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A bipartite state which is secretly chosen from a finite set of known entangled pure states cannot
be immediately useful in standard quantum information processing tasks. To effectively make use of
the entanglement contained in this unknown state, we introduce a new way to locally manipulate the
original quantum system: either identify the state successfully or distill some pure entanglement.
Remarkably, if many copies are available, we show that any finite set of entangled pure states,
whatever orthogonal or not, can be locally distinguished in this way, which further implies that
pure entanglement can be deterministically extracted from unknown pure entanglement. These
results make it clear why a large class of entangled bipartite quantum operations including unitary
operations and measurements that are globally distinguishable can also be locally distinguishable:
they can generate pure entanglement consistently.

PACS numbers: 03.67.Ac, 03.67.Hk, 03.65.Ta

I. INTRODUCTION AND MAIN RESULTS

How to identify an unknown system which is secretely chosen from a finite set of pre-specified states is one of the
basic problems in information theory. In quantum mechanics, it becomes more interesting since perfect discrimination
can’t be achieved for nonorthogonal states. In most cases, unambiguous discrimination is generally effective, unless
these states are linearly dependent [1]. The problem is also considered when the unknown system is shared by
some physically separated parties and only local operations on each party and classical communication between them
(LOCC) is allowed during the process [2]. Things get quite different in the local discrimination. When there are
only two different states, the results are simple: the successful probability can be always achieved optimally for both
of orthogonal case [3] and nonorthogonal case [4]. However, for more than two states, the problem becomes very
complicated. One surprising example is that some orthogonal product states can’t be perfect distinguished locally [5].
Another one is that any orthogonal basis which is unambiguously distinguishable by LOCC must be a product basis [6].
On the other hand, there are also some positive results discovered such as Ref. [7] and Ref. [8]

Up to now, all things considered in the above researches is how to get classical information from the unknown
system. When the process is finished, the original system would be simply discard. Thus, if the discrimination
is failed, nothing can be obtained from it. It is actually assumed that the only useful thing contained in this
system is distinguishability. However, this assumption doesn’t conform to the fact when people distinguish between
entangled states using only LOCC. In this scenario, the entanglement contained in the system becomes a kind of
nonclassical information, which plays indispensable roles in standard quantum information processing tasks such as
superdense coding [9] and teleportation [10]. In fact, discrimination of different states is often employed as some steps
of complicated physical tasks. Preserving as much entanglement as possible in each of these steps will bring a lot of
convenience for the whole tasks in practice. Thus, a right choice here is to optimally make use of the entanglement
contained in the original quantum system, instead of ignoring it.

One possible strategy of doing this is to directly extract the entanglement before discrimination and to treat it
as an independent quantum task. In this case, such a quantum task is equivalent to distill pure entanglement from
a arbitrarily given entangled mixed state, which is known as entanglement distillation [11] in standard quantum
information processing tasks. Unfortunately, this task is very difficult in general and most of the existing distillation
protocols which are effective for mixed states only work in the asymptotic regime [11, 12, 13, 14]. It means that the
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target entanglement won’t become exactly pure unless the source entanglement goes to infinite. It is still unclear how
to do this in finite regime.

What we proposed in this paper is actually another strategy which seems more effective than the above one: we
perform the entanglement distillation as a part of our new discrimination. The idea is that when discrimination is
failed, we make the different states become the same in the output. More important, entanglement will remain in this
outcome state while it would normally be destroyed in traditional discrimination protocols. We noticed that some
preliminary works on preserving entanglement in the local discrimination of orthogonal entangled states have been
discussed [15]. However, these works are not applicable for nonorthogonal states. Another advantage of our method
is that the original quantum system is always useful whether it is successfully identified or not. Formally, we propose
the following:

Definition 1. A set of bipartite pure states {|ψ1〉, · · · , |ψn〉} is said to be unambiguously distinguishable with re-

maining entanglement(UDRE) via LOCC if there is a local measurement {Ms,Mf} such that i) {Ms|ψk〉} are locally
distinguishable with certainty; ii) Mf |ψk〉 ≡ |η〉 for some bipartite entangled state |η〉, where the subscripts “s” and
“f” represent the successful and the failed outcomes of discrimination, respectively. Note that we write |α〉 ≡ |β〉 if
there is scalar λ such that |α〉 = λ|β〉.

Clearly, any two orthogonal pure states |ψ0〉 and |ψ1〉 are locally UDRE [3]. However, if nonorthogonal or more
than two states are involved, the situation becomes quite complicated. For instance, it is not difficult to show that
any two nonorthogonal or three orthogonal 2 ⊗ 2 pure entangled states cannot be distinguishable in this way. It is
also easy to see that two nonorthogonal pure states containing at least one product state cannot be UDRE (Actually
from the remaining entangled state we can infer that the original state should be entangled and thus achieve a perfect
discrimination, which is a contradiction with the nonorthogonality).

For 2⊗3 states there do exist nonorthogonal pure states which can be distinguished via UDRE. An explicit example
is given as follows:

|ψ0〉 = (|0〉A|0〉B + |1〉A|1〉B + |0〉A|2〉B)/
√

3,

|ψ1〉 = (|0〉A|0〉B + |1〉A|1〉B + |1〉A|2〉B)/
√

3.

A simple protocol is as follows: Bob performs a measurement {|0〉〈0| + |1〉〈1|, |2〉〈2|}. If the outcome is 2 then Alice
only needs to perform the measurement {|0〉〈0|, |1〉〈1|} to complete the discrimination. Otherwise the discrimination

is failed and they are left with an entangled state (|00〉 + |11〉)/
√

2.
It is still unknown when a set of states can be locally UDRE. Interestingly, if multiple copies are available, we find

that any finite number of bipartite pure entangled states can be distinguished in this way.

Theorem 1. Let |ψ1〉, · · · , |ψn〉 be any n bipartite entangled pure states in HA⊗HB. Then there is always an integer
N such that |ψ1〉⊗N , · · · , |ψn〉⊗N are UDRE.

As a direct consequence, we have the following

Theorem 2. Let |ψ1〉, · · · , |ψn〉 be any n bipartite entangled pure states on HA⊗HB . Then there is always an integer

N and an LOCC protocol E such that E(ψ⊗N
k ) = |Φ0〉〈Φ0| for any 1 ≤ k ≤ N , where |Φ0〉 = (|0〉|0〉 + |1〉|1〉)/

√
2.

The above theorem has a clear physical meaning: one can use LOCC to deterministically distill an Einstein-
Podolsky-Rosen (EPR) state [16] of form |Φ0〉 from the following of mixed state

ρ(N) =

n
∑

i=1

pi[|ψi〉〈ψi|]⊗N ,

where pi ≥ 0 and
∑n

i=1 pi = 1. For n = 1, it is a special case of the fundamental result in entanglement transfor-
mation [17]. However, our generalization here brings it to a essentially different level since the source entanglement
becomes mixed. This distillation protocol for mixed states works in finite regime and succeed with probability one.
Compared with traditional distillation protocols, it has two remarkable advantages: first, both of the amount of
source entanglement and the number of runs of LOCC can be bounded before execution; second, without statistical
fluctuation, the result is more faithful and reliable. Although only states of form ρ(N) is given in our distillation
protocol, it works for all UDRE states.

II. PROOF OF THEOREM 1

We will now provide a complete proof to Theorem 1. To make our arguments more readable, we first consider the
case of n = 2 and then generalize the result to the case where n > 2.
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Suppose the dimensions of HA and HB are d′ and d, respectively, and d′ ≥ d ≥ 2. Let us assume one of |ψ1〉 and
|ψ2〉 is of full Schmidt number at Bob’s side. Later in Appendix 1 we will show this assumption can be removed. To
be specific, suppose that |ψ2〉 is with the Schmidt decomposition as follows:

|ψ2〉 =

d−1
∑

i=0

√

λi|iAiB〉, where λi > 0, 0 ≤ i ≤ d− 1. (1)

Let us emphasize that {|i〉B : 0 ≤ i ≤ d − 1} is an orthonormal basis of HB and {|i〉A : 0 ≤ i ≤ d − 1} is a set of
orthonormal vectors of HA. Let λmin = min{λi : 0 ≤ i ≤ d − 1}. A key property of full Schmidt rank state is the
following:

Lemma 1. Let |ψ1〉 and |ψ2〉 be two bipartite pure states on HA ⊗HB such that |ψ2〉 is of full Schmidt rank at Bob’s

side. Then there is a linear operator MA such that (MA ⊗ IB)|ψ2〉 = |ψ1〉 and M †
AMA ≤ λ−1

minIA.

Proof. Note that |ψ1〉 can be uniquely decomposed as |ψ1〉 =
∑d−1

i=0 |αi〉|i〉B , where {|i〉B : 0 ≤ i ≤ d − 1} is the

same as in Eq. (1) and {|αi〉 : 0 ≤ i ≤ d−1} is a set of (unnormalized) vectors on HA. Let MA =
∑d−1

i=0 λ
−1/2
i |αi〉〈iA|.

One can readily verify that M satisfies our requirements. �

The following lemma provides a sufficient condition for UDRE.

Lemma 2. Let |α〉 and |β〉 be two states on an auxiliary system HA′ of Alice. Then |α〉A′ |ψ1〉AB and |β〉A′ |ψ2〉AB

are locally unambiguously distinguishable with remaining entanglement |α〉A′ |ψ1〉AB if |〈α|β〉| ≤
√

λmin/(1 + λmin).

Proof. Let us write |α〉 = |0〉 and |β〉 = u|0〉 + v|1〉, where u = 〈α|β〉. By a simple algebraic calculation we
have |u/v| ≤

√
λmin. We are now seeking for a linear operator OA′A such that i) O†O ≤ IA′A; ii) O|0〉A′ |i〉A =

|0〉A′ |i〉A/
√

2, 0 ≤ i ≤ d− 1; and iii) (OA′A ⊗ IB)|1〉A′ |ψ2〉 = 1/
√

2(u/v)|0〉A′(2〈ψ1|ψ2〉|ψ1〉 − |ψ2〉).
If such a linear operator OA′A exists, we can construct a local measurement {Ms,Mf} such that Mf = OA′A ⊗ IB

and Ms =
√

IA′A −O†O ⊗ IB . It is quite straightforward to verify that such a local measurement can achieve a
UDRE.

Consider the following linear operator

O = 1/
√

2|0〉〈0|A′ ⊗ IA + 1/
√

2|0〉〈1|A′ ⊗ (u/v)MA,

where M is a linear operator such that (MA ⊗ IB)|ψ2〉 = (2〈ψ1|ψ2〉|ψ1〉 − |ψ2〉) and MAM
†
A ≤ λ−1

minIA. The existence
of M follows directly from Lemma 1. Clearly, by construction conditions ii) and iii) are automatically satisfied.
The validity of condition i) follows from the observationOO† = 1/2|0〉〈0|⊗IA+1/2|0〉〈0|⊗(u/v)2MM † ≤ |0〉〈0|⊗IA. �

What is missing in Lemma 2 is how to construct the auxiliary system A′ used on the Alice’s part when the given
state is ρ(N). Our idea is to transform the state |ψ1〉⊗N0 (resp. |ψ2〉⊗N0) to |α〉 (resp. |β〉) for some N0, and then
system A′ can be constructed from these N0 copies. The following lemma plays a key role.

Lemma 3. There exists an orthonormal basis {|ei〉 : 0 ≤ i ≤ d− 1} of HB such that

|ψ1〉AB =

d−1
∑

i=0

ai|αi〉A|ei〉B , 〈αi|αi〉 = 1,

|ψ2〉AB =

d−1
∑

i=0

bi|βi〉A|ei〉B, 〈βi|βi〉 = 1,

and |〈αi|βi〉| < 1 for each 0 ≤ i ≤ d − 1. In particular, (|ψ1〉AB, |ψ2〉AB) can be transformed into (|α〉A, |β〉A) by a
local operation, where 〈α|β〉 = max{|〈αi|βi〉| : 0 ≤ i ≤ d− 1} < 1.

Proof. For the case of d = 2, we can choose {|e0〉, |e1〉} to be one of the following three bases: {|0〉, |1〉}, {|+〉, |−〉},
and { 4

5 |0〉 + 3
5 |1〉, 3

5 |0〉 − 4
5 |1〉}.

Now we start to consider the general case d > 2. Let us start with the basis |ei〉 = |i〉B which gives the Schmidt
decomposition of |ψ2〉. That is, 〈αi|αj〉 = δij . Let I1 = {0 ≤ i ≤ d − 1 : |αi〉 ≡ |βi〉}. If I1 = ∅ then we have done.
Otherwise we have the following two cases:

Case 1. I1 = {0, · · · , d−1}. In this case |ψ1〉 and |ψ2〉 are simultaneously Schmidt decomposable. Let us define a new

basis |e′i〉B = 1/
√
d

∑d−1
j=0 ω

ij |ej〉B, where ω = e2πi/d is the d-th root of unity. Then we have |α′
i〉A =

∑d−1
i=0 ω

ijai|αi〉A
and |β′

i〉A =
∑d−1

i=0 ω
ijbi|βi〉A. One can readily verify that 〈α′

i|β′
i〉 = 〈ψ1|ψ2〉. That completes our proof in this case.
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Case 2. I1 $ {0, · · · , d − 1}. To be specific, assume that |α0〉 ≡ |β0〉 and |α1〉 6≡ |β1〉. Then consider the following
two sub-vectors of |ψ1〉 and |ψ2〉:

|ψ′
1〉 = a0|α0〉A|e0〉B + a1|α1〉A|e1〉B,

|ψ′
2〉 = b0|β0〉A|e0〉B + b1|β1〉A|e1〉B.

Applying the result for d = 2 we know that there is an orthonormal basis {|e′0〉B , |e′1〉B} of span{|e0〉B , |e1〉B} such
that 〈e′0|ψ′

1〉 6≡ 〈e′0|ψ′
2〉 and 〈e′1|ψ′

1〉 6≡ 〈e′1|ψ′
2〉. Thus under the new basis {|e′0〉B , |e′1〉B , |e2〉B, · · · , |ed−1〉B}, we have

I ′1 = I1 − {0} $ I1. Repeating this process at most d− 1 times we can finally have I1 = ∅. �

For |α〉 and |β〉 in the above lemma, we can choose a positive integer N0 such that

|〈α|β〉|N0 ≤
√

λmin

1 + λmin
.

Then it follows from Lemma 2 that

Corollary 1. |ψ1〉⊗(N0+1) and |ψ2〉⊗(N0+2) are locally unambiguously distinguishable with remaining entangled state
|ψ2〉.

This completes the proof of Theorem 1 for the case where k = 2 and one of |ψ1〉 and |ψ2〉 has full Schmidt number.
The proof for the most general case is somewhat involved and is given in Appendix 1.

III. APPLICATIONS TO THE LOCAL IDENTIFICATION OF QUANTUM MEASUREMENTS

We will employ Theorem 2 to study the local identification of quantum operations, which formalize all physically
realizable operations in quantum mechanics [19]. Recently the problem of distinguishing quantum operations has
attracted a lot of attentions. Many interesting results have been reported [20, 21, 22, 23, 24]. It was shown that
perfect identification can be achieved for unitary operations [20] and projective measurements [21]. A necessary and
sufficient condition for the perfect distinguishability of quantum operations has been discovered quite recently [24]. An
important generalization of this problem is to consider the identification of a bipartite unknown quantum operation
using LOCC only, which seems much more complicated than the global setting. Surprisingly, it has been shown that
the perfect discrimination between unitary operations is always possible even under LOCC [25]. However, the local
distinguishability of general quantum operations remains unknown so far.

Here we consider the identification of bipartite quantum measurements. We will employ a new strategy different
from that in [25], i.e., we will reduce the LOCC discrimination problem to the global case by generating pure bipartite
entanglement using the known apparatus. Applying our result about deterministic distillation, we can generate a
sufficiently large number of EPR pairs between Alice and Bob, and thus accomplish the local perfect discrimination
by teleportation and global protocol. This motivates us to introduce the following

Definition 2. Two quantum measurements M0 = (M01, · · · ,M0n0
) and M1 = (M11, · · · ,M1n1

) acting on HA ⊗HB

are said to be consistently entangled, if there exists |α〉 ∈ HA′ ⊗ HA and |β〉 ∈ HB′ ⊗ HB such that (IA′ ⊗ IB′ ⊗
Mik)|α〉A′A|β〉B′B is entangled or vanished for 1 ≤ i ≤ nk and k = 0, 1, where A′ and B′ are auxiliary systems.

It follows immediately from Theorem 2 that bipartite pure entanglement can be extracted by a finite number of
runs of an unknown operation M which is secretely chosen from two consistently entangled measurements M0 and
M1. So if M0 and M1 are perfectly distinguishable by global quantum operations, then they are also perfectly
distinguishable by LOCC.

If we focus our attention on the identification of two bipartite projective measurements M0 =
∑l

i=1 iPi and

M1 =
∑l

j=1 jQj and apply the fact that any two projective measurements are identifiable by global operations [21],
we have the following results about the local distinguishability of consistently entangled projective measurements.

Lemma 4. If M0 and M1 are consistently entangled bipartite projective measurements, then they are perfectly
distinguishably by LOCC.

Unfortunately, for M0 and M1 that may not be consistently entangled, the local distinguishability remains un-
known. Nevertheless, we still have the following sufficient condition. The proof of this result is somewhat tricky and
is put in Appendix 2.

Lemma 5. Two projective measurements M0 and M1 can be perfectly distinguished by LOCC if for some k ∈
{1, 2, · · · , l} there is a product state in the supports of Pk or Qk but not in their intersection.
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To describe the above two identifiable cases in a more unified way, we will employ the notion of Unextendible
Product Bases (UPB) [26]. A UPB is a set of orthogonal product pure states which cannot be further extended by
adding any additional orthogonal product state. The notion of UPB is very important as it can be used to construct
bound entanglement or to demonstrate the weird phenomenon “quantum nonlocality without entanglement” [8]. It
can also be used to construct interesting examples in quantum information theory [27]. In addition, we need to
introduce the notion of Unextendible Product Part (UPP). Let W be a set of product states |αβ〉 such that |αβ〉 is in
the intersection of the supports of Pk and Qk for some k. That is,

W = {|αβ〉 : |αβ〉 ∈ supp(Pk) ∩ supp(Qk) for some k}.

A subset X of W is said to be a (orthogonal) Product Part (PP) of M0 and M1, if any two states in X are orthogonal.
A PP is called a UPP if it can be a proper subset of any other PP.

Theorem 3. M0 and M1 are perfectly distinguishable if they have a UPP which is not a UPB.

Proof. Let Y be such a UPP. Notice that |Y | < dim(HA ⊗ HB) as M0 and M1 are different. Since Y
is not a UPB, there is a product state |αβ〉 in the orthogonal complement of Y . If for every k, both Pk|αβ〉
and Qk|αβ〉 are not product states, then we can identify M according to Corollary 4. Otherwise, without loss
of generality, we can assume that Pk|αβ〉 = λ|γη〉(λ 6= 0) is a product state. Then |γη〉 is in the support of
Pk as Pk|γη〉 = PkPk|αβ〉 = Pk|αβ〉 = |γη〉. We claim that |γη〉 is not in the support of Qk, and then the
identifiability of M follows immediately from Lemma 5. In fact, if it is not the case, then |γη〉 is in the both supports
of Pk and Qk. Thus, Y ∪{|γη〉} is a PP which strictly includes Y . This contradicts our assumption that Y is a UPP. �

If the dimension of one part of a bipartite system is 2, then any UPP of M0 and M1 cannot be a UPB as there is
no UPB for 2 ⊗ n quantum system [26]. So we have:

Theorem 4. Any two projective measurements acting on 2 ⊗ n are perfectly distinguishable by LOCC.

However, there does exists two locally indistinguishable bipartite projective measurements if the dimension of each
subsystem is not less than 3. This is essentially due to the existence of UPB for these quantum systems [26]. Let

{|αi〉A|βi〉B}l
i=1 be a UPB and P =

∑l
i=1 |αiβi〉〈αiβi|. Partition IAB − P into two nontrivial orthogonal projectors

Q1 and Q2. Then we claim that the following two bipartite projective measurements

M0 =

l
∑

i=1

i|αiβi〉〈αiβi| + (l + 1)(I − P ),

M1 =

l
∑

i=1

i|αiβi〉〈αiβi| + (l + 1)Q1 + (l + 2)Q2

cannot be perfectly distinguishable using LOCC. Actually, due to the property of UPB, M0 and M1 will yield an
outcome r ∈ {1, · · · , l} with nonzero probability on any product input state. This makes further perfect discrimination
impossible as both output states are |αrβr〉.

IV. CONCLUSION

In this paper, we have considered the problem of how to effectively manipulate a quantum system whose state
is secretely chosen from a set of nonorthogonal bipartite pure entangled states. Our idea is to distill some pure
entanglement when the discrimination is failed. Then the notion of Unambiguous Discrimination with Remaining

Entanglement has been introduced to describe such a discrimination protocol. We have shown that an unknown state
which belongs to a finite set of bipartite pure entangled states {|ψi〉⊗N} can be locally distinguished via UDRE for
some sufficiently large N . This discrimination protocol is then used to construct exact and deterministic entanglement
distillation protocols. Most interestingly, a mixed state ρ(N) produced by randomly chosen from a finite set of N -copy
entangled states {|ψi〉⊗N}, can be locally transformed to an EPR pair |Φ0〉, for some sufficiently large N .

We apply our distillation to identify an unknown bipartite quantum measurement locally. It provides us a way to
obtain EPR pairs by a finite number of runs of this unknown measurement. The local identification has been reduced
to global identification in these cases. In particular, we have discussed the local identification from two bipartite
projective measurements and have found a computable sufficient condition of identifiable measurements. Surprisingly,
even in this simple case, we have found an example of two bipartite measurements which are locally undistinguishable.
It exposes the difference between global identification and local identification, for quantum measurements.
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Appendix 1: Proof of the general case of Theorem 1

In this Appendix we turn to prove Theorem 1 for the general case {|ψ1〉, |ψ2〉, · · · , |ψn〉}. Let us first complete the
proof of n = 2 case. we will show that the full Schmidt rank assumption can be removed. In fact, we will show that
for any two bipartite entangled pure states |ψ1〉 and |ψ2〉, by performing a local projective measurement {P ′

0, P
′
1} on

Bob’s side we can either i) with outcome “0” achieve a successful discrimination between these two states, or ii) with
outcome “1” obtain another two entangled states |ψ′

1〉 and |ψ′
2〉 on a smaller state space HA′ ⊗HB′ , and one of them

is of full Schmidt rank.
Let HB(ψ1) and HB(ψ2)) denote the supports of trA(|ψ1〉〈ψ1|) and trA(|ψ2〉〈ψ2|)), respectively. Let P1 and P2

be their respective projectors. We have rank(P1), rank(P2) ≥ 2 as |ψ1〉 and |ψ2〉 are both entangled. The case of
〈ψ2|ψ1〉 = 0 is trivial. In the following, we assume that 〈ψ2|ψ1〉 6= 0. Obviously, P2P1 6= 0. Now we complete the
proof for n = 2 by considering the following three cases:

• Case 1. rank(P2P1) ≥ 2. It suffices to choose a measurement {P ′
0 = IB −P2, P

′
1 = P2} on Bob’s part. Outcome

“0” indicates the original state is |ψ1〉 while outcome “1” yields a pair of entangled states on HA ⊗ HB(φ2),
namely IA ⊗P2|φ1〉 and the full Schmidt number state IA ⊗P2|φ2〉 = |φ2〉, and the latter case has been proven.

• Case 2. rank(P2P1) = 1, and P1P2 = P2P1. Let P2P1 = |x〉〈x|, where |x〉 and |y〉 are both normalized
states in HB. P1|x〉 = |x〉, P2|x〉 = |x〉, Q1 := P1 − |x〉〈x| ⊥ P2, and Q2 := P2 − |y〉〈y| ⊥ P1, where Q1

and Q2 are projectors of rank at least 1. Let |1〉 and |2〉 be eigenstates of Q1 and Q2, respectively. Consider
a measurement {P ′

0 = IB − P ′
1, P

′
1 = |x〉〈x| + |1〉〈1| + |2〉〈2|}. It is easy to verify that outcome “0” results

http://arxiv.org/abs/0710.0902
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in two orthogonal states, and outcome “1” results in two new bipartite entangle pure states with projectors
P1 = |1〉〈1| + |x〉〈x| and P2 = |2〉〈2| + |x〉〈x|, respectively. Let |z±〉 = (|1〉 ± |2〉)/

√
2. By another local

measurement {M1 = |z+〉〈z+| + |x〉〈x|/
√

2,M2 = |z−〉〈z−| + |x〉〈x|/
√

2} we finally obtain two entangled states
with the same supports |z+〉〈z+| + |x〉〈x| or |z−〉〈z−| + |x〉〈x|, which is again a proven case.

• Case 3: rank(P2P1) = 1 and P2P1 6= P1P2. Let P2P1 = a|y〉〈x|, where |x〉 and |y〉 are both normalized states
in HB and 0 < |a| < 1. It is easy to check that 〈x|y〉 6= 0, P1|x〉 = |x〉, P2|y〉 = |y〉, Q1 = P1 − |x〉〈x| ⊥ P2, and
Q2 = P2−|y〉〈y| ⊥ P1, where Q1 and Q2 are projectors of rank at least 1. Bob can perform a local measurement
{P ′

0 = IB −P ′
1, P

′
1 = Q1 +Q2 + |x〉〈x|}. Then he can either determine the original state is |ψ1〉 or yield another

pair of entangled states |ψ′
1〉 = (IA ⊗ P ′

1)|ψ1〉 = |ψ1〉 and |ψ′
2〉 = (IA ⊗ P ′

1)|ψ2〉, which is reduced to Case 2 as
|x〉 is in both supports.

Now we consider the case of n > 2. We shall first prove the result for the following three special states on two
pairs of qubits: |ψ1〉AB = |Φ0〉A1B1

|Φ0〉A2B2
, |ψ2〉AB = |φ1〉A1B1

|Φ0〉A2B2
, |ψ3〉AB = |Φ0〉A1B1

|φ2〉A2B2
. If |φ1〉 is an

entangled state, {|Φ0〉, |φ1〉} is a proven case on pair 1, and the result is reduced to n = 2 case. So it suffices to
consider that |φ1〉 is a product state. Similarly, we assume |φ2〉 to be a product state in the same way. Without loss
of generality, let |φ1〉 = (a|0〉 + b|1〉)A1

|0〉B1
and |φ2〉 = (c|0〉 + d|1〉)A2

|0〉B2
, where |a|2 + |b|2=1 and |c|2 + |d|2 = 1.

(The reason that we can choose |φ1〉 (or |φ2〉) of this form is that we can perform UA ⊗UA
∗ on pair 1 (pair 2) without

change the state |Φ0)〉 on both pairs).
Now let us introduce a linear operator OB1B2

on Bob’s system B1B2 as follows:

OB1B2
= |00〉(ac〈00| + ad〈01| + bc〈10|) + |11〉〈11|.

Then M = {M0,M1} is a local measurement, where M1 = IA1A2
⊗OB1B2

,M0 = IA1A2
⊗

√

IB1B2
−O†O. Notice that

〈ψ2|M †
0M0|ψ3〉 = 0. So after this measurement, |ψ2〉 and |ψ3〉 become orthogonal if the outcome is “0”. and then, we

can reduce the present case to n = 2 case by distinguishing between these two states. Thus, we only need to consider
that when the outcome is always “1”. In this setting, it’s easy to check that M1|ψ1〉 is an entangled state |ξ〉 while
M1|ψ2〉,M2|ψ3〉 become the same state |ψ〉 = |α〉A1A2

|00〉B1B2
. On the other hand, by the results in n = 2 case of

Theorem 2, |ψ2〉⊗N and |ψ3〉⊗N can be transformed to |Φ0〉 at the same time by some local measurement M′. Now,
measure {|ψ1〉⊗(N+1), |ψ2〉⊗(N+1), |ψ3〉⊗(N+1)} by M on the first copy and M′ on the other N copies. Suppose M′

brings |ψ1〉⊗N into some |φ〉. Then the whole state becomes a mixture of two entangled states |ξ〉A1B1
|φ〉A2B2

and
|ψ〉A1B1

|Φ0〉A2B2
, which is a proven case.

Finally, let us complete the whole proof by induction on n ≥ 2. By induction hypothesis and the result in Theorem
2, let local measurements M and M′ transform |ψ1〉⊗N1 , |ψ2〉⊗N1 , · · ·, |ψn−1〉⊗N1 and |ψ2〉⊗N2 , |ψ2〉⊗N2 , · · ·, |ψn〉⊗N2

to |Φ0〉, respectively. Thus, |ψ1〉⊗(N1+N2), |ψ2〉⊗(N1+N2), · · ·, |ψn〉⊗(N1+N2) can be reduced to a proven case. In fact,
measure the first N1 copies of this unknown state by M and measure the rest N2 copies by M′. Suppose M takes
|ψn〉⊗N1 to some |φ1〉 and M′ takes |ψ1〉⊗N2 to some |φ2〉. Then these states become |Φ0〉|φ2〉, |Φ0〉|Φ0〉, |φ1〉|Φ0〉 for
|ψ1〉, |ψi〉(i 6= 1, k), |ψk〉 respectively. This is exactly the case we have just proven for n = 3. �

Appendix 2: Proof of Lemma 5

Without loss of generality, we may assume that |αβ〉 is in the support of Qk only. So we have Qk|αβ〉 = |αβ〉 and
Pk|αβ〉 = λ|Φ〉, where λ 6= 0 (Otherwise M can be identified according the outcome of the measurement on |αβ〉)
and |〈αβ|Φ〉| < 1. First, Alice and Bob apply M to input state |α〉|β〉. If the outcome is not k, then M = M0 and
the identification is finished. Otherwise, the output state is |Φ〉 and |αβ〉. To finish the proof, we need to consider
the following two cases separately:

Case 1. |Φ〉 = |γ〉A|δ〉B is a product state. Clearly we have |〈Φ|αβ〉| < 1. If we further |〈Φ|αβ〉| ≤ 1/4, then
|〈α|γ〉| ≤ 1/2 or |〈β|δ〉| ≤ 1/2. Without loss of generality we may assume that |〈γ|α〉| ≤ 1/2, then it follows from [?
] there is a local isometry U acting on HA satisfying U |γ〉 ⊥ |γ〉 and U |α〉 = |α〉. A perfect discrimination can be
achieved by applying (U ⊗ I) to (|Φ〉, |αβ〉) and then applying M one more time. If |〈αβ|Φ〉| > 1/4, we can apply M
in parallel to n copies of |αβ〉 yielding two output product states with inner product |〈αβ|Φ〉|n ≤ 1/4 for sufficiently
large n.

Case 2. |Φ〉 is entangled. Employing Lemma 3, we can transform (|ΦAB〉, |αAβB〉) locally into (|γA0B〉, |αA0B〉) for
some |γ〉 such that |〈γ|α〉| < 1. Similarly we can transform (|ΦAB〉, |αAβB〉) locally into (|0AδB〉, |0AβB〉) for some
|δ〉 such that |〈δ|β〉| < 1. Combining these two transformations we can achieve the following transformation locally:
(|ΦAB〉⊗2, |αAβB〉⊗2) to (|γAδB〉, |αAβB〉). It is clear by repeating this process sufficiently large times we can obtain
two pairs of product states |γAδB〉 and |αAβB〉 such that |〈γ|α〉| and |〈δ|γ〉| can be arbitrarily small but not zero. Now
we are trying to show that by choosing |γAδB〉 carefully we can have Pk|γδ〉 ⊥ Qk|αβ〉, or equivalently, Pk|αβ〉 ⊥ |γδ〉.
This is obvious as the orthogonal complement of Pk|αβ〉 is spanned by a set of product states, and not all of these
states are orthogonal to |αβ〉. Otherwise Pk|αβ〉 should coincide with |αβ〉, a contradiction with our assumption. �
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