Pandoraea fibrosis sp. nov., a novel Pandoraea species isolated from clinical respiratory samples

Wah Seng See-Too, ${ }^{1}$ Mark Ambrose, ${ }^{2}$ Roslyn Malley, ${ }^{2,3}$ Robson Ee, ${ }^{1}$ Emily Mulcahy, ${ }^{2,3}$ Emily Manche, ${ }^{2}$ James Lazenby, ${ }^{4}$ Belinda McEwan, ${ }^{5}$ Joanne Pagnon, ${ }^{2}$ Jian Woon Chen, ${ }^{1}$ Kok Gan Chan, ${ }^{1,6}$ Lynne Turnbull, ${ }^{4}$ Cynthia B. Whitchurch ${ }^{4}$ and Louise F. Roddam ${ }^{2, *}$

Abstract

Pandoraea species have been isolated from diverse environmental samples and are emerging important respiratory pathogens, particularly in people with cystic fibrosis (CF). In the present study, two bacterial isolates initially recovered from consecutive sputum samples collected from a CF patient and identified as Pandoraea pnomenusa underwent a polyphasic taxonomic analysis. The isolates were found to be Gram-negative, facultative anaerobic motile bacilli and subsequently designated as strains 6399^{\top} ($=$ LMG29626 $=$ DSM103228 ${ }^{\top}$) and 7641 (=LMG29627=DSM103229), respectively. Phylogenetic analysis based on 16 S rRNA and gyrB gene sequences revealed that 6399^{\top} and 7641 formed a distinct phylogenetic lineage within the genus Pandoraea. Genome sequence comparison analysis indicated that strains 6399^{\top} and 7641 are clonal and share 100% similarity, however, similarity to other type strains (ANIb 73.2-88.8\%, ANIm 83.5-89.9\% and OrthoANI 83.2$89.3 \%$) indicates that 6399^{\top} and 7641 do not belong to any of the reported type species. The major cellular fatty acids of 6399^{\top} were $C_{16: 0}(32.1 \%) C_{17: 0}$ cyclo (18.7%) and $C_{18: 1} \omega 7 c(14.5 \%)$, while $Q-8$ was the only respiratory quinone detected. The major polar lipids identified were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of 6399^{\top} was 62.9 (mol\%). Strain 6399^{\top} can be differentiated from other members of Pandoraea by the absence of $\mathrm{C}_{19 \text { :0 }} \omega 8 \mathrm{c}$ cyclo and by the presence of $\mathrm{C}_{17 \text { :0 }} \omega 8 \mathrm{c}$ cyclo. Together our data show that the bacterial strains 6399^{\top} and 7641 represent a novel species of the genus Pandoraea, for which the name Pandoraea fibrosis sp. nov. is proposed (type strain 6399^{\top}).

INTRODUCTION

The genus Pandoraea was first described [1] to accommodate bacterial isolates that were tentatively identified as Burkholderia cepacia, Ralstonia pickettii or Ralstonia paucula based on polyphasic taxanomic studies but retained some distinct genotypic and phenotypic characteristics. Bacteria classified as Pandoraea are Gram-negative, oxidase-variable and catalase-variable motile bacilli with a single polar flagellum and produce ubiquinone- 8 as their major isoprenoid
quinone [2]. At the time of writing, the genus Pandoraea comprises ten validly recognized species (Pandoraea apista, Pandoraea pulmonicola, Pandoraea pnomenusa, Pandoraea sputorum, Pandoraea norimbergensis, Pandoraea oxalativorans, Pandoraea faecigallinarum, Pandoraea vervacti and Pandoraea thiooxydans with Pandoraea terrae as the newest member) and four unnamed genomospecies.

While Pandoraea have been isolated from a range of environmental samples, certain of these organisms are emerging

[^0]003147 © 2019 IUMS

Fig. 1. Maximum-likelihood tree based on 16 S rRNA gene sequences indicated the phylogenetic positions of strain 6399^{\top} and 7641 and other Pandoraea type species. Bootstrap values (over 50%) are shown on nodes in percentages of 1000 replicates. Burkholderia sordidicola S5-B (AF512826) was used as the outgroup. Bar, 0.005 changes per nucleotide.
as serious respiratory pathogens in people with cystic fibrosis (CF). The role(s) of Pandoraea in respiratory disease, however, is currently unclear and under-investigated.
Two Pandoraea-like isolates designated as strains 6399^{T} and 7641, were recovered on Burkholderia cepacia-selective medium from consecutive (11 months apart) sputum samples collected from an Australian (Tasmanian) CF patient [2, 3] attending the Royal Hobart Hospital ($42^{\circ} 52^{\prime} 55.7^{\prime \prime}$ S $147^{\circ} 19^{\prime} 37.9^{\prime \prime} \mathrm{E}$). Isolates were preserved at $-80^{\circ} \mathrm{C}$ in Luria-Bertani (LB) broth supplemented with 20% (v/v) glycerol. Isolates were routinely cultured aerobically on LB agar medium (BD Biosciences, USA) at $37^{\circ} \mathrm{C}$. Colonies of 6399^{T} and 7641 usually appear small ($1-2 \mathrm{~mm}$ in diameter), white, circular, and convex after 24 h incubation at $37^{\circ} \mathrm{C}$. Gram-staining of bacterial cells and microscopy was performed as previously described [4] but with the inclusion of $5 \mu \mathrm{~g} \mathrm{ml}^{-1}$ of the fluorescent lipid binding dye AM1-43 (Biotium). Bacterial morphology was examined using a Deltavision OMX SR (super resolution) microscope (GE Healthcare Life Sciences) and analysed using fiti software [5]. Motility was assessed on a Richter Optica U2B light microscope (Richter Optica) using the hanging drop motility assay. Cells were found to be Gram-negative motile rods ($1.6 \pm 0.3 \times 0.6 \pm 0.1 \mu \mathrm{~m}$, Fig. S1, available in the online version of this article). Here, we also used a polyphasic taxanomic approach to better determine the position of strains 6399^{T} and 7641 within the genus Pandoraea.
The draft genomes of 6399^{T} and 7641 have been published [3]. The genome of strain 6399^{T} is 5.5 kbp with a 62.9%
$\mathrm{G}+\mathrm{C}$ content, while that of strain 7641 is 5.5 kbp with a $62.8 \% \mathrm{G}+\mathrm{C}$ content. Since the 16 S rNA gene sequence is highly similar between Pandoraea species, better differentiation of species is usually achievable by comparing the nucleotide sequence of their gyrB genes as well [6]. The complete 16S rRNA and gyrB gene sequences (1537 and 2478 bp , respectively) were extracted from the 6399^{T} and 7641 genomes for phylogenetic analyses and compared to those of validly reported type strains available in EzTaxon-e server (http://eztaxon-e.ezbiocloud.net/) [7, 8]. Pairwise similarity analysis of the 16 S rRNA gene sequence revealed that strains 6399^{T} and 7641 were closely related to P. pnomenusa CCUG 38742^{T} (99.7%), P. apista CCUG 38412^{T} (99.5%), P. faecigallinarum $\mathrm{KOx}^{\mathrm{T}}(99.4 \%)$, P. norimbergensis CCUG 39188^{T} (99.3%), P. oxalativorans TA 25^{T} (99.1%), P. sputorum DSM21091 ${ }^{\text {T }}(99.1 \%)$, P. vervacti $\operatorname{NS} 15{ }^{\mathrm{T}}(99.0 \%)$ and P. thiooxydans ATSB16 ${ }^{\mathrm{T}}$ (97.0%). Phylogenetic analyses of 16S rRNA and gyrB gene sequences were subsequently reconstructed using mega6 [9], and sequence alignment performed using the mUSCLE alignment tool [10] and default settings for the reconstruction of maximum-likelihood (ML) phylogenetic trees. Phylogenetic analyses of the 16 S rRNA gene sequences demonstrated that strains 6399^{T} and 7641 formed a phyletic lineage within the genus Pandoraea, where the closest species appeared to be P. norimbergensis (Fig. 1). Phylogenetic analysis using the $g y r B$ gene sequence (based on ML algorithms) also showed that these two strains formed a phyletic lineage within the genus Pandoraea, where the nearest species were found to be P. apista CCUG 38412^{T} (Fig. 2).

Fig. 2. Maximum-likelihood tree based on gyrB gene sequences (439 nucleotides) showing the phylogenetic relationships of strain 6399^{\top} and 7641 and other Pandoraea type species. Bootstrap values (over 50%) are shown on nodes in percentages of 1000 replicates. Comamonas testosteroni DSM 50244^{\top} (AB014977) was used as the outgroup. Bar, 0.05 changes per nucleotide.

Genome sequence comparison analyses based on BLAST alignment algorithms (ANIb, the gold standard for prokaryote species definition) and the MUMmer algorithm (ANIm) were performed using JSpecies software [11] and the OrthoANI values were determine using OrthoANI calculator [12]. The species demarcation 95-96 \% ANIb similarity [11] was used as a benchmark, and the results indicated that strains 6399^{T} and 7641 shared 100% similarity. However, the ANIb value compared to other type species ranged from 73.2 to 88.8 \% (Table S1). The ANIm values (ranging from $83.5-89.9 \%$) also indicated that 6399^{T} and 7641 do not belong to any of the reported type species (Table S2). OrthoANI analysis also supports the results of ANIb and ANIm, in which the OrthoANI value (ranging from 83.2$89.3 \%$) of both 6399^{T} and 7641 to other type strains were below the species circumscriptions threshold (Fig. S2). Thereby, all analyses support the notion that the strains are clonal (100% similarity for all analyses) and belong to a novel taxon.

To further analyse the genetic variability between strains 6399^{T} and 7641, the enterobacterial repetitive intergenic consensus (ERIC-PCR) was performed as previously described [13], with the exception that PCRs were carried out using GoTaq Green Master Mix (Promega). The ERICPCR analysis showed identical banding patterns between 6399^{T} and 7641 (Fig. S3), clearly supporting the conclusion that strains 6399^{T} and 7641 are clonal, as expected given the high relatedness of their genomes (including identical 16S rRNA gene sequences) [3] and the fact that they were isolated from the same host.
Growth of strains 6399^{T} and 7641 was assessed in brain heart Infusion (BHI) broth over a range of temperatures (28, 37 and $42^{\circ} \mathrm{C}$), pH values (from 4 to 10 in 0.5 step
increments) and NaCl concentrations ($0.5,1,3,4.5,6,8,10$, 12 and $15 \%)$. The pH level of the BHI broth was adjusted by using 0.1 mM sodium acetate ($\mathrm{pH} 4.0-6.0$), 0.1 mM phosphate ($\mathrm{pH} 7.0-8.0$) and 0.1 mM sodium carbonate $(\mathrm{pH}$ $8.5-10.0$). Both strains were able to grow at 28 and $37^{\circ} \mathrm{C}$ but not at $42^{\circ} \mathrm{C}$. Growth of both strains occurred in BHI broth pH 4.5 to 9.5 and NaCl 0.05 to 3%, at 28 and $37^{\circ} \mathrm{C}$. Interestingly, cultures of both strains incubated at $37^{\circ} \mathrm{C}$ seemed to have a slightly higher NaCl tolerance, since growth was possible even in the presence of $4.5 \% \mathrm{NaCl}$.
For assessment of their anaerobic growth, strains 6399^{T} and 7641 were inoculated on BHI agar plates supplemented with 1% potassium nitrate and incubated in an anaerobic jar (containing an anaerobic sachet [AN0035; AnaeroGen, Oxoid] and an anaerobic indicator) for 5 days at $37^{\circ} \mathrm{C}$. While growth of both 6399^{T} and 7641 was scant under these conditions, it was nonetheless reproducible. Similarly, Daneshvar et al. [14] reported on the growth of nine Pandoraea isolates in a candle jar atmosphere. Collectively, these data would seem to indicate that at least some Pandoraea species might well be facultative anaerobes, analogous to the closely related Burkholderia (denitrification pathway described, [15]).
The catalase activity of strains 6399^{T} and 7641 was determined by the production of oxygen bubbles in $3 \%(\mathrm{v} / \mathrm{v})$ aqueous hydrogen peroxide solution. The oxidase activity was determined by oxidation of $1 \%(\mathrm{w} / \mathrm{v})$ tetramethyl-pphenylenediamine (Merck) [16]. Nitrate reduction was assessed using the supplementary test from the API 20NE Identification System (as per the manufacturer's instructions, Biomérieux, France). Strains were catalase- and oxi-dase-positive and reduced nitrate to nitrite.

Table 1. Phenotypic comparison of strain 6399^{\top} and other Pandoraea type species
Strains: 1. strain 6399^{\top} (this study); 2. P. norimbergensis DSM 11628^{\top}; 3. P. apista KACC 11947 ; 4. P. pulmonicola FC330 ${ }^{\top}$; 5. P. pnomenusa KACC 15013^{\top}; 6. P. faecigallinarum DSM 23572^{\top}; 7. P. vervacti 561^{\top}; 8. P. oxalativorans DSM 23570^{\top}; 9. P. sputorum DSM 21091^{\top} and 10 . P. thiooxydans KACC 12757^{\top}. All strains were motile, catalase/oxidase variable, nitrate reduction variable, able to grow in $1.5 \% \mathrm{NaCl}$ and up to $37{ }^{\circ} \mathrm{C}$. There was no single carbon source able to be oxidized by all strains, and in chemical sensitivity assays, all strains were sensitive to tetrazolium blue. Characteristic data were from [1, 22-24], while carbon utilization and chemical sensitivity data were generated in the present study. +, Denotes utilization of carbon sources or growth in presence of inhibitor and -, denotes no measurable utilization of carbon sources or absence of growth in presence of inhibitor, ND, not determined.

Characteristic	1	2	3	4	5	6	7	8	9	10
Gram stain	-	-	-	-	-	-	-	-	-	-
Motility	+	+	+	+	+	+	+	+	$+$	+
Catalase	+	+	+	+	+	+	$+$	$+$	+	-
Oxidase	+	+	-	+	-	+	+	+	+	$+$
Nitrate reduction	+	-	-	-	+	-	-	-	+	+
Growth:										
Up to $\mathrm{NaCl}(\%, \mathrm{w} / \mathrm{v})$	4.5	1.5	1.5	1.5	3	3	3	3	3	5
Up to (${ }^{\circ} \mathrm{C}$)	37	37	42	42	42	42	42	37	42	42
Oxidation of:										
Acetic acid	+	+	+	+	+	+	+	+	+	-
Acetoacetic acid	-	-	+	-	-	-	-	-	-	-
Bromo-succinic acid	-	+	+	+	+	+	+	-	$+$	-
Citric acid	+	+	+	+	+	+	$+$	$+$	$+$	-
D-Aspartic acid	+	+	+	+	+	+	$+$	$+$	+	-
D-Galacturonic acid	-	+	+	+	+	+	$+$	$+$	-	-
D-Gluconic acid	+	+	+	+	+	+	+	-	+	-
D-Glucose-6- PO_{4}	-	-	-	+	-	-	-	-	-	-
D-Glucuronic acid	+	+	+	+	+	+	+	-	$+$	-
D-Malic acid	+	+	+	+	+	+	+	-	+	-
D-Saccharic acid	-	-	-	+	+	-	-	-	-	-
D-Serine	+	-	+	-	+	+	-	-	+	-
Formic acid	-	-	-	+	+	-	-	-	-	-
Glucuronamide	+	-	+	+	+	+	+	-	$+$	-
Glycerol	+	-	+	+	+	+	+	-	$+$	-
Glycyl-L-proline	+	+	+	+	+	+	$+$	-	$+$	-
L-Alanine	+	-	+	+	+	+	+	-	$+$	-
L-Aspartic acid	+	+	+	+	+	+	+	+	+	-
L-Galactonic acid lactone	-	+	+	+	+	+	+	-	-	-
L-Glutamic acid	+	+	+	+	+	+	+	$+$	$+$	-
L-Histidine	+	+	+	+	+	+	+	+	+	-
L-Lactic acid	-	-	+	+	+	+	-	-	-	$+$
L-Malic acid	+	+	+	+	+	+	+	+	$+$	-
L-Pyroglutamic acid	+	+	+	+	+	+	+	-	+	+
L-Serine	+	-	+	+	+	+	+	+	+	-
Methyl pyruvate	+	-	-	-	+	+	+	-	+	+
Mucic acid	-	-	-	+	+	-	-	-	-	-
p-Hydroxy-phenylacetic acid	+	+	+	+	+	+	+	-	$+$	-
Propionic acid	+	-	+	+	+	+	+	-	$+$	-
α-D-Glucose	-	+	-	+	+	-	-	-	-	-
α-Hydroxy-butyric acid	+	-	-	+	+	+	$+$	-	$+$	$+$
α-keto-Butyric acid	+	-	+	+	+	+	$+$	-	$+$	+
α-keto-Glutaric acid	+	+	+	+	+	+	$+$	-	$+$	-
Chemical sensitivity:										
pH 5	+	+	+	+	+	+	$+$	+	$+$	-
Fusidic acid	+	$+$	+	+	+	+	-	-	+	-
Guanidine HCl	+	+	+	+	+	+	+	+	-	-

Table 1. cont.

Characteristic	1	2	3	4	5	6	7	8	9	10
Lithium chloride	-	-	-	+	-	-	-	-	-	-
Minocycline	+	-	+	+	-	-	-	-	-	-
Nalidixic acid	+	+	+	+	+	+	+	+	+	-
Niaproof 4	-	+	-	-	-	-	-	-	-	-
Potassium tellurite	+	+	+	+	+	+	+	+	+	-
Tetrazolium blue	+	+	+	+	+	+	+	+	+	+
Tetrazolium violet	+	+	+	+	+	+	+	+	+	-
Genome features:										
Genome size (Mb)	5.57	6.17	5.54	5.87	5.39	5.73	5.74	6.5	5.74	4.46
DNA G+C content ($\mathrm{mol} \%$)	62.9	63.1	62.7	64.3	64.9	63.7	63.6	63.1	62.8	63.2
No. of genes	4891	5416	4979	5080	4821	5085	5015	5734	5084	4144
No. of coding sequences	4356	5335	4797	4989	4659	5003	4934	5650	5003	4085

The biochemical characterization of the strains was performed using the GEN III MicroPlate (Biolog, per the manufacturer's instructions). Briefly, bacteria were cultivated in LB overnight at $37^{\circ} \mathrm{C}$ and the wells of the GEN III MicroPlate inoculated with Pandoraea suspended in inoculating fluid A and plates incubated at $37^{\circ} \mathrm{C}$ for 2 days. Strain 6399^{T} oxidized acetic acid, citric acid, D-aspartic acid, D-gluconic acid, D-glucuronic acid, D-malic acid, D-serine, glucuronamide, glycerol, glycyl-L-proline, L-alanine, L-aspartic acid, L-glutamic acid, L-histidine, L-malic acid, L-pyroglutamic acid, l-serine, methyl pyruvate, p-hydroxy-phenylacetic acid, propionic acid, α-hydroxy-butyric acid, α-keto-butyric acid, α-keto-glutaric acid but not acetoacetic acid, bromosuccinic acid, D-galacturonic acid, D-glucose-6- PO_{4}, D-saccharic acid, formic acid, L -galactonic acid lactone, L-lactic acid, mucic acid or α-D-glucose. Growth was inhibited by lithium chloride and niaproof anionic surfactant 4 (7-ethyl-2-methyl-4-undecyl sulfate sodium salt) but not at pH 5 , or by fusidic acid, guanidine HCl , minocycline, nalidixic acid, potassium tellurite, tetrazolium blue or tetrazolium violet. The phenotypic and biochemical characteristics of 6399^{T} are presented in Table 1 and compared to phenotypic (taken from [1, 17-19]) and biochemical characteristics (this study) of closely related bacterial species. Strain 6399^{T} could not be differentiated from the other type strains based solely on its growth, biochemical characteristics, or genome features.

Characterization of polar lipids, fatty acids and respiratory quinones was carried out by the Identification Service, DSMZ, Braunschweig, Germany (complete methods available /www.dsmz.de/services/services-microorganisms/identification.html). Briefly, cells were harvested from cultures grown in tryptic soy broth for 16 h at $28^{\circ} \mathrm{C}(P$. faecigallinarum DSM $23572^{\mathrm{T}}, P$. vervacti DSM $23571^{\mathrm{T}}, P$. oxalativorans DSM $\left.23570^{\mathrm{T}}\right), 30^{\circ} \mathrm{C}\left(\right.$ P. thiooxydans DSM $\left.25325^{\mathrm{T}}\right)$ or $37^{\circ} \mathrm{C}$ (strain 6399^{T}, P. pnomenusa DSM 16536^{T}, P. pulmonicola DSM 16583^{T}, P. sputorum DSM 21091 ${ }^{\mathrm{T}}$, P. apista DSM 16535^{T}, P. norimbergensis DSM 11628^{T}). Polar lipids and respiratory quinones were extracted according to Tindall [20, 21] and polar lipids analysed as described previously
[22]. Respiratory quinones were first separated using thinlayer chromatography (TLC) and subsequently analysed and identified by high performance liquid chromatography (HPLC). Cellular fatty acids were extracted as described [23, 24]. The fatty acid methyl esters were separated and identified and quantified using the Sherlock Microbial Identification System (MIS, MIDI, Microbial ID) and database.
The total polar lipids of strain 6399^{T} were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid, and two unidentified lipids. The unidentified aminophospholipid, unidentified aminolipid and two unidentified lipids represent minor polar lipids (Fig. S4). Ubiquinone-8 (Q-8) was the only respiratory lipoquinone able to be detected in extracts derived from 6399^{T}. The major cellular fatty acids of strain 6399^{T} ($>65 \%$ total) were $\mathrm{C}_{16: 0}, \mathrm{C}_{17: 0}$ cyclo, and $\mathrm{C}_{18: 1} \omega 7 c$. While the fatty acid profiles of strain 6399^{T} were similar to those of other closely related Pandoraea type species (Table S3), there were some important differences. Strain 6399^{T} can be differentiated from other members of Pandoraea by the absence of $\mathrm{C}_{19}: 0 \omega 8 c$ cyclo and by the presence of $\mathrm{C}_{17: 0} \omega 8 c$ cyclo.

On the basis of the phenotypic and genotypic properties described above for strains 6399^{T} and 7641, it seems that they do represent a novel species of the genus Pandoraea, for which the name Pandoraea fibrosis sp. nov. is proposed.

DESCRIPTION OF PANDORAEA FIBROSIS SP. NOV.

Pandoraea fibrosis (fi.bro'sis. L. dim. n. fibra, fibre/fiber; fibrous; Gr. suff. -osis, suffix expressing state or condition, in medical terminology denoting a state of disease; N.L. gen. n. fibrosis, referring to the organism being isolated from the patient with cystic fibrosis).

Cells are facultative anaerobic, Gram-stain-negative motile rods. Colonies are small white, circular, and convex. Both strains grew in BHI broth up to $37^{\circ} \mathrm{C}$ (no growth was observed at $42^{\circ} \mathrm{C}$). Growth occurred at $\mathrm{pH} 4.5-9.5$ and
$0.05-4.5 \% \mathrm{NaCl}$. The strains were oxidase- and catalasepositive. Nitrate was reduced to nitrite. The type strain, 6399^{T}, originally collected from the sputum of a CF patient, oxidized, acetic acid, citric acid, D-aspartic acid, D-gluconic acid, D-glucuronic acid, D-malic acid, D-serine, glucuronamide, glycerol, glycyl-L-proline, L-alanine, L-aspartic acid, Lglutamic acid, L-histidine, l-malic acid, L-pyroglutamic acid, l-serine, methyl pyruvate, p-hydroxy-phenylacetic acid, propionic acid, α-hydroxy-butyric acid, α-keto-butyric acid, α-keto-glutaric acid but not acetoacetic acid, bromo-succinic acid, D-galacturonic acid, D-glucose-6- PO_{4}, D-saccharic acid, formic acid, l-galactonic acid lactone, L-lactic acid, mucic acid, and α-D-glucose. Growth was inhibited by lithium chloride and niaproof anionic surfactant 4 , but not at pH 5 or by fusidic acid, guanidine HCl , minocycline, nalidixic acid, potassium tellurite, tetrazolium blue or tetrazolium violet. The following fatty acids were detectable at $>0.5 \%$ of total: $\mathrm{C}_{12: 0}, \mathrm{C}_{12: 0} 2-\mathrm{OH}, \mathrm{C}_{16: 0}, \mathrm{C}_{16: 0} 3-\mathrm{OH}, \mathrm{C}_{17: 0}$, $\mathrm{C}_{17: 0} \omega 8 c$ cyclo, $\mathrm{C}_{17: 0}$ cyclo, $\mathrm{C}_{18: 0}, \mathrm{C}_{18: 0} 2-\mathrm{OH}, \mathrm{C}_{18: 1} \omega 7 c$ and summed features 2 (comprising $\mathrm{C}_{14: 0} 3-\mathrm{OH}$ and iso$\mathrm{C}_{16: 1}$) and 3 (comprising $\mathrm{C}_{16: 1} \omega 6 c / \omega 7 c$). The isoprenoid quinone detected was Q-8 and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Two unidentified lipids, an unidentified aminolipid and an unidentified aminophospholipid were also detected. The genomic DNA G + C content of strain 6399^{T} was 62.9 ($\mathrm{mol} \%$).
The type strain $\left(6399^{\mathrm{T}}=\mathrm{LMG} 29626^{\mathrm{T}}=\mathrm{DSM} 103228^{\mathrm{T}}\right)$, originally isolated from the sputum of a CF patient in Tasmania (Australia) can be differentiated from other Pandoraea members by the absence of C_{19} :o $\omega 8 c$ cyclo and by the presence of $\mathrm{C}_{17: 0} \omega 8 c$ cyclo fatty acid. The draft genome, 16 S rRNA and $g y r B$ gene sequences of the type strain have been deposited in GenBank under the accession numbers JTCR00000000, KX712083 and KX712081, respectively.

Funding information

This work was supported by a Royal Hobart Hospital Research Foundation (RHHRF) grant number R22664 and by the School of Medicine, University of Tasmania, Hobart, Australia. This work was also supported by University of Malaya High Impact Research Grants (UMMOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, Grant No. H-50001-A000027; UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/ 01, Grant No. A-000001-50001) awarded to K.-G. C. and PPP Grant (Grant No. PG084-2015B) awarded to R. E.

Acknowledgements

The authors would like to thank Bernhard Schink for assistance with the prokaryote nomenclature.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical statement

Isolate collection was approved by the Tasmanian Human Research Ethics Committee (approval number H0012530).

References

1. Coenye T, Falsen E, Hoste B, Ohlén M, Goris J et al. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 2000;50 Pt 2:887-899.
2. Ambrose M, Malley RC, Warren SJ, Beggs SA, Swallow OF et al. Pandoraea pnomenusa Isolated from an Australian Patient with Cystic Fibrosis. Front Microbiol 2016;7:692.
3. Ee R, Ambrose M, Lazenby J, Williams P, Chan K-G et al. Genome sequences of two Pandoraea pnomenusa isolates recovered 11 months apart from a cystic fibrosis patient. Genome Announc 2015;3.
4. Turnbull L, Whitchurch CB. Motility assay: twitching motility. Methods Mol Biol 2014;1149:73-86.
5. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676-682.
6. Coenye T, Lipuma JJ. Use of the gyrB gene for the identification of Pandoraea species. FEMS Microbiol Lett 2002;208:15-19.
7. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16 S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716-721.
8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16 S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613-1617.
9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725-2729.
10. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792-1797.
11. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126-19131.
12. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100-1103.
13. Atkinson RM, Lipuma JJ, Rosenbluth DB, Dunne WM. Chronic colonization with Pandoraea apista in cystic fibrosis patients determined by repetitive-element-sequence PCR. J Clin Microbiol 2006; 44:833-836.
14. Daneshvar MI, Hollis DG, Steigerwalt AG, Whitney AM, Spangler L et al. Assignment of CDC weak oxidizer group 2 (WO-2) to the genus Pandoraea and characterization of three new Pandoraea genomospecies. J Clin Microbiol 2001;39:1819-1826.
15. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C et al. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics 2015;16:471.
16. Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P (editor). Methods for General and Molecular Bacteriology. Washington, DC: American society for microbiology; 1994. pp. 607-654.
17. Anandham R, Indiragandhi P, Kwon SW, Sa TM, Jeon CO et al. Pandoraea thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sesame (Sesamum indicum L.). Int J Syst Evol Microbiol 2010;60: 21-26.
18. Jeong SE, Lee HJ, Jia B, Jeon CO. Pandoraea terrae sp. nov., isolated from forest soil, and emended description of the genus Pandoraea Coenye et al. 2000. Int J Syst Evol Microbiol 2016;66:35243530.
19. Sahin N, Tani A, Kotan R, Sedlácek I, Kimbara K et al. Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture. Int J Syst Evol Microbiol 2011;61:2247-2253.
20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128-130.
21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199-202.
22. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic Characterization and the Principles of Comparative Systematics, 3rd ed. Washington, DC, USA: ASM Press; 2007.
23. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology
groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358-361.
24. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584-586.

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review - average time to first decision is 4-6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as 'excellent' or 'very good'.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.

[^0]: Author affiliations: ${ }^{1}$ Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; ${ }^{2}$ School of Medicine, Faculty of Health, University of Tasmania, Tasmania 7001, Australia; ${ }^{3}$ Department of Pathology, Royal Hobart Hospital, Tasmania 7001, Australia; ${ }^{4}$ The ithree Institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia; ${ }^{5}$ Department of Microbiology and Infectious Disease, Royal Hobart Hospital, Tasmania 7001, Australia; ${ }^{6}$ International Genome Centre, Jiangsu University, Zhenjiang, PR China.
 *Correspondence: Louise F. Roddam, Ifroddam@utas.edu.au
 Keywords: Pandoraea; cystic fibrosis.
 Abbreviations: ANIb, average nucleotide identity based on BLAST; ANIm, average nucleotide identity based on MUMmer; CF, cystic fibrosis; ERIC-PCR, enterobacterial repetitive intergenic consensus polymerase chain reaction; ML, maximum-likelihood; OrthoANI, orthologous average nucleotide identify.
 The GenBank accession numbers for strain 6399^{\top} and 764116 S rRNA (KX712083, KX712096) and gyrB (KX712081, KX712082) genes, respectively. The genome accession numbers for Pandoraea species that are used in this study are Pandoraea fibrosis 6399^{\top} (JTCR00000000), P. fibrosis 7641 (JTCS00000000), P. pnomenusa CCUG 38742^{\top} (CP009553.3), P. apista CCUG 38412^{\top} (CP013481.2 and CP013482.1), P. faecigallinarum K0x ${ }^{\top}$ (CP011807.3, CP011808.2, and CP011809.2), P. norimbergensis CCUG 39188^{\top} (CP013480.3), P. oxalativorans TA25 ${ }^{\top}$ (CP011253.3, CP011518.2, CP011519.2, CP011520.2, and CP011521.2), P. sputorum DSM21091 ${ }^{\top}$ (CP010431.2), P. pulmonicola (CP010310.2), P. vervacti NS15 ${ }^{\top}$ (CP010897.2 and CP010898.2) and P. thiooxydans ATSB16 ${ }^{\top}$ (CP014839.1).
 Four supplementary figures and three supplementary tables are available with the online version of this article.

