"This is the peer reviewed version of the following article: [Land Degradation and Development, 2018, 29 (11), pp. 4035 - 4049], which has been published in final form at [https://onlinelibrary.wiley.com/doi/abs/10.1002/ldr.3151] This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

Land Degradation & Development

Spatial modelling of gully erosion using Evidential Belief Function, Logistic Regression and a new ensemble EBF-LR algorithm

Journal:	Land Degradation & Development
Manuscript ID	LDD-18-0480.R3
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Arab Ameri, Alireza ; Tarbiat Modares University, Geomorphology Pradhan, Biswajeet; University of Technology Sydney Faculty of Engineering and Information Technology, School of Systems, Management and Leadership; University Putra Malaysia Rezaei, Khalil ; Kharazmi University, Faculty of Earth Sciences Yamani, Mojtaba ; University of Tehran, Department of Geomorphology, Pourghasemi, Hamid Reza; Shiraz University, Department of Natural Resources and Environmental Engineering, College of Agriculture, Lombardo, Luigi ; Tübingen University, Department of Geosciences,
Keywords:	Gully erosion, LR, EBF, Ensemble method, GIS

2		
3	1	Spatial modelling of gully erosion using Evidential Belief Function, Logistic
4	2	Regression and a new ensemble EBF–LR algorithm
5	-	
6	3	
/	4	Short title: Spatial modelling of gully erosion
0	5	
9 10	6	Alireza Arabameri ¹ Biswaieet Pradhan ^{2,3*} Khalil Rezaei ⁴ Moitaba Yamani ⁵ Hamid
11	7	Reza Pourghasemi ⁶ . Luigi Lombardo ⁷
12		
13	8	Department of Geomorphology, Tarbiat Modares University, Tehran, Iran
14	٩	² Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS). Faculty of
15	10	Engineering and IT University of Technology Sydney 2007 NSW Sydney Australia
16	10	Engineering and TT, Oniversity of Teenhology Sydney, 2007 TOW, Sydney, Tushana
17	11	³ Department of Energy and Mineral Resources Engineering, Choongmu-gwan, ejong University, 209
18	12	Neungdong-ro Gwangjin-gu, Seoul, 05006, Republic of Korea
19	10	⁴ Ecoulty of Earth Sciences, Kharazmi University, Tahran, Iron
20	15	Faculty of Earth Sciences, Kharazhii University, Tenhan, Iran.
21	14	⁵ Department of Geomorphology, Tehran University, Tehran, Iran
23		
24	15	^o Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz
25	16	University, Shiraz, Iran
26	17	⁷ Department of Geosciences Tübingen University Tübingen Germany
27		
28	18	*Email: <u>biswajeet24@gmail.com</u> or <u>Biswajeet.Pradhan@uts.edu.au</u> (corresponding author)
29		
30	19	
31 22	20	
32	21	Abstract
34		
35	22	This study aims to assess gully erosion sensitivity and delineate gully erosion-prone areas in
36		
37	23	Toroud Watershed, Semnan Province, Iran. Two different methods, namely, logistic
38		4
39	24	regression and evidential belief function, were evaluated, and a new ensemble method was
40		
41	25	proposed using the combination of both methods. We initially created a gully erosion
4Z //3		
44	26	inventory map using different resources, including early reports, Google Earth images and
45	~ 7	(1 1 1 P)
46	27	Global Positioning Systems (GPS)-aided field surveys. We subsequently split this
47	20	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$
48	28	information randomly and selected 70% (90) of the guilles for calibration and 30% (38) for
49	20	lidetion. The model of successful and a single of much institution of much instantion and the model.
50	29	validation. The method was constructed using a combination of morphometric and thematic
51	20	predictors that include 16 conditioning parameters. We also assessed the fallowing: i)
52 52	30	predictors that include to conditioning parameters, we also assessed the following: 1)
55 54	21	notential multicallinearity issues using tolerance (TOI) and variance inflation factor indices
55	21	potential multiconmeanty issues using toterance (TOL) and variance innation factor indices
56	27	and ii) covariate effects using LR coefficients and ERE class weights. Results show that land
57	52	and ny covariate creets using EX coefficients and EDF class weights. Results show that faile
58		1

use/land cover, lithology and distance to roads dominate the method with the greatest effect on gully occurrences. We produced three sensitivity maps and evaluated their predictive power through area under the curve (AUC) and seed cell area index (SCAI) analyses. AUC results revealed that the ensemble method presented a considerably higher performance (AUC = 0.909) than the individual LR (0.802) and EBF (0.821) methods. Similarly, SCAI displayed a constant decrease from the ensemble to single methods. The resulted gully erosion susceptibility map could be used by decision-makers and local managers for soil conservation, and for minimizing damages in development activities including construction of infrastructures such as roads and the route of gas and electricity transmission lines.

Keywords: Gully erosion; Logistic Regression; Evidential Belief Function; Ensemble
method; GIS; Iran

44 Introduction

Water-related soil erosion is one of the most important natural hazards in arid and semi-arid regions. Apart from the land degradation, loss of soil resources, reduction of soil fertility, desertification and destruction of human infrastructure (on site impacts), with the deposition of materials in the canals and downstream slopes, impact on surface water resources and quality, and also impose economic and ecological costs to societies and therefore has a negative impact on their sustainability development (off-site impacts) (Ayele et al., 2016). Global estimates show that approximately 6 million hectares of arable land lose their fertility annually due to soil erosion (Worker, 2004). Iran ranks second worldwide in terms of the volume of soil erosion (Najafi, 2005). The annual amount of soil losses in Iran is 2 to 2.5 billion tons, which is equivalent to 8% of the global soil erosion (Najafi, 2005). This amount is significant, considering that Iran's share of land area is 1.1% of the world's land area. Conditions are extremely alarming that in the draft law on soil conservation and water management, more than half the area of Iran (88 million hectares) is declared in a critical

state of erosion per hectare (Najafi, 2005). Gully erosion is the main destructive type of water-induced soil erosion worldwide (Pourghasemi et al., 2017; Rahmati et al., 2017). According to various definitions, a gully is a deep channel with steep slope edges caused by soil erosion and has a cross section that is greater than 0.304 m (FAO, 1965; Wang et al., 2016). The gully erosion, as a degradation process, with the destruction of surface and subsoil horizons leads to the massive deformation of the land surface and often causes extreme land degradation. Development of gullies is considered as a catalytic agent of destruction of agricultural land, residential areas, and infrastructures. Therefore, this phenomenon impose extensive damages to humankind (Mekonnen et al., 2017; Pulley et al., 2018).

These results have driven numerous investigations over the last decades, with the aim to develop methods for evaluating gully erosion processes and sensitivity mapping (Shellberg et al., 2016; Rahmati et al., 2017). The latter is a prerequisite for decision makers and land use planners. Geographical Information Systems (GIS) is considered a basic analysis tool for gully erosion sensitivity mapping (GESM) because it effectively manipulates spatial data (McCloskey et al., 2016). Moreover, recent advancement in remote sensing and modelling techniques contribute to significant improvements in GESM (Shellberg et al., 2016). Gully erosion is a compound of different physiographic factors (Dube et al., 2014) that interplay at small and large scales. Therefore, the community has focused its efforts on GIS-based techniques for GESM, including weights-of-evidence (WoE; Rahmati et al., 2016), frequency ratio (FR; Conforti et al., 2011; Umer et al., 2014), logistic regression (LR; Conoscenti et al., 2014), information amount (Conforti et al., 2011), the analytical hierarchy process (AHP; Zakerinejad and Maerker, 2014), multivariate adaptive regression splines (MARS: Gómez-Gutiérrez et al., 2015), artificial neural network (ANN; Rahmati et al., 2017), support vector machine (SVM; Pourghasemi et al., 2017), classification and regression tree (CART; Marker

> et al., 2011), random forest (RF; Kuhnert et al., 2010), and ensemble of ANN- SVM and maximum entropy (ME), data mining methods (Pourghasemi et al., 2017).

> Generally, statistical methods can obtain accurate results because they can use different datasets (Yilmaz, 2009). Moreover, they commonly involve a catchment to regional scales for gully erosion studies. Such methods derive functional relations between gully erosion occurrences and a set of conditioning factors. In the present study, two statistical methods, namely, evidential belief function (EBF) and LR methods, were applied. Literature review showed that LR and EBF methods have been successfully used for landslide assessment (Pourghasemi et al., 2013; Pham et al., 2016; Wang et al., 2016; Althuwaynee et al., 2012; Bui et al., 2017; Chen et al., 2017). Additionally, machine learning approaches are commonly used in the literature (Oh and Pradhan, 2011; Bui et al., 2012; Althuwaynee et al., 2014; Tehrany et al., 2015).

> In compared to other statistical approaches, LR methods allow selecting the variables step by step with the least amount of contingent error rates for the spatiotemporal prediction of the future events outside the training area (Brenning, 2005). LR can include independent variables of categorical or continuous nature (Brenning, 2005). It characterises the type of relationship between gully erosion occurrence and conditioning factors, which can be positive or negative (Lee, 2005). Meanwhile, EBF methods compute the correlation between gully erosion and conditioning factors.

101 On the basis of the literature review, despite the high capability of the EBF and LR methods 102 in hazard mapping, no comprehensive study on the combination of these methods for GESM 103 exists. The main purpose of this research is to apply an ensemble bivariate (EBF) and 104 multivariate (LR) models as a new approach in Toroud Watershed to identify the risk areas of 105 gully erosion. The results would contribute to the sustainable development in this area and 106 minimise soil and economic losses.

107 Material and methods

108 Study area

The Toroud Watershed is covering about 228.85 km², lies between the latitudes of 35°18'15"N and 35°33'33"N, and the longitudes of 54°56'33"N and 55°09'02"N in northeastern of Semnan Province, Iran. (Fig. 1). The geomorphology of the study area is controlled by geological, hydrological and structural setting. The northern, western, and eastern sectors of the watershed are located on the cones. Slopes in this region have convex profiles and are often highly dissected by V-shaped valleys. On the other hand, the central, southern, southeastern and southwestern sectors are located on the gentle slopes which are characterized by flat and concave profiles. The average value of elevation and slope in Toroud watershed are 799.5 m and 1.52° respectively. According to the climatic classification in Iran (IDWRM, 2013), the study area has an arid climate (average annual rainfall of 43.8 mm), and rainfall in this area varies from 33.17 mm to 93.83 mm constituting 80% of the rainfall which mainly falls in December and January (IRIMO, 2014). The average annual temperature of the study area is 23.4, varying from 50 degrees in summer to -5 degrees in winter. The study area is mainly covered with deserts and poor pasture. Its lithology is mainly composed of Qft2 (low-level piedmont fan and valley terrace deposits), Qft1 (high-level piedmont fan and valley terrace deposits), PlQc (fluvial conglomerate, piedmont conglomerate and sandstone), Qsf (salt flat) and Murm (light - red to brown marl and gypsiferous marl with sandstone intercalations) (GSI, 1997).

The study area is characterized by poorly evolved soils (Entisols and Aridisol; USDA, 2006).
Because of the high concentration of gullies is near roads and agricultural lands, therefore the
development of gullies causes massive economic damage to the inhabitants. The study area is
selected because of two main reasons: 1) a highway is crossing across this region connecting
between the two major provinces of Iran (Isfahan and Khorasan Razavi); 2) the area is highly

132	susceptible to gully erosion due to complex geological formations with the presence of
133	gypsum and salt leading to high evaporation.
134	
135	Fig. 1 Study area.
136	
137	Methodology
138	As shown in Fig. 2, this study is conducted in four stages as follows: (1) preparation of data
139	(Meyer and Martinez-Casasnovas, 1999), (2) application of EBF method and determination
140	of the relationship between gully erosion occurrences and conditioning factors (Al Abadi and
141	Al Ali, 2017), (3) utilisation of the LR method and determination of the effect of conditioning
142	factors (Martinez-Casasnovas et al. 2004), (4) GESM of the study area using individual and
143	combined methods and (5) evaluation of the capability and robustness of the combined
144	method in comparison with the individual EBF and LR methods in terms of receiver
145	operating characteristic (ROC)-area under the curve (AUC) and seed cell area index (SCAI)
146	(Luca et al., 2011).
147	
148	Fig. 2 Flowchart of the methodology used.
149	
150	Preparation of dependent and independent variables
151	Gully erosion inventory map (dependent variable)
152	The geomorphological community has widely used the hypothesis that events in the past are
153	important for understanding the future (Cama et al., 2017) by using statistical methods and
154	predict various phenomena. This assumption postulates that unless significant environmental
155	changes occur, we can investigate previous events, derive functional relations with respect to
156	a given set of covariates and predict potential future occurrences. The gully erosion literature

Land Degradation & Development

has also used this hypothesis to study the sensitivity of a given area (Pourghasemi et al.,
2017). However, for GESM, the primary requirement includes the data collection or
inventory that represents the dependent variable of any predictive method (Pourghasemi et al., 2017).

161

In the present work, early reports, Google Earth images (dated 22/05/2017) and comprehensive field surveys were used to determine the locations of gully erosion and construct an accurate gully erosion inventory map. A total of 128 gullies in the study area were digitised (Fig. 1). Out of the 128 gully erosion occurrences, 90 cases (70%) were randomly selected to calibrate our methods, and the remaining 38 gullies were used for validation (Cama et al., 2017). Some samples of gullies are shown in Fig. 3.

168

Fig. 3 Field photographs showing identified gullies in the study area.

169

170 Gully erosion conditioning factors (independent variables)

The selection of suitable gully erosion conditioning factors (independent variables) is a mainstep in the modelling of phenomena, such as gully erosion (Rahmati et al., 2017).

173 Sixteen geo-environmental parameters were selected on the basis of the relevant literature 174 (Rahmati et al., 2017) and the opinions of academics and natural resources experts. Out of 175 these 16 factors, the geomorphometric ones were derived from a DEM with horizontal 176 resolution of 30 m using the ASTER GDEM elevation data together with ArcGIS 10.5 and 177 SAGA-GIS software.

For clarity, we report the manner in which we computed the less common predictors adopted
in this study (i.e., stream length (LS), topography wetness index (TWI) and stream power
index (SPI)) as follows (Moore et al., 1991):

181

59

182	$LS = (A_S/22.13)^{0.6} \times (sin\beta/0.0896)^{1.3},$	(1)
-----	--	-----

 $TWI = In \left(A_S / \tan \beta \right), \tag{2}$

 $SPI = A_s \times tan_{\beta}$. (3)

- - 185 Where A_S is the special area of the basin (m²/m) and β is slope in degrees.

Landsat 8 OLI images were selected to extract the Normalized Difference Vegetation Index
(NDVI) and land use/land cover (LU/LC) (Fig 4a) using ENVI 5.1 software. The NDVI
amount was extracted in ArcGIS 10.5 software.

The lithological unit map (Fig 4b) was obtained from the geological map in 1:100,000-scale (GSI, 1997) and were classified into eight classes on the basis of their lithological characteristics and prior knowledge of their influence on gully erosion occurrence. Table 1 shows the lithological characteristics of Toroud Watershed. A soil type map (Fig 4c) was obtained from the Semnan Agricultural and Natural Resources Research Centre and classified into three classes.

195 Distance to roads (Fig 4d) was calculated from the topographic map with a scale of 1:50,000.

196 The mean annual rainfall layer was prepared in ArcGIS10.5 environment based on 30 years

197 (1984–2014) of precipitation data of the Toroud, Razveh, Moalleman and Hosseinan Stations

198 from the Iran Meteorological Organisation (IRIMO, 2014).

199 The classes of each gully erosion conditioning factor are shown in Table 2. The pixel size of

- all layers is the same with that of the digital elevation method (Dube et al., 2014).
- Fig. 4 Some examples of gully erosion conditioning factors, a) LU/LC, b) lithology, c) soil
 type, and d) distance to road.
- **Table 1** Description of geological units in the study area.

206 Multicollinearity analysis of gully erosion conditioning factors

 Table 2 Overview of factors used for GESM.

When applying any linear statistical method, the multicollinearity of data may hinder the reliability and interpretation of results (Pradhan and Seeni, 2017, 2018; Pradhan et al., 2017). Multicollinearity is defined as the linear dependency that links two or more independent variables in a dataset. Thus, multicollinearity must be checked even for gully erosion sensitivity methods. Several approaches may be adopted to assess multicollinearity. For example, the least absolute shrinkage and selection operator (Camilo et al., 2017) is popularly used to penalise the number of covariates in each method, thereby removing the redundant information carried by collinear predictors. Alternatively, an example can be found in the literature where the variance inflation factor (VIF) is used to recognise the presence of multicollinearity in data (Cama et al., 2017). Here, we opted for VIF, which is the reciprocal of TOL, and calculated as $1 - R^2$, where R^2 is obtained by regressing each variable with respect to the remaining variables in the multivariate regression (Holloway et al., 2017). A TOL ≤ 0.1 or a VIF ≥ 10 indicates serious multicollinearity (Guo-Liang et al., 2017).

221 LR method

LR is a multivariate statistical method that corresponds to the generalised linear method (GLM) when the distribution to be fitted corresponds to Bernoulli distribution (Hemasinghe et al., 2018). This distribution describes the probabilities of a binary outcome; thus, it is extremely convenient for predicting the presence or absence of gully erosion. LR can derive multivariate relationships between gullies and a set of predictors, assuming linearity between the target and explanatory variables, the latter being continuous and categorical in nature (Lee, 2005). These relationships can be used in an additive equation to produce the probability of gully occurrence, thereby generating GESMs (Zhou et al., 2018). GLMs, particularly LR, are quantitative methods that determine the influence of each independent

PCL.

variable through the coefficients and anti-logarithm of the coefficients (Lee and Sambath, 2006), which offers geomorphologists a chance to infer which environmental properties may dominate the rise of gully erosion and perform remediation to mitigate such phenomenon. The LR is expressed as follows:

- $P = \frac{1}{1+e^{-z}} \tag{5}$

where P is the possibility of gully erosion occurrence, denoted by 0 to 1; and Z denotes the gully erosion conditioning parameters and presumed as a linear composition of the conditioning factors, X_i (i = 1, 2, ..., n), as shown as follows:

$$Z = Log \ it \ (P) = Ln \ \frac{p}{1-p} = C_0 + C_1 X_1 + \dots + C_n X_n, \tag{6}$$

where C_0 is the constant coefficient of the method; and $X_1, X_2, ..., X_n$ are the coefficients of L'en independent variables C_1 , C_2 , C_n , respectively.

EBF

EBF methods have been successfully used as a data-based approach for potential assessment of mineral deposits and landslide and groundwater sensitivity mapping (Mogaji et al. 2014). Data-driven EBF methods can compute the weight of each class of conditioning factors using the relationship between classes and phenomenon occurrence (Wang et al., 2016). This method has four functions, including belief (Bel), disbelief (Dis), uncertainty (Unc) and plausibility (Pls; Mogaji et al. 2014). These functions are calculated as follows (Park et al., 2011):

257 (Bel) =
$$\left[\frac{\left[\lambda(T_{p})_{Aij}\right]}{\Sigma\left[\lambda(T_{p})_{Aij}\right]}\right]$$
, (7)

$$\left[\lambda(T_p)_{Aij}\right] = \left[\frac{N(F \cap A_{ij})}{N(F)}\right] / \left[(N(A_{ij} - N(F \cap A_{ij}))) / [N(P) - N(F)]\right]$$
(8)

260
$$\left[\lambda\left(\overline{T}_{p}\right)_{Aij}\right] = \left[\frac{N(F \cap A_{ij})}{N(F)}\right] / \left[(N(P) - N(F) - N(A_{ij}) + N(F \cap A_{ij})/N(P) - N(F)\right], (10)$$

261
$$(Unc) = [1 - (Bel) - (Dis)],$$
 (11)

$$(Pls) = [1 - (Dis)], (12)$$

where $N(F \cap A_{ij})$ is the aggregation of gullies occurring in A_{ij} , N(F) is the total aggregation of the entire gullies in the study area, $N(A_{ij})$ is the aggregation of pixels in A_{ij} and N(P) is the aggregation of pixels in the entire study area.

268 Validation of GESMs

A suitable validation is necessary to produce a reliable GESM for any area (Rahmati et al., 2016). Various validation strategies have been introduced in the literature, among which the ROC curve and its integral (known as AUC) have been widely adopted in the geomorphological community (Pourghasemi et al., 2017) together with Success or prediction rate curve (Frattini et al., 2010), and cell area index (Süzen and Doyuran, 2004).

In this study, we combined AUC and SCAI to provide a comprehensive assessment of the
validation performance (Hong et al., 2018; Thai Pham et al., 2018; Lee et al., 2018;
Pourghasemi and Rahmati, 2018).

AUC is one of the most useful and efficient methods for predicting and determining the accuracy of models (Gómez-Gutiérrez et al., 2015). In fact, this curve is considered a graphical representation of the true prediction of occurrence and non-occurrence of a

phenomenon (Dube et al., 2014). AUC represents the predictive amount of the system by describing its capability to estimate the occurrence (the presence of gully) and non-occurrence (the absence of gully) of events accurately. If a method cannot estimate the occurrence of gullies better than the probable or random point, then the AUC is 0.5 and therefore the least accurate; if the AUC is equal to 1, then the method is the most accurate. AUC values can be classified as follows: 0.5-0.6, poor; >0.6-0.7, average; >0.7-0.8, good; >0.8-0.9, very good; and >0.9-1, excellent (Yesilnacar, 2005). The SCAI validation technique was proposed by Suzen and Doyuran (2004). SCAI is calculated by dividing the percentage of pixels of the specific gully erosion sensitivity class by the percentage of the pixels of existing gullies in the specific gully sensitivity zone. SCAI shows the density of gullies among the gully sensitivity zones (Pawluszek and Borkowski, 2017). In the SCAI indicator, the high and very high susceptibility classes have very small SCAI values, and low and very low susceptibility classes have higher SCAI values (Suzen and Doyuran, 2004).

Results

294 Multicollinearity test

Before applying the EBF and LR methods, we checked for potential linear dependencies between the pairs of covariates to avoid multicollinearity among variables. The values of TOL and VIF of the 16 conditioning factors were calculated to detect multicollinearity (Table 3). From Table 3, the maximum VIF and minimum TOL were 3.452 and 0.290, respectively. The results indicated that no multicollinearity existed between the conditioning factors.

300 LR method

In this study, we calculated the regression coefficients of the gully erosion conditioning factors using IDRISI software. The coefficients of the gully erosion conditioning factors using the LR method are shown in Fig. 5. According to LR results, parameters of LU/LC, lithology, distance to road and soil type with scores 0.692, 0.492, 0.385, and 0.355

	13
322	Fig. 5 Coefficients of the conditioning factors in the LR model.
321	5).
320	the moderate (27.15%), high (13.11%), low (11.65%) and very low (0.917%) zones (Table
319	percentage (47.15%) of the total gullies fell in the very high sensitivity zones, followed by
318	low (17.56%), high (17.26%) and very high (16.12%) classes. In addition, the largest
317	that the low class had the largest area (30.85%), followed by the moderate (18.18%), very
316	according to the natural breaks method (Guo-Liang et al., 2017). The resulting map indicated
315	0.0032 to 0.074. The subsequent sensitivity amounts were classified into five classes (Fig. 6a)
314	According to the z value, the P values were computed using Eq. 5. The P values varied from
313	
	+ $(0.022 \times rainfall)$ + $(0.385 \times distance to road)$. (13)
	+ $(0.693 \times land use)$ + $(-0.054 \times profile curvature)$
	+ $(-0.026 \times drainage \ density)$ + $(-0.013 \times convergence \ index)$
	+ $(-0.054 \times TWI)$ + $(-0.024 \times LS)$ + $(0.355 \times soil type)$
	+ $(0.01 \times distance \ to \ stream)$ + $(0.043 \times NDVI)$ + $(0.044 \times SPI)$
	+ (0.086 × slope degree) + (0.082 + plan curvature)
	$Z = -11.7494 + (-0.098 \times slope \ aspect) + (0.492 \times lithology)$
312	
311	The z value is computed as follows:
310	ranked from fifth to twelfth.
309	degree, plan curvature, SPI, NDVI, rainfall, distance to stream, convergence index and LS are
308	respectively, have had little impact on the gully erosion. Rest of the parameters such as slope
307	curvature, TWI, and drainage density with scores -0.098, -0.0541, -0.054, and -0.026
306	findings of (Conoscenti et al. 2014). On the contrary, factors of slope aspect, profile
305	respectively, have had the greatest effect on the gully erosion. This results are in line with the

323 324	Table 3 Multicollinearity test among conditioning factors.
325	EBF method
326	The results of the EBF method are shown in Table 4. The correlation rate between the
327	conditioning factors and the gully erosion occurrence is related on the Bel amounts. The
328	absence of Bel in each class indicates no contribution to gully erosion (Pradhan et al., 2014;
329	Zeinivand and Ghorbani Nejad, 2018). As shown in Table. 4, the slope degree in the class of
330	$<1^{\circ}$ has the most Bel amount (0.306). This result indicates the utmost effect on gully erosion
331	occurrences. The slope aspect suggests that the SE and F classes have the largest Bel amounts
332	(0.218 and 0.204, respectively); therefore, gully erosion in these classes is high, which is
333	consistent with the findings of Rahmati et al. (2016). On the basis of the profile curvature, the
334	largest degree of belief amounts (0.227) is related to the class of -0.001 to -0.0005 .
335 336	Table. 4 Spatial relationship between gully erosion occurrence and conditioning factors using EBF model.
337	
338	In the case of plane curvature, the results show that flat areas with the largest degree of Bel
339	(0.367) contribute a higher probability of gully erosion than the concave (0.338) and convex
340	(0.293) areas. On the basis of NDVI results, classes of 0.039-0.13 and >0.39 with Bel
341	amounts of 0.639 and 0.363, respectively, have a strong relationship with gully occurrence,
342	whereas the class of >0.13 with Bel amount of 0 has no influence on gully erosion. This
343	result is consistent with that of Gomez-Gutierrez et al. (2009). On the basis of the relationship
344	between gully occurrence and LU/LC among the various land uses, desert areas have the
345	largest Bel amount (0.772) and therefore has the largest gully sensitivity. By contrast,
346	irrigated lands have no correlation with gully erosion because of vegetation cover. These
347	results are similar to those of Conoscenti et al. (2014). In the case of lithology, the results
348	indicated that high levels of piedmont fan and valley terrace deposits (Qft1) with maximum

http://mc.manuscriptcentral.com/ldd

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30	
27	
22	
ככ ז∡	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
22	
50	
5/	
58	
59	
60	

349	Bel degrees (0.276) show the upmost sensitivity to gully erosion. For the distances to road
350	and river, an inverse relationship exists between the sensitivity of area to gully erosion and
351	Bel degree. In other words, the amount of Bel decreases with the increase in distance of the
352	factors. This result agrees with that of Shellberg et al. (2016), which suggests that
353	anthropogenic linear features in the landscape, such as roads, contribute to flow concentration
354	and thus contribute to gullies. Moreover, Conoscenti et al. (2014) statistically correlated
355	gullies to a river network, which we investigated in the present study, including drainage
356	density. The Bel amounts for drainage effects show that gully erosion sensitivity is high in
357	the class of 2.19–2.54 km/km ² ; particularly, a low density indicates a low Bel amount. The
358	analysis of Bel for the relationship between gully erosion occurrence and TWI shows that the
359	class of $-0.84-0.94$ with the largest Bel amount (0.284) has a strong correlation with gully
360	erosion. According to the rainfall results, the class of 80-85 mm has the largest amount of
361	Bel (0.410). In the case of SPI, the results indicate that the class of 7,000–11,000 has a high
362	sensitivity to gully erosion, and the class of >11,000 with the lowest Bel amount (0.055) has
363	the weakest correlation with gully occurrence. According to the Bel degree of the LS factor, a
364	direct relationship exists between sensitivity to gully occurrence and Bel degree. Therefore,
365	the probability of gully erosion increases proportionally with LS. The interpretation of the
366	role of soil type in the method indicates that the Entisols/Aridisols class with Bel amount of
367	0.934 has a strong and positive relationship with gully occurrence. These results indicate that
368	these soils are prone to erosion. On the basis of the convergence index, this parameter
369	exhibits a diverse relationship with gully erosion and with increasing convergence. After the
370	computation of the spatial relationship between gully erosion and conditioning factors, the
371	GESM via the EBF method was constructed using Eq. (14).
372	ESM =

373 $(slope aspect_{Bel}) + (lithology_{Bel}) + (slope degree_{Bel}) + (plan curvature_{Bel}) +$

374	$(distance \ to \ stream_{Bel}) + (NDVI_{Bel}) + (SPI_{Bel}) + (TWI_{Bel}) + (LS_{Bel}) +$
375	$(soil type_{Bel}) + (drainage density_{Bel}) + (convergence index_{Bel}) + (land use_{Bel}) + (land use_{B$
376	$(profile\ curvature_{Bel}) + (rainfall_{Bel}) + (distance\ to\ road_{Bel})$ (14)
377	
378	The result of the EBF method ranges from 1.850 to 6.750. Then, the resultant GESM was
379	divided into five classes from very low to very high (Fig. 6b; Wang et al., 2016, Arabameri et
380	al., 2017). The results of classification indicate that 19.37% and 20.48% of the study area are
381	in the very low and low sensitivity zones, respectively, and 19.83%, 19.97% and 20.35% fall
382	in the moderate, high and very high sensitivity zones, respectively. Moreover, 49.81% and
383	27.20% of the total gullies fall in the very high and high sensitivity zones, respectively;
384	whereas moderate, low and very low susceptible zones are 15.16%, 6.25% and 1.56% of the
385	gullies, respectively (Table5).
386	Fig. 6 GESM using LR, EBF and ensemble models.
387	Table 5 Area of susceptibility classes and SCAI.
388	
389	Ensemble method
390	The combination of models compounds the results of individual methods into a combined
391	method to increase the precision of prediction capability and has therefore received
392	considerable interest from researchers (Guo-Liang et al., 2017). In the present work, LR and
393	EBF methods were combined for the GESM of Toroud Watershed to overcome their
394	individual disadvantages. For this purpose, the coefficients obtained by LR were multiplied
395	by the weight obtained in the EBF method using Eq. 15. Finally, the sensitivity of landscape
396	to gully erosion was computed in ArcGIS10.5 using the Weighted Sum Tools.
397	
398	$GESM = (-0.098 \times slope \ aspect_{Bel}) + (0.492 \times lithology_{Bel}) + (0.086 \times lithol$
399	$slope \ degree_{Bel}) + (0.082 + plan \ curvature_{Bel}) + (0.01 \times distance \ to \ stream_{Bel}) + (0.01 \times distance \ stream_{Bel}) + (0.01 \times di$
	16
	http://mc.manuscriptcentral.com/ldd

3	400	$(0.043 \times NDVI_{Bel}) + (0.044 \times SPI_{Bel}) + (-0.054 \times TWI_{Bel}) + (-0.024 \times LS_{Bel}) + (-0.024 \times LS_{Bel}$
4 5 6	401	$(0.355 \times soil type_{Bel}) + (-0.026 \times drainage density_{Bel}) +$
7 8	402	$(-0.013 \times convergence \ index_{Bel}) + (0.693 \times land \ use_{Bel}) +$
9 10	403	$(-0.054 \times profile\ curvature_{Bel}) + (0.022 \times rainfall_{Bel}) +$
11 12	404	$(0.385 \times distance \ to \ road_{Bel}) \tag{15}$
13 14 15	405	
16 17	406	The resultant map was classified into five classes similar to the EBF and LR methods (Fig.
18 19	407	7c). The results indicate that from the total area (227.97 km ²) of Toroud Watershed, 19.63%
20 21	408	(44.76 km ²) belong to the very low sensitivity class, 20.23% (46.11 km ²) to the low class,
22 23	409	20.14% (45.92 km ²) to the moderate class, 19.70% (44.91 km ²) to the high class and 20.28%
24 25 26	410	(46.24 km ²) to the very high sensitivity class. Generally, from the total gully erosion area
26 27 28	411	(2.72 km^2) , 0.82% (0.022 km2) fall in the very low sensitivity class, followed by 3.67% (0.1
20 29 30	412	km ²), 10.93% (0.293 km ²), 20.68% (0.562 km ²) and 63.87% (1.737 km ²) that fall in the low,
31 32	413	moderate, high and very high sensitivity classes, respectively.
33 34	414	Validation of the three methods
35 36	415	The results of validation using the AUC and SCAI methods are shown in Tables 5 and 6.
37 38	416	According to the AUC results, the combined method has a higher accuracy of 0.909 (90.09%)
39 40 41	417	than the individual statistical methods (EBF 0.821 (82.1%) and LR 0.802 (80.2%)).
41 42 43	418	In addition, the amount of SCAI in the three methods gradually decrease from very low to
44 45	419	very high sensitivity zones; consequently, the values of SCAI decreased from 12.48, 10.53
46 47	420	and 17.39 in the very low sensitivity class to 0.316, 0.430 and 0.348 in the very high
48 49	421	sensitivity class in the LR, EBF and ensemble methods, respectively.
50 51	422	Table 6 AUC values of three models.
52 53	423	Discussion
54 55		
56 57		
58		17
59		

http://mc.manuscriptcentral.com/ldd

Due to the shortcomings and limitations of each of the quantitative (data-driven and knowledge-based) methods, scientists proposed and developed ensemble methods in order to overcome their disadvantages and increase their efficiency (Tehrany et al., 2014). In this study, two types of bivariate and multivariate data-driven methods, namely, EBF and LR, and their ensemble were applied to produce GESMs. Given that the results of data-driven methods are obtained from data, the input data should be reliable. In this study, early reports, Google Earth images and comprehensive field surveys by GPS were used to produce the gully erosion inventory, from which all the analyses were performed. Bivariate statistical methods (such as EBF) can perform a quantified prediction of sensitivity using the factor class weighted amounts acquired according to the distribution of events (Tehrany et al., 2013; Guo-liang et al., 2017). The main advantage of EBF is that, unlike other bivariate models, EBF supports a series of mass functions including belief, disbelief, uncertainty, and plausibility. Therefore, the results can adequately show quantitative relationships between gully occurrences and conditioning factors by modeling the degree of uncertainty. The main disadvantage of EBF method is its incapability to compute the weight of

conditioning factors. EBF has been used in various research ranging from landslide sensitivity to groundwater potential mapping (Park et al., 2014; Wang et al., 2016; Zeinivand and Ghorbani Nejad, 2018). Wang et al. (2016) stated that the EBF method with AUC = 80.09 is highly capable of predicting areas prone to landslide. Meanwhile, the main advantage of multivariate methods, such as LR, is its capability to evaluate the relationship between an occurrence and the conditioning factors. Thus, such methods enable the assessment of the significance and the removal of causative factors (Pourghasemi et al., 2013; Guo-liang et al., 2017; Raja et al., 2017).

Pourghasemi et al. (2013) showed that binary LR is highly capable of identifying areas prone
to landslide compared with other methods. Raja et al. (2017) stated that LR has a high

Land Degradation & Development

prediction capability. The results of the LR method indicate that the factors of LU/LC, lithology and distance to road with coefficients of 0.693, 0.492 and 0.385, respectively, have the highest effects on gully occurrence. These results are consistent with those of Belayneh et al. (2014), Conoscenti et al. (2014), Shellberg et al. (2016) and McCloskey et al. (2016). The comparison of the ensemble method with the individual LR and EBF methods shows that the combined method has a higher prediction accuracy than the individual methods.

455 Conclusion

This study was carried out in order to not only investigate the capability of an ensemble model, EBF-LR, to predict the GESM, but also compare its capability with standalone EBF and LR models. Over the years, researchers and natural resource managers around the world have been working on various types of models to asses GESM. In this research, a new scientific methodology framework is proposed using a combination of bivariate (evidential belief function, EBF) and multivariate (Logistic regression, LR) methods implemented in a geographical information system (GIS) to predict gully erosion-prone areas. For this purpose, 16 gully erosion conditioning factors and 90 gully locations (training dataset) are used for modelling and GESM. Subsequently, 38 gully locations (validation dataset) are used for validation of GESMs. The resultant maps can be used for preventive measures and to reduce possible damages caused by them.

In addition, the importance of all gully erosion conditioning factors was investigated based on all modelling approaches. The result of LR method indicates that factors of LU/LC, lithology and distance to road have the greatest effect on gully occurrence in the study area. The results of validation using AUC and SCAI indicators confirm that the proposed integrated method has a higher accuracy than the individual EBF and LR methods. The results show that the areas with very high susceptibility to gully erosion are mainly distributed in the central part of the study area and gully occurrence are highly predicted near the roads and rivers, flat

topography, sparse vegetation and susceptible lithology to erosion. Unfortunately, despite the large dispersion of gullies and the erosion activity in the study area, no measures have been considered to control the growth of gullies and the risk of losses from erosion, and the most destructive type of erosion has not been seriously investigated by authorities. The revitalisation of vegetation, which increases surface roughness, improves soil, increases organic matter and decreases runoff; the management of human activities to prevent and reduce their destructive effects, especially on slopes; and the prevention of grazing in areas sensitive to gully erosion are proposed to reduce the rate of erosion in the study area. Due to the higher accuracy of the GESM using a combined approach, planners and decision-makers can use it to carry out developmental projects such as road construction and electricity and gas transmission lines in order to prevent possible damages. **Conflict of Interest** Authors declare that there is no conflict of interest in regarding the publication of this paper.

487 Acknowledgements

Thanks to four anonymous reviewers and Editorial comments by Professor C. J. Barrow and
Professor Marques, María Jose for their valuable comments, which helped us to improve the
quality of the manuscript.

491 Funding

This research is supported by the UTS under grant numbers 321740.2232335 and 321740.2232357.

References

496 Arabameri, A.R., Pourghasemi, H.R., & Yamani, M. (2017). Applying different scenarios for

- 497 landslide spatial modeling using computational intelligence methods. *Environmental Earth Sciences*,
 - **76**, 832. DOI: <u>https://doi.org/10.1007/s12665-017-7177-5</u>.

3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
10
10
17
18
19
20
21
22
22
∠⊃ ⊃4
24
25
26
27
28
29
30
21
21
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
46
- 1 0 //7
4/
48
49
50
51
52
53
54
54
22
56
57
58

59

60

499 Al-Abadi, A., & Al-Ali, A. (2018). Susceptibility mapping of gully erosion using GIS-based statistical

- 500 bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq.
- 501 *Environmental Earth Sciences*, 77, 249. DOI: <u>https://doi.org/10.1007/s12665-018-7434-2</u>.
- 502 Althuwaynee, O.F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model
- 503 in landslide susceptibility mapping, *Computers and Geosciences*, 44, 120-135. DOI:
 504 <u>https://doi.org/10.1016/j.cageo.2012.03.003</u>.
- Althuwaynee, O.F., Pradhan, B., Park, H.J., & Lee, J.H. (2014). A novel ensemble bivariate statistical
 evidential belief function with knowledge-based analytical hierarchy process and multivariate
 statistical logistic regression for landslide susceptibility mapping. *Computers and Geosciences*, 114,
 21-36. DOI: https://doi.org/10.1016/j.catena.2013.10.011
- 509 Ayele, G.K., Gessess, A.A., Addisie, M.B., Tilahun, S.A., Tebebu, T.Y., Tenessa, D.B.,
- 510 Langendoen, E.J., Nicholson, C.F., & Steenhuis, T.S. (2016). A biophysical and economic assessment
 - 511 of a community-based rehabilitated gully in the Ethiopian highlands. Land Degradation &
 - 512 Development, 27, 270-280. DOI: <u>https://doi.org/10.1002/ldr.2425</u>.
 - 513 Belayneh, L., Bantider, A., & Moges, A. (2014). Road construction and gully development in Hadero
 514 Tunto-Durgi road project, Southern Ethopia. *Ethiopian Journal of Environmental Studies and*515 *Management*, 7, 720–730. DOI: 10.4314/ejesm.v7i1.3S.
- 516 Brenning, A. (2005). Spatial prediction models for landslide hazards: review, comparison and
 517 evaluation. *Natural Hazards and Earth System Sciences*, 5, 853–862. DOI:
 518 https://doi.org/10.5194/nhess-5-853-2005.
- Bui, D.T., Bui, Q.T., Nguyen, Q.P., Pradhan, B., Nampak, H., & Trinh, P.T. (2017). A hybrid
 artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm
 optimization for forest fire susceptibility modeling at a tropical area. *Agricultural and Forest Meteorology*, 233, 32-44. DOI: https://doi.org/10.1016/j.agrformet.2016.11.002
- 523 Bui, D.T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O.B. (2012). Landslide susceptibility
- 524 mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS.
- 525 *Computers & Geosciences*, **45**, 199-211. DOI: <u>https://doi.org/10.1016/j.cageo.2011.10.031</u>

526 Cama, M., Lombardo, L., Conoscenti, C., & Rotigliano, E. (2017). Improving transferability

- 527 strategies for debris flow susceptibility assessment: application to the Saponara and Itala catchments
- 528 (Messina, Italy). *Geomorphology*, **288**, 52–65. DOI: <u>https://doi.org/10.1016/j.geomorph.2017.03.025</u>

529 Camilo, D., Lombardo, L., Mai, P., Dou, J., & Huser, R. (2017). Handling high predictor
530 dimensionality in slope-unit-based landslide susceptibility models through LASSO penalized
531 Generalized Linear Model. *Environmental Modelling and Software*, 97, 145-156. DOI:
532 https://doi.org/10.1016/j.envsoft.2017.08.003

533 Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D.T., Duan, Z., & Ma, J. A. (2017).

534 Comparative study of logistic model tree, random forest, and classification and regression tree models

- 535 for spatial prediction of landslide susceptibility. *Catena*, **151**, 147-160. DOI: 536 https://doi.org/10.1016/j.catena.2016.11.032
- 537 Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., & Ma[°]rker, M. (2014). Gully
- 538 erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy).
- *Geomorphology*, **204** (1), 399–411. DOI: <u>https://doi.org/10.1016/j.geomorph.2013.08.021</u>
- 540 Conforti, M., Aucelli, P.P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis
- 541 for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy).
- *Natural Hazards*, **56 (3)**, 881–898. DOI: <u>https://doi.org/10.1007/s11069-010-9598-2</u>
- 543 Dempster, A.P. (1967). Upper and lower probabilities induced by a multivalued mapping. *The Annals*
 - *of Mathematical Statistics*, **38 (2)**, 325–339.
- Frattini, P., Crosta, G.B., & Carrara, A. (2010). Techniques for evaluating the performance of
 landslide susceptibility models. *Engineering Geology*, 111 (1-4), 62–72. DOI:
 https://doi.org/10.1016/j.enggeo.2009.12.004
- Food and Agricultural Organization-FAO, (1965). Soil Erosion by Water, Some Measures for its
 Control on Cultivated Land. FAO Agricultural, Rome, 81.
- 550 Gómez-Gutiérrez, Á., Conoscenti, C., Angileri, S.E., Rotigliano, E., & Schnabel, S. (2015). Using
 551 topographical attributes to evaluate gully erosion proneness (susceptibility) in two Mediterranean
 552 basins: advantages and limitations. *Natural Hazards*, **79** (1), 291–314. DOI:
 - 553 <u>https://doi.org/10.1007/s11069-015-1703-0</u>

1 2

Guo-liang, D., Yong-shuang, Z., Javed, I., Zhi-hua, Y. & Xin, Y. (2017). Landslide susceptibility

4
5
6
0
/
8
9
10
11
12
13
17
14
15
16
17
18
19
20
20
∠ ı วา
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
55
26
36
36 37
36 37 38
36 37 38 39
36 37 38 39 40
36 37 38 39 40 41
36 37 38 39 40 41 42
36 37 38 39 40 41 42 43
 36 37 38 39 40 41 42 43 44
 36 37 38 39 40 41 42 43 44
 36 37 38 39 40 41 42 43 44 45
 36 37 38 39 40 41 42 43 44 45 46
 36 37 38 39 40 41 42 43 44 45 46 47
 36 37 38 39 40 41 42 43 44 45 46 47 48
 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

59

60

555 mapping using an integrated model of information value method and logistic regression in the 556 Bailongjiang watershed, Gansu Province, China. Journal of Mountain Science, 14(2), 249-268. DOI: 557 https://doi.org/10.1007/s11629-016-4126-9 558 Geology Survey of Iran (GSI). (1997). http://www.gsi.ir/Main/Lang¬¬ en/index.html. 559 Holloway, J., Rudy, A., Lamoureux, S., & Treitz, P. (2017). Determining the terrain characteristics 560 related to the surface expression of subsurface water pressurization in permafrost landscapes using 561 susceptibility modeling. The Cryosphere, 11, 1403–1415. DOI: https://doi.org/10.5194/tc-11-1403-562 2017 563 Hong, H., Liu, J., Tien Bui, D., Pradhan, B., Acharya, T., & Bin Ahmad, B. (2018). Landslide 564 susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest 565 ensembles in the Guangchang area (China). Catena, 163, 399-413. 566 https://doi.org/10.1016/j.catena.2018.01.005 567 Hemasinghe, H., Rangali, R.S.S., Deshapriya, N.L., Samarakoon, L. (2018). Landslide susceptibility 568 mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia 569 *Engineering*, 212, 1046-1053. DOI: https://doi.org/10.1016/j.proeng.2018.01.135 570 I.R. of Iran Meteorological Organization. (2014). http://www.mazan daranmet.ir. 571 Iranian Department of Water Resources Management (IDWRM), 2013. Weather and climate report. 572 http://www.thrw.ir/ (Accessed 25 June 2013). 573 Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility 574 mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26, 1477-575 1491. DOI: https://doi.org/10.1080/01431160412331331012 576 Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damreiromal area, Cambodia 577 using frequency ratio and logistic regression models. Journal of Environmental Geology, 50, 847-855. 578 DOI: https://doi.org/10.1155/2017/3730913

DOI:

579 Lee, J., Sameen, M., Pradhan, B., & Park, H.J. (2018). Modeling landslide susceptibility in data-

580 scarce environments using optimized data mining and statistical methods. *Geomorphology*, **303**, 284-

581 298. DOI: <u>https://doi.org/10.1016/j.geomorph.2017.12.007</u>.

- 582 Luca, F., Conforti, M., & Robustelli, G. (2011). Comparison of GIS-based gullying susceptibility
- 583 mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. *Geomorphology*,
- **134 (3-4)**, 297–308. DOI: <u>https://doi.org/10.1016/j.geomorph.2011.07.006</u>
- 585 Martinez-Casasnovas, J.A., RamosM M.C., & Poesen, J. (2004). Assessment of sidewall erosion in
- 586 large gullies using multi-temporal DEMs and logistic regression analysis. *Geomorphology*, 58 (1-4),
- 587 305–321. DOI: <u>https://doi.org/10.1016/j.geomorph.2003.08.005</u>
- 588 Marker, M., Pelacani, S., & Schro⁻der, B. (2011). A functional entity approach to predict soil erosion
- 589 processes in a small Plio-Pleistocene Mediterranean catchment in Northern Chianti, Italy.
- *Geomorphology*, **125** (4), 530–540. DOI: <u>https://doi.org/10.1016/j.geomorph.2010.10.022</u>
- 591 Mekonnen, M., Keesstra, S.D., Baartman, J.E., Stroosnijder, L., & Maroulis, J. (2017). Reducing
- 592 Sediment Connectivity Throughman-Made and Natural Sediment Sinks in the Minizr Catchment,
- **593** Northwest Ethiopia. Land Degradation and Development, **28** (2), 708–717. DOI:
- 594 <u>https://doi.org/10.1002/ldr.2629</u>
 - 595 Meyer, A., & Marti'nez-Casasnovas, J.A. (1999). Prediction of existing gully erosion in vineyard
- 596 parcels of the NE Spain: a logistic modelling approach. *Soil and Tillage Research*, **50 (3-4)**, 319–331.
 - 597 DOI: <u>https://doi.org/10.1016/S0167-1987(99)00020-3</u>
- 598 McCloskey, G.L., Wasson, R.J., Boggs, G.S., & Douglas, M. (2016). Timing and causes of gully 599 erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: management 600 implications. *Geomorphology*, **266**, 96–104. DOI: https://doi.org/10.1016/j.geomorph.2016.05.009
- Najafi, Q. 2005. Land and agricultural lands in Iran. *Monthly Dehati Magazine*, 24: 17-24. (in
 Persian).
 - 603 Oh, H.J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility 604 mapping for shallow landslides in a tropical hilly area. *Computers & Geosciences*, **37(9)**, 1264-1276.
- 605 DOI: <u>https://doi.org/10.1016/j.cageo.2010.10.012</u>

Pourghasemi, H.R., Moradi, H.R., & Aghda, S.M.F. (2013). Landslide susceptibility mapping by
binary logistic regression, analytical hierarchy process, and statistical index models and assessment of
their performances. *Natural Hazards*, 69(1), 749-779. DOI: <u>https://doi.org/10.1007/s11069-013-</u>
0728-5

- Pham, B.T., Pradhan, B., Bui, D.T., Prakash, I., & Dholakia, M.A. (2016). Comparative study of
 different machine learning methods for landslide susceptibility assessment: a case study of
 Uttarakhand area (India). Environmental Modelling & Software, 84, 240-250. DOI:
 https://doi.org/10.1016/j.envsoft.2016.07.005
- 614 Pourghasemi, H.R., Yousefi, S., Kornejady, A., & Cerdà, A. (2017). Performance assessment of
- 615 individual and ensemble data-mining techniques for gully erosion modeling. Science of the Total
- *Environment*, 609, 764–775. DOI: <u>https://doi.org/10.1016/j.scitotenv.2017.07.198</u>
- 617 Pourghasemi, H., & Rahmati, O. (2018). Prediction of the landslide susceptibility: Which algorithm,
- 618 which precision?. *Catena*, **162**, 177-192. DOI: <u>https://doi.org/10.1016/j.catena.2017.11.022</u>
- 619 Pradhan, B., & Seeni, M.I. (2018). Manifestation of SVM-Based Rectified Linear Unit (ReLU) Kernel
- 620 Function in Landslide Modelling. Space Science and Communication for Sustainability: 185-195.
- 621 DOI: <u>https://doi.org/10.1007/978-981-10-6574-3_16</u>
- 622 Pradhan, B., Seeni, M.I., & Kalantar, B. (2017). Performance evaluation and sensitivity analysis of
- 623 expert-based, statistical, machine learning, and hybrid models for producing landslide susceptibility
- 624 maps. In: Pradhan B. (eds) Laser scanning applications in landslide assessment. Springer
- 625 International Publishing, 193–232. DOI: https://doi.org/10.1007/978-981-10-6574-3 16
- 626 Pradhan, B., & Sameen, M.I. (2017). Landslide susceptibility modeling: optimization and factor effect
- 627 analysis. In: Pradhan B. (eds) Laser Scanning Applications in Landslide Assessment. Springer
- 628 International Publishing, 115–132. DOI: <u>https://doi.org/10.1007/978-3-319-55342-9_6</u>
- 629 Pradhan, A.M.S., & Kim, Y.T. (2014). Relative effect method of landslide susceptibility zonation in
- 630 weathered granite soil: A case study in Deokjeok-ri Creek, South Korea. Natural Hazards, 72(2),
 - 631 1189–1217. DOI: <u>https://doi.org/10.1007/s11069-014-1065-z</u>

- 632 Pulley, S., Ellery, W.N., Lagesse, J.V., Schlegel, P.K., Mcnamara, S.J.(2018). Gully erosion as a
- 633 mechanism for wetland formation: An examination of two contrasting landscapes. Land Degradation
- *and Development*, **29** (6), 1756 1767. DOI: <u>https://doi.org/10.1002/ldr.2972</u>
- 635 Raja, N., Cicek, I., Turkoglu, N., Aydin, O., & Kawasak, A. (2017). Landslide susceptibility mapping
- 636 of the Sera River Basin using logistic regression model. *Natural Hazards*, **85**, 1323–1346. DOI:
- 637 <u>https://doi.org/10.1007/s11069-016-2591-7</u>
 - Rahmati, O., Haghizadeh. A., Pourghasemi, H.R., & Noormohamadi, F. (2016). Gully erosion
 susceptibility mapping: the role of GIS based bivariate statistical models and their comparison,
- 640 Natural Hazards, 82, 1231–1258. DOI: https://doi.org/10.1007/s11069-016-2239-7
- 641 Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R. & Feizizadeh, B. (2017).
- 642 Evaluation of different machine learning models for predicting and mapping the susceptibility of gully
- 643 erosion, *Geomorphology*, **298**, 118-137. DOI: https://doi.org/10.1016/j.geomorph.2017.09.006
- 644 Shafer, G. (1976). *A mathematical theory of evidence*, Princeton University Press, Princeton. DOI:
 645 https://doi.org/10.1016/j.ijar.2016.07.009
- 646 Shellberg, J.G., Spencer, J., Brooks, A.P., & Pietsch, T.J. (2016). Degradation of the Mitchell River
- 647 fluvialmegafan by alluvial gully erosion increased by post-European land use change, Queensland,
- 648 Australia. *Geomorphology*, **266**, 105–120. DOI: <u>https://doi.org/10.1016/j.geomorph.2016.04.021</u>
- 649 Süzen, M.L., & Doyuran, V. (2004). A comparison of the GIS based landslide susceptibility
- 650 assessment methods: multivariate versus bivariate. *Environmental Geology*, **45(5)**, 665–679. DOI:
- 651 <u>https://doi.org/10.1007/s00254-003-0917-8</u>
 - 652 Tehrany, M. S., Lee, M. J., Pradhan, B., Jebur, M. N., & Lee, S. (2014). Flood susceptibility mapping
- 653 using integrated bivariate and multivariate statistical models. *Environmental Earth Sciences*, 72 (10),
- 654 4001-4015. DOI: <u>https://doi.org/10.1007/s12665-014-3289-3</u>
- 655 Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas
- 656 using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models
 - 657 in GIS. Journal of Hydrology, **504**, 69-79. DOI: <u>https://doi.org/10.1016/j.jhydrol.2013.09.034</u>

Tehrany, M.S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125, 91-101. DOI: https://doi.org/10.1016/j.catena.2014.10.017

- USDA. (2006). Keys to Soil Taxonomy. USDA (United States Department of Agriculture), Soil
- Survey Staff, 10th ed. Natural Resources Conservation Service, Washington D.C. 333 pp.
- Worker, B., 2004. Evaluation of soil erosion in the Harevge region of Ethiopia using soil loss models,
- rain simulation and field trials. Thesis for degree Doctor of philosophy, University of Pretoria,
- Pretoria. URI: http://hdl.handle.net/2263/26929
 - Wang, Q., Li, W., Wu, Y., Pel, Y., Xing, M., & Yang, D. (2016). A comparative study on the
 - landslide susceptibility mapping using evidential belief function and weights of evidence models,
- Journal of Earth System Science, **125** (3), 645–662. DOI: https://doi.org/10.1007/s12040-016-0686-x
- Yesilnacar, E.K. (2005). The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D Thesis Department of Geomatics the University of Melbourne, 423.
- Zakerinejad, R., & Marker, M. (2014). Prediction of Gully erosion susceptibilities using detailed
 - terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain, Southwest Iran.
- Geografia Fisica е Dinamica Quaternaria, (1), 67-76. DOI: http://dx.doi.org/10.4461/GFDQ.2014.37.7
- Zeinivand, H., & Ghorbani Nejad, S. (2018). Application of GIS-based data-driven models for groundwater potential mapping in Kuhdasht region of Iran. Geocarto International, 33 (6), 651-666.
- DOI: https://doi.org/10.1080/10106049.2017.1289560
 - Zhou, C., Yin, K., Cao, Y., Ahmed, B., Li, Y., Catani, F., & Pourghasemi, H.R. (2017). Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir China. 23-37. DOI: area. *Computers* and Geosciences. 112. https://doi.org/10.1016/j.cageo.2017.11.019

Fig. 6 Gully erosion susceptibility mapping using Logistic Regression (LR), Evidential Belief

1		
2 3	692	List of Figures
4 5	693	Fig. 1 Study area.
6 7	694	Fig. 2 Flowchart of the methodology used.
8 9	695	Fig. 3 Field photographs showing identified gullies in the study area.
10 11 12	696	Fig. 4 Some examples of gully erosion conditioning factors, a) Land use/Land cover, b)
13	697	lithology, c) soil type, and d) distance to road.
15	698	Fig. 5 Coefficients of conditioning factors in the logistic regression model.
10	699 700	Fig. 6 Gully erosion susceptibility mapping using Logistic Regression (LR), Evidential B
18 19	700	Function (EDF), and ensemble models.
20 21	701	
22 23	702	List of Tables
24 25	703	TABLE 1 Description of geological units in the study area.
26 27	704	TABLE 2 Overview of factors used for Gully Erosion Susceptibility Mapping.
28	705	TABLE 3 Multicollinearity test among conditioning factors.
29 30	706	TABLE 4 Spatial relationship between gully erosion occurrence and conditioning factors
31 32	707	TABLE 5 Area of susceptibility classes and seed cell area index (SCAI).
33	708	TABLE 6 Area under the curve (AUC) value of three models.
34 35	709	
36 37	710	
38 39	711	
40 41	712	
42 43	713	
44 45		
46		
47		
48 49		
50		
51		
52		
53		
54		
55 56		
50 57		
57		20
		/ ·

59

714	TABLE 1 Description	on of geologica	l units in the s	tudy area (GSI 1997)
/ 14		In or geologica	i unito in the s	tudy area ($\mathbf{OOI}, \mathbf{I} \neq \mathbf{I} \neq \mathbf{I}$

Class	Lithology	Age	AGE_ERA
Qft2	Low level piedmont fan and valley terrace deposits	Quaternary	CENOZOIC
PlQc	Fluvial conglomerate, Piedmont conglomerate and sandstone.	Pliocene-	CENOZOIC
Qft1	High level piedmont fan and valley terrace deposits	Quaternary	CENOZOIC
Murm	Light - red to brown marl and gypsiferous marl with sandstone intercalations	Miocene	CENOZOIC
Mur	Red marl, gypsiferous marl, sandstone and conglomerate (Upper red Fm.)	Miocene	CENOZOIC
Qsf Edav E1c	Salt flat Dacitic to Andesitic volcanic Pale-red, polygenic conglomerate and sandstone	Quaternary Eocene Paleocene-Eocene	CENOZOIC CENOZOIC CENOZOIC
Muminitian and gyperierous mark sandstone and conglomerate (Upper red Fm) Qef Salt fat Edw Dacitic to Andesitic volcanic E1 Pale-red, polygenic conglomerate and sandstone			
	30		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

748	TABLE 2 Overvie	w of factors	used for Gully	Erosion Si	usceptibility	Mapping
/ 10			used for Guily	LIUSION D	asceptionity	mapping.

Factor:	Range		Classos	Mathad	
Factor	min	max	Classes	wiethou	
Slope	Slope 0.00 18.158		1. (<1°), 2- (1-2°), 3. (2-3°), 4. (3-5°), 5. (>5°) 1. Flat (-1°), 2. North (337.5-360°, 0-22.5°), 3. Northeast (22.5- 67.5°), 4. East (67.5-112.5°), 5. Southeast (112.5- 157.5°), 6. South (157.5-202.5°), 7. Southwest (202.5-	Natural break	
DI	-	200	247.5°), 8. West (247.4-292.5°), and 9. Northwest (292.5- 337.5°)	interval	
curvature	-0.01	0.009	1. Concave (< 0), 2. Flat (0), 3. Convex (> 0)	Natural break	
Profile curvature	-0.01	0.013	1. (-0.010.001), 2. (-0.0010.0005), 3. (-0.0005- 0.0005), 4. (0.0005- 0.001), 5. (0.001-0.013)	Natural break	
LS	0	457.37	1. (<50m), 2. (50-150m), 3. (150-250m), 4. (250-350m), 5. (>350m)	Natural break	
NDVI TWI	-0.112 -3.22	0.403 6.907	1. (<0.039), 2. (0.039 - 0.1), 3. (>0.130) 1. (< -0.84), 2. (-0.84 - 0.94), 3. (0.94 - 4), 4. (>4)	Natural break Natural break	
SPI	0.713	24294	1. (<300), 2. (300 – 1500), 3. (1500 – 3000), 4. (3000 – 7000), 5. (7000 – 11000), 6. (>11000)	Natural break	
Drainage density	1.190	3.246	1. (<1.86Km/Km2), 2. (1.86 – 2.19 Km/Km2), 3. (2.19 – 2.54K m/Km2), 4. (> 2.54 Km/Km2)	Natural break	
Distance to road	0	13684. 7	1. (<500m), 2. (500 – 1000m), 3. (1000 – 1500m), 4. (1500 – 2000m), 5. (>2000m)	Natural break	
Distance to river	0	636.39	1. (<100m), 2. (100 - 200m), 3. (200 - 300m), 4. (>300m)	Natural break	
LU/LC	-	-	1. (Irrigated lands), 2. (Desert), 3. (Pasture), 4. (salty lands)	Supervised classification	
Lithology	-	-	1. (Qft2), 2. (PlQc), 3. (Qft1), 4. (Murm), 5. (Mur), 6. (Qsf), 7. (Edav), 8. (E1c)	Lithological units	
Rainfall	73.17	93.70	1. (< 77.60 mm), 2. (77.60 – 81.70mm), 3. (81.70 – 85.41mm), 4. (85.41 – 88.79mm), 5. (>88.79mm)	Natural break	
Soil type	-	-	1. (Entisols/Aridisols), 2. (Salty flats), 3. (Rocky lands)	Supervised classification	
Convergence	-100	100	1. (< -30), 2. (-302), 3. (-2 - 30), 4. (> 30)	Natural break	
9 50 51					
52					

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
1/	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
15	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	

758	TABLE 3	Multicollinearit	y test among	conditioning factors.
-----	---------	------------------	--------------	-----------------------

Factors	Multi-collinearity test		Factors	Multi-collinearity test	
Factors	Tolerance	VIF	Factors	Tolerance	VIF
Lithology	0.632	1.582	Plan curvature	0.773	1.294
LU/LC	0.483	2.070	NDVI	0.398	2.511
Soil type	0.353	2.829	LS	0.718	1.394
Convergence	0.784	1.275	Rainfall	0.723	1.382
Drainage density	0.290	3.452	Slope degree	0.583	1.716
Distance to road	0.296	3.382	SPI	0.616	1.623
Distance to stream	0.903	1.107	TWI	0.818	1.222
Profile curvature	0.837	1.194	Aspect	0.918	1.089

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
54	
55	
56	
50	
57	
20	
22	

Factors	Classos	Pixel of	domain	Pixel o	of gullies		E	BF	
Factors	Classes	Ν	%	Ν	%	BEL	DIS	UNC	P
	< 1	114459	45.02	393	55.51	0.31	0.16	0.53	0
	1 - 2	91337	35.93	226	31.92	0.22	0.21	0.56	0
Slope (degree)	2 - 3	32337	12.72	59	8.33	0.16	0.21	0.62	0
	3 - 5	12799	5.03	25	3.53	0.17	0.21	0.62	0
	> 5	3297	1.30	5	0.71	0.14	0.20	0.66	(
	F	15826	6.25	66	9.59	0.20	0.14	0.66	(
	Ν	9417	3.72	16	2.33	0.08	0.15	0.77	(
	NE	25783	10.17	49	7.12	0.09	0.15	0.76	(
	E	46880	18.50	105	15.26	0.11	0.15	0.74	(
Slope Aspect	SE	48387	19.09	216	31.40	0.22	0.12	0.66	(
	S	36258	14.31	145	21.08	0.20	0.13	0.67	(
	SW	32005	12.63	62	9.01	0.09	0.15	0.75	(
	W	20605	8.13	23	3.34	0.05	0.15	0.79	(
	NW	15135	5.97	21	3.05	0.07	0.15	0.78	(
Dlan Currentura	concave	51659	20.32	141	19.92	0.34	0.34	0.32	(
(100/m)	flat	148111	58.26	438	61.86	0.37	0.31	0.32	(
(100/m)	convex	54458	21.42	129	18.22	0.29	0.35	0.35	(
	-0.010.001	7735	3.04	21	2.95	0.21	0.20	0.59	(
Profile Curvature	-0.0010.0005	71188	28.00	209	29.35	0.23	0.20	0.58	(
	-0.0005 - 0.0005	99643	39.19	283	39.75	0.22	0.20	0.58	(
(100/m)	0.0005 - 0.001	68560	26.97	187	26.26	0.21	0.20	0.59	(
` ,	> 0.001	7102	2.79	12	1.69	0.13	0.20	0.67	(
	> 0.039	107854	42.52	214	29.85	0.36	0.42	0.22	(
NDVI	0.039 - 0.130	144980	57.16	503	70.15	0.64	0.24	0.13	(
	>0.130	792	0.31	0	0	0	0.34	0.66	(
	Irrigated lands	2349	0.93	Ő	Õ	Õ	0.25	0.75	(
	Desert	110530	43.62	502	72.97	0.77	0.12	0.11	(
LU/LC	Pasture	138239	54.55	186	27.03	0.23	0.39	0.38	(
	salty lands	2288	0.90	0	0	0	0.25	0.75	(
	Off2	97841	38.61	237	34 45	0.13	0.15	0.72	(
	PlOc	37999	15.00	136	19 77	0.19	0.13	0.67	(
	Off1	28107	11.09	144	20.93	0.28	0.13	0.60	(
	Murm	35924	14 18	116	16.86	0.17	0.12	0.69	(
Lithology	Mur	13160	5 1 9	55	7 99	0.23	0.14	0.64	(
	Osf	35824	14 14	0	0	0	0.17	0.83	(
	Edav	4333	1 71	Ő	Ő	Ő	0.14	0.86	(
	Elc	218	0.09	Ő	Ő	Ő	0.14	0.86	(
	< 500	23651	9 30	275	38.68	0.45	0.11	0 44	Ì
	500 - 1000	19078	7.50	131	18 42	0.26	0.15	0.59	Ì
Distance to road	1000 - 1500	15096	5 94	65	9 14	0.16	0.16	0.68	(
(m)	1500 - 2000	14317	5.63	31	4 36	0.08	0.17	0.75	
	> 2000	182133	71.63	209	29 40	0.04	0.41	0.54	
	< 100	112480	44 74	322	45 29	0.27	0.25	0.49	
Distance to river	100 - 200	74160	29 17	198	27.85	0.25	0.26	0.50	i
(m)	200 - 300	48112	18.92	150	$\frac{21.00}{21.00}$	0.29	0.24	0.20	Ì
()	>300	19523	7.68	41	5 77	0.20	0.24	0.55	Ì
	< 1.86	29875	11 75	37	5 20	0.20	0.20	0.55	6
Dringge density	1 86 - 2 19	94154	37.03	272	38 40	0.12	0.27	0.00	Ì
(km/km?)	2 19 - 2 54	76868	30.23	304	<u>4</u> 2 76	0.29	0.23	0.40	
(km/km^2)	2.19 - 2.34	52270	20.23	07	42.70	0.40	0.21	0.39	
(kiii kiii2)		55510	40.22)	15.04	0.10	0.20	0.54	

768	Continue										
	Factors	Classes	Pixel of	Pixel of domain		Pixel of gullies		EBF			
		< 75	52072	20.84	N 24	2.27	BEL	DIS	<u>UNC</u>	PLS 0.75	
		< 75 75 - 80	32972 38491	20.84	24 140	3.37 19.66	0.03	0.25	0.72	0.75	
	Rainfall (mm)	80 - 85	58041	22.83	314	44.10	0.41	0.15	0.44	0.85	
		85 - 90	66082	25.99	219	30.76	0.25	0.19	0.56	0.81	
		> 90	38643	15.20	15	2.11	0.03	0.23	0.74	0.77	
		< -0.84	38462	15.13	111	15.68	0.25	0.25	0.50	0.75	
	TWI	-0.84 - 0.94	53947	21.22	174	24.58	0.28	0.24	0.48	0.76	
		0.94 - 4	33333	13.12	8/	12.29	0.23	0.25	0.52	0.75	
		< 300	165290	65.02	428	60.45	0.15	0.20	0.51	0.74	
		300 - 1500	34236	13.47	106	14.97	0.18	0.16	0.66	0.84	
	CDI	1500 - 3000	29230	11.50	95	13.42	0.19	0.16	0.65	0.84	
	511	3000 - 7000	15491	6.09	35	4.94	0.13	0.17	0.70	0.83	
		7000 - 11000	8927	3.51	43	6.07	0.28	0.16	0.56	0.84	
		> 11000	1055	0.41	l 1(1	0.14	0.06	0.16	0.78	0.84	
		< 50	70459	27.71	101	22.74	0.16	0.21	0.63	0.79	
	LS(m)	150 - 250	46128	18.91	130	13.96	0.20	0.20	0.00	0.80	
	L5 (iii)	250 - 350	60273	23.71	179	25.28	0.20	0.20	0.59	0.80	
		> 350	41999	16.52	139	19.63	0.23	0.19	0.57	0.81	
		Entisols/Aridisols	216912	85.60	680	98.84	0.93	0.04	0.03	0.96	
	Soil type	Salty flats	372	0.15	0	0	0	0.45	0.55	0.55	
		Rocky lands	36122	14.25	8	1.16	0.07	0.52	0.42	0.48	
	Cinvergence index	< -30	30848	12.13	104	14.69	0.29	0.24	0.47	0.76	
	(100/m)	-302	104966	41 29	250	35 31	0.27	0.23	0.30	0.77	
	(100/11)	> 30	36351	14.30	98	13.84	0.21	0.25	0.52	0.75	
9											
)											
1											
/2											
/3											
/4 75											
' 5 76											
77											
, 78											
79											
20											
21											
)T											
32											
33											
34											
35											
6											
7											
'											
				34							
		http://	mc.manuso	riptcent	ral.com	/ldd					
				1							

 (km^2)

%

Area

Sum SCAI

 (km^2)

%

Area

1 2	700	TADIE	5 1 4 4 2 2 2
3 4	/88	TABLE	S Area of
5 6		Models	Classes
7			Very Low
9 10			Low
10		LR	Moderate
12 13			High
14 15			Very Hig
16 17			Very Low
18 19			Low
20		EBF	Moderate
21			High
23 24			Very Hig
25 26			Very Low
27 28			Low
29		Ensemble	Moderate
30 31			High
32 33			Very Hig
34 35	789		
36 37	790		
38 39	791		
40	792		
41	793		
43 44	794		
45 46			
47 48			
49			
50 51			
52 53			
54			
55 56			
57			
58			

59

60

rea of susceptibility classes and seed cell area index (SCAI). Testing gullies Validation gullies

%

Total area (km^2)

Area

	Very Low	40.20	17.57	0.03	1.41	0.00	0.00	1.41	12.49
	Low	70.62	30.86	0.31	17.58	0.01	0.00	17.58	1.76
LR	Moderate	41.62	18.19	0.40	22.36	0.34	0.09	22.45	0.81
	High	39.50	17.26	0.14	7.74	0.22	0.06	7.79	2.21
	Very High	36.91	16.13	0.91	50.91	0.38	0.10	51.01	0.32
	Very Low	44.11	19.35	0.03	1.83	0.01	0.00	1.84	10.54
	Low	46.70	20.48	0.13	7.19	0.04	0.01	7.20	2.84
EBF	Moderate	45.22	19.84	0.31	17.21	0.11	0.03	17.24	1.15
	High	45.54	19.98	0.47	26.66	0.27	0.07	26.73	0.75
	Very High	46.41	20.36	0.84	47.11	0.52	0.14	47.25	0.43
	Very Low	44.77	19.64	0.02	1.13	0.00	0.00	1.13	17.39
	Low	46.12	20.23	0.09	4.94	0.01	0.00	4.94	4.10
Ensemble	Moderate	45.92	20.14	0.27	14.95	0.03	0.01	14.96	1.35
	High	44.91	19.70	0.37	20.87	0.19	0.05	20.93	0.94
	Very High	46.25	20.29	1.03	58.11	0.71	0.19	58.30	0.35
						1			

TABLE 6 Area under the curve (AUC) value of three models.

Models	Area	Standard error	Asymptotic	Asymptotic 95% confidence interval			
	0.909	0.000	0.000	Lower bound	Upper bour		
Ensemble	0.871	0.008	0.000	0.893	0.925		
EBF	0.021	0.011	0.000	0.799	0.844		
LR	0.802	0.012	0.000	0.779	0.825		
		36	5				
		http://mc.manuscri	ptcentral.com/ldg	d			

265x166mm (96 x 96 DPI)

Fig. 2 Flowchart of the methodology used.

150x155mm (96 x 96 DPI)

Fig. 3 Field photographs showing identified gullies in the study area.

216x197mm (220 x 220 DPI)

Fig. 4 Some examples of gully erosion conditioning factors, a) Land use/Land cover, b) lithology, c) soil type, and d) distance to road.

214x288mm (96 x 96 DPI)

http://mc.manuscriptcentral.com/ldd

