

the constant velocity assumption in [3].

2) Loop-closure: The aim of this experiment is to show

the ability of our framework to be used in a full simultaneous

localisation and mapping configuration and not only in

an odometry-like one. The sensing system was hand-held

while walking around an office environment with an average

velocity of 1.3m/s and peaks at 1.7m/s. The trajectory

followed a loop in which the starting and ending points were

approximately at the same location. We manually set a loop

closure between the last and the first pose estimated. Fig.

8 shows the effectiveness of the loop closure by removing

“double-walls” from the map, highlighting the importance of

loop closure for consistent map building.

[3] IN2LAMA

a)

b)

c)

Fig. 7: Comparison between [3] and our method IN2LAMA on
three different datasets. Once the maps are created, normals are
computed using the 100 nearest points. These normals are used to
colourise the points for the sake of visibility.

Fig. 8: Loop-closure demonstration. The image on the left rep-
resents the full map with a loop closure. Images on the right
correspond to the area designated with the red rectangle in the full
map after (top) and before (bottom) loop closure. The loop closure
removes the “double-wall”.

VI. CONCLUSION

This paper presents a novel probabilistic framework for

INertial Lidar Localisation And MApping. It uses preintegra-

tion over upsampled IMU readings to characterise the motion

distortion naturally present in spinning lidar scans. The off-

line estimation of accurate maps is done via a full batch

on-manifold optimisation without the need for an explicit

motion-model. The effectiveness of the proposed method is

demonstrated using simulated and real data.

Future work includes the improvement of the front-end

with more robust data associations and automatic loop de-

tections. We are also interested in including frame-to-map

constraints. Therefore we will consider the use of surfels or

other map representations to be incorporated into IN2LAMA

framework.
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