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This paper reports on a building detection approach based on deep learning (DL) using the fusion of Light Detection and Ranging
(LiDAR) data and orthophotos. The proposed method utilized object-based analysis to create objects, a feature-level fusion, an
autoencoder-based dimensionality reduction to transform low-level features into compressed features, and a convolutional
neural network (CNN) to transform compressed features into high-level features, which were used to classify objects into
buildings and background. The proposed architecture was optimized for the grid search method, and its sensitivity to
hyperparameters was analyzed and discussed. The proposed model was evaluated on two datasets selected from an urban area
with different building types. Results show that the dimensionality reduction by the autoencoder approach from 21 features to
10 features can improve detection accuracy from 86.06% to 86.19% in the working area and from 77.92% to 78.26% in the
testing area. The sensitivity analysis also shows that the selection of the hyperparameter values of the model significantly affects
detection accuracy. The best hyperparameters of the model are 128 filters in the CNN model, the Adamax optimizer, 10 units in
the fully connected layer of the CNN model, a batch size of 8, and a dropout of 0.2. These hyperparameters are critical to
improving the generalization capacity of the model. Furthermore, comparison experiments with the support vector machine
(SVM) show that the proposed model with or without dimensionality reduction outperforms the SVM models in the working
area. However, the SVM model achieves better accuracy in the testing area than the proposed model without dimensionality
reduction. This study generally shows that the use of an autoencoder in DL models can improve the accuracy of building
recognition in fused LiDAR-orthophoto data.

1. Introduction

Buildings are a fundamental element in forming a city and
are essential for urban mapping [1]. The extraction of accu-
rate building objects from remote sensing data has become
an interesting topic and has received increasing attention in
recent years. Building information is important in several
geospatial applications, such as urban planning, risk and
damage assessment of natural hazards, 3D city modeling,

and environmental sciences. Building objects can be delin-
eated from many data sources, such as satellite images, aerial
photos, radar images, and laser scanning data. In particular,
Light Detection and Ranging (LiDAR) offers an accurate
and efficient approach for obtaining elevation data, which
can be used to extract ground objects, such as buildings
[2]. The advantages of using LIDAR over traditional photo-
grammetry include the capability to collect high-density
point clouds at a relatively short time, high vertical accuracy,
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and low cost. However, the accurate extraction of buildings
in urban areas with precise boundaries is a difficult task
due to the presence of nearby objects, such as trees, which
frequently have the same elevations as buildings. Therefore,
the fusion of LiDAR point clouds and aerial images can
be an important step toward improving the quality of
building detection.

Numerous methods have been proposed for building
detection in the past decades by using LiDAR data and by
fusing other remote sensing data with LiDAR data to
improve accuracy and quality. Li et al. [3] proposed a series
of novel algorithms for detecting building boundaries from
the fusion of LiDAR and high-resolution images. Their
results indicate that the fusion of LiDAR and high-
resolution images is a promising approach for the accurate
detection of building boundaries (correctness=98% and
completeness =95%). Li et al. [4] proposed an improved
building extraction method based on the fusion of optical
imagery and LiDAR data. The aforementioned method
comprises four steps: filtering, building detection, wall point
removal, and roof patch detection. Their results suggest
that the proposed method can automatically extract building
objects with complex shapes. Saeidi et al. [5] also applied a
data-driven method based on Dempster-Shafer theory to
fuse LiDAR and SPOT (Satellite Pour ’Observation de la
Terre) data for building extraction. These researchers
examined the potential of slope and height information
extracted from the LiDAR-based digital elevation model
(DEM) and digital surface model (DSM), as well as from
the normalized difference vegetation index (NDVI) created
from SPOT images. Their results show that NDVI/normal-
ized DSM (nDSM) fusion performs better than NDVI/slope
for building extraction.

Uzar and Yastikli [6] developed an automatic building
detection method based on LiDAR data and aerial photo-
graphs. This method includes segmentation and classification
with object-based image analysis. The accuracy assessment
shows an overall accuracy of approximately 93%, a complete-
ness of 96.73%, and a correctness of 95.02% for building
extraction. Uzar [7] developed an automatic approach for
building extraction based on multisensor data (LiDAR
and aerial photographs) and rule-based classification. He
applied fuzzy classification to improve building extraction
results. His method achieved a completeness of 81.71% and
a correctness of 87.64% based on a comparison between
the extracted buildings and reference data. Furthermore,
Awrangjeb et al. [8] proposed an automatic building detec-
tion technique using LIDAR data and multispectral imagery.
They utilized the normalized difference vegetation index to
separate the buildings from trees and extract the residential
buildings in the area. Awrangjeb et al. [9] also developed a
building detection technique for complex scenes. In their
method, a rule-based procedure was established to utilize
the normalized digital surface model extracted from LiDAR
data for the task in hand effectively.

Recently, Wang et al. [10] presented an automatic
method for building boundary extraction from LiDAR data.
This method includes height-based segmentation, shape rec-
ognition by shape indices, and boundary reconstruction
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using Hough transformation and a sequential linking tech-
nique. Their findings show that the proposed method can
achieve accurate extraction of building boundaries at rates
of 97%, 85%, and 92% for three LIDAR datasets with different
scene complexities. Prerna and Singh [11] assessed a building
detection method based on the segmentation of LiDAR and
high-resolution photographs. These researchers determined
that an object-based-oriented classification yielded the best
accuracy (R? = 0.86) compared with using only LIDAR. Zhao
et al. [12] presented a building extraction method using
LiDAR data and connected operators. Their results demon-
strate that the proposed method performs effectively. The
efficient and average offset values of simple and complex
building boundaries are 0.2m to 0.4m and 0.3m to 0.6m,
respectively. Tomljenovic et al. [13] applied object-based
analysis for building extraction from LiDAR data. Their
obtained results exhibit high accuracies for the initial study
area and on the International Society for Photogrammetry
and Remote Sensing benchmark without any modification.

Tomljenovic et al. [2] reviewed building extraction
methods based on LiDAR data. Their analysis shows that
the main limitations of current building detection methods
are their application to wide-area datasets and the lack of
transferability studies and measures. Other challenges in
building detection from LiDAR include point cloud spar-
sity, high spectral variability, differences of urban objects,
surrounding complexity, and data misalignment [14]. Gilani
et al. [14] proposed a methodology that extracts and regular-
izes buildings using features from LiDAR data and orthoima-
gery to overcome some of the aforementioned limitations.
Their results demonstrate the robustness of their approach.
However, this method is affected by the registration error
between LiDAR data and orthoimagery, which requires a
further validation on different datasets. The lack of trans-
ferability of current methods is mainly due to the use of
rule-based classification.

Therefore, the current paper reports on a building detec-
tion method based on the fusion of LIDAR data and ortho-
photos using a deep learning (DL) approach. At present,
DL has gone beyond multilevel perceptrons and comprises
a collection of techniques and computational methods for
building compassable differentiable architecture. In particu-
lar, this study develops a framework based on an autoencoder
to reduce feature dimensionality and a convolutional neural
network (CNN) to distinguish building objects from non-
building objects after segmentation is performed on LiDAR
and orthoimage data.

2. Methodology

This section describes the proposed model and explains its
components that have been designed to detect buildings
from LiDAR and orthophotos based on a DL approach.
It describes the overall workflow, data preprocessing and
preparation, feature extraction through multiresolution and
spectral difference segmentations, feature fusion and abstrac-
tion using autoencoders and CNN, and building detection
that applies fully connected layers with sigmoid activation
to the final layer.
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FIGURE 1: Architecture of the proposed building detection method using DL and LiDAR-orthophoto fusion.

2.1. Overall Architecture. This study proposes a DL model for
detecting buildings from fused LiDAR and orthophoto data.
The overall workflow of this model is presented in Figure 1.
The proposed pipeline encompasses four main compo-
nents: preprocessing and preparation of input data, feature
extraction, fusion and feature abstraction, and classification.
The first component, that is, data preparation, includes the
geometric correction and registration of LiDAR point
clouds with orthophotos. The point clouds were filtered to
create DSM, DEM, and nDSM samples. DSM was created
by interpolating point clouds using the inverse weighted
distance (IDW) method. DEM was created by filtering non-
ground points using the multiscale curvature algorithm of
ArcGIS [15]. nDSM was created by subtracting DEM from
DSM. The LiDAR-derived DSM, DEM, nDSM; number of
returns; and orthophoto bands (i.e., red, green, and blue)
were then composted at 0.3m spatial resolution and pre-
pared for segmentation.

The second component, that is, feature extraction, was
implemented to extract the spectral and texture features from
the orthophotos and DSM, DEM, number of returns, and
geometry and shape features from LiDAR data. The third
component includes feature fusion and abstraction using an
autoencoder DL model to reduce features and a CNN model
to transform low-level features into high-level features. The
last component adopted fully connected layers and a sigmoid
layer to classify image objects into background and buildings.
The details of these processing steps are explained in the
following sections.

2.2. Feature Extraction. A total of 21 features, including spec-
tral, shape, textural, and LiDAR-based features, were initially
extracted to detect building objects in the LIDAR and ortho-
photo data. Spectral features were used to evaluate the mean
pixel values in the orthophoto bands. The shape features refer
to the geometric information of meaningful objects, which
is calculated from the pixels that form these objects. An
accurate segmentation of the map is necessary to ensure

the successful use of these features. Texture features were
also derived from the Haralick texture features based on the
gray-level cooccurrence matrix (GLCM) or the gray-level dif-
ference vector. Alternatively, the LIDAR-based features were
used to describe the topography and height of objects.

The low-level features (Table 1) were calculated based
on the image objects created via multiresolution and spec-
tral difference segmentations. The features extracted from
the LiDAR data and orthophoto were fused at the feature
level. The features were then reduced by applying an
autoencoder-based dimensionality reduction approach. The
reduced low-level features were then fed into the CNN model
to extract the high-level features for classification. The fol-
lowing sections describe the aforementioned processes.

2.3. Fusion and Feature Abstraction. Building detection and
description are important steps in reconstructing building
objects. The former refers to the process of identifying build-
ing objects among other objects [20], whereas the latter refers
to the process of delineating the geometric boundary of
building objects to describe their geometry and extract infor-
mation as attributes linked to the objects in a geographic
information system (GIS). On the one hand, orthophotos
have a significant capacity in spatial resolution and exhibit
strong reflectance around building boundaries. However,
the spectral similarity of different ground objects generates
difficulties in extracting buildings from orthophotos. On the
other hand, extracting building edges with height discontinu-
ity is difficult in LIDAR due to the relatively small footprint
size of the laser beam and disadvantageous backscattering
from illuminated targets [20]. Thus, the fusion of orthopho-
tos and LiDAR can improve the accuracy of building detec-
tion and description processes.

Data fusion is defined as the process of using or combin-
ing data from multiple sources to form a new dataset and
accomplish a particular objective [21]. The three fusion levels
that can combine data from different sources are classified as
pixel, feature, and decision fusions [22]. The present study
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TaBLE 1: Extracted features from the LiDAR and orthophoto data [16-19].

Data source Feature group Feature Description
Mean red Average value of the pixels that cover the segment in the red band
Spectral Mean green Average value of the pixels that cover the segment in the green band
Mean blue Average value of the pixels that cover the segment in the blue band
N-1
GLCM angular Z P; i
$j=0
N-1
GLCM contrast Z P i,j‘i —J |2
=0
N-1
GLCM correlation Z [((i_tui)(j_”lj))(a? ""7]2‘)71/2}
$j=0
N-1
Orthophoto GLCM dissimilarity Y P li-j
Texture N:FO
GLCM entropy Z P,(-InP;))
=0
N-1 y
GLCM homogeneity PONTRNT )
N-1 N-1
GLCM mean fﬂx =Hi Z i(Pi,j)’fM = U Z j(Pi,j)
ij=0 $j=0
N-1
GLCM variance Z P ,-,,-(i - #)2
ij=0
Area Total area of segment without holes
Compactness Ratio of the area of a polygon to the area of a circle with the same perimeter
Density Distribution in space of the pixels of an image object
Shape Length/width Length-width ratio of the envelope rectangle
LiDAR Rectangular fit Goodness of a building that fits into a rectangle
Roundness Area of the segment to the square of the maximum diameter of the referred segment
Shape index Border length of the segment divided by four times the square root of its area
DEM Digital elevation model
LiDAR DSM Digital surface model
nDSM Object height by subtracting DEM from DSM

In the equations above, i is the row number of the cooccurrence matrix, j is the column number of the cooccurrence matrix, and P;; is the normalized value in

cell i,j (P;; = Vi,j/ZN i V), where V, ; is the value in cell , j of the cooccurrence matrix and N is the number of rows or columns of the cooccurrence matrix.

ij=0

adopts the feature level because building detection and
description with object-based analysis are easier and more
efficient. Orthophoto features (e.g., spectral and textural fea-
tures) and LiDAR features (e.g., DSM, DEM, nDSM, and spa-
tial features) are combined to form low-level features for
building detection (Table 1).

Many features that are related to spectral, textural,
topographical, and shape groups can be extracted from
orthophotos and LiDAR data. The use of many features
can cause overfitting, particularly when the training samples
are relatively small. The other disadvantages of using a large
number of features are noise, redundant information, and
increasing computing time. The current study introduces
an autoencoder-based approach that reduces feature space
dimensionality and improves low-level features by

transforming them into fewer features (ie., reduced low-
level features) to address the aforementioned issue. The
transformed features are expected to be more informative
than the raw features and to improve the performance of
the overall methodology workflow of building detection. A
CNN model is also developed to select the relevant features
for detecting buildings and to transform the reduced low-
level features into high-level features by applying a set of con-
volution and pooling operations. The process of reducing (or
abstracting) low-level features by using the autoencoder and
CNN models is described in the following sections.

2.3.1. Autoencoders. Autoencoders (Figure 2) are neural net-
works that attempt to reconstruct their inputs without using
labels (unsupervised); they have two logical parts, that is, the
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Input layer

FIGURE 2: Simple structure of an autoencoder (adapted from [24]).

encoder and the decoder [23]. The former comprises the net-
work layers that create a hidden representation of the input
data, whereas the latter comprises the network layers that
take the hidden representation from the encoder and create
an output that is similar to the input data of the encoder.
Thus, the last layer in autoencoder networks has the same
size as the input of the first input layer. This process allows
the network to learn features regarding the input data and
regularization parameters. Hidden representation can be
smaller than the input data; hence, the major benefit of auto-
encoders is dimensionality reduction.

Autoencoders adopt the backpropagation algorithm
for training [23]. In an autoencoder, the output h,,,(x) =
T
$ %)

(x7,%5, ..., x;)" is equal to the input x = (x;, x,, ...

hup (%) = g(f(x)) = x,

1 5 (1)
J(W,bs%y) = 5 [y (%) =y

>

where x is an input that belongs to the n-dimensional space, y
is a new representation that belongs to the m-dimensional
space, and ] is the reconstruction error.

A standard autoencoder comprises three layers. The first
layer to the second layer amounts to an encoder f, and the
second layer to the third layer amounts to a decoder g. Then,
the algorithm minimizes J by adjusting the parameters in the
encoder and the decoder to obtain the reconstructed input.
The number of hidden layer nodes m is restricted to less than
the number of original input nodes 7 to utilize the autoenco-
der as a dimensionality reduction algorithm.

The proposed autoencoder architecture includes 21
input features, 3 hidden layers with 128, 50, and 30 nodes,
and a central layer with dimensions 5, 10, and 15 that are
evaluated iteratively. Several hidden layers and their associ-
ated number of nodes were selected using a grid search
method [25] and evaluated based on the similarity between
the input and reconstructed data measured via the mean
squared error. The network was trained through the Ada-
max optimization method [26] with its default parameters
in Keras (TensorFlow backend) [27] and a batch size of 32.
A sparsity constraint (L1 activity regularizer) was also added
to the encoded representations to avoid overfitting and
reduce model complexity.

2.3.2. CNNs. CNN [28] is a method that simulates a multi-
layer structure of the human brain. It can extract the features
of input data from a low to a high layer incrementally to
improve classification or prediction processes. It abstracts
the relationships among data and improves optimization
performance with a reduction in training parameters. The
structure of CNN consists of three layers that can be
described as the convolution, subsample (pooling), and fully
connected layers (Figure 3).

The proposed CNN architecture is encompassed by two
stacked feature stages. Each stage contains a convolution
layer followed by a pooling layer. A 2D convolution with
128 filters and maximum pooling were used. The high-level
features were produced by flattening the 2D features esti-
mated via the convolution and pooling operations. The
network was also trained using the Adamax optimization
method with a batch size of 8. Once the high-level features
were obtained, a fully dense layer with 10 nodes and a drop-
out rate of 0.2 were used to classify features into building or
background classes. The trained CNN model was then
adopted to predict the class of test data, and the outputs were
utilized to create the final building maps in GIS. The CNN
network was optimized using the grid search method, which
is explained in the next section.

2.3.3. Optimization Procedure. The optimization of hyper-
parameters is a crucial step in developing an efficient object
detection model through DL methods, which are easy to
use. Optimization can improve the overall performance, pre-
diction accuracy, and generalization capacity of models, par-
ticularly when they are used to predict unseen data. The
current study utilizes the grid search method to determine
the optimal hyperparameters among specific search spaces
of the CNN model. The grid search typically identifies a better
set of hyperparameters than a manual search within the same
amount of time. The optimized parameters, their search
spaces, and their determined optimal values are shown in
Table 2. Five hyperparameters, namely, the optimizer, number
of filters, number of hidden units of the dense layer, dropout
rate, and batch size, were optimized. The search spaces of
the hyperparameters (excluding the optimizer) were manually
selected after several random experiments.

3. Results and Discussion

This section describes the experimental datasets, the results
of building detection with the accuracy assessment, and the
sensitivity analysis of the proposed model. The proposed
model was developed in Python using Google’s TensorFlow
library. It was then implemented in a personal computer with
an Intel® Core i7 at 2.00GHz and a memory (RAM) of
16 GB.

3.1. Experimental Datasets. The proposed building detection
model was evaluated on two datasets (i.e., working and test-
ing) selected from the Universiti Putra Malaysia campus
located in the state of Selangor, Malaysia (Figure 4). The
selected areas are geographically located between latitudes
7°11'00"E and 7°14'00"E and longitudes 3°00'00"N and
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3°40'00"N of the Kertau RSO Malaya coordinate system. The
areas were selected because they include a mixture of urban
features, such as asphalt roads, trees, dense vegetation, water
bodies, and buildings. The buildings have different roofing
materials, shapes, sizes, and heights.

The LiDAR data used in this study was obtained with a
laser scanning system (Riegl LM Q5600 and Camera Hassle-
blad 39 Mp) on March 8, 2015. The systems had a scanning
angle of 60° and a camera angle of +30°. The average point
density of the LIDAR data was 4 points/m” with an average
point space of 0.43m. Overall, the LiDAR data contained
9.24 million points in the working and testing areas. The
minimum and maximum elevations are in the working area
at 37.65m and 79.83 m, respectively. The elevations in the
testing area range from 36.86 m to 100.36 m. Three different
products were derived from the raw LiDAR point clouds,
namely, DEM, DSM, and height feature or nDSM. Further-
more, the laser scanning system also collected RGB images
along the point clouds. The spatial resolution of the collected
orthophotos is 13 cm.

DSM was derived with IDW interpolation at 0.5 m spatial
resolution. Meanwhile, DEM was derived using an ArcGIS
filtering algorithm called multiscale curvature classification
(MCCQ) [15]. The validations of this filtering method exhibit
improvement in removing understory vegetation, which
addresses topological differences across scales [15]. The other
advantages of this approach include a built-in function in
ArcGIS software, which makes its implementation easy and
enables its integration into an automatic processing pipeline.
The MCC algorithm filters LIDAR point clouds by classifying
LiDAR returns as ground and nonground points. This

ings and backgrounds using the proposed DL model. Classi-
fication was applied with the complete set of features (21)
and the best number of features obtained by the autoenco-
ders (10 features). The building detection results are shown
in Figure 5. Figure 5(a) shows the buildings detected by the
model in the working area without reducing the dimension-
ality of the input features. The total number of buildings
detected is 2808, which is higher by 8% than the real number
in the reference dataset. The reason for this misclassification
is mainly due to noise, which leads to small objects being
incorrectly detected as buildings. With regard to the geome-
try of the detected buildings, Figure 5(c) shows that the
detected buildings were affected by nearby objects, such
as roads and trees. These objects create a problem in accu-
rately describing the buildings. For example, a single build-
ing is composed of several objects, which cannot offer
accurate building counting in the study area. Additional
nearby objects attached to the detected buildings also create
an issue in describing building objects, such as estimating
their roofing geometry, floor area, and even their height. By
contrast, the results of the model with reduced features show
better building detection with less misclassification and
better boundary delineation (Figures 5(b) and 5(d)). The
number of buildings calculated using this method is 281,
which is 0.86% lower than the reference number of buildings.
Reducing the number of features using the autoencoder
model may contribute to the removal of features that create
overfitting in the model and offer better building detection
results. Figure 5(d) shows an example of how reducing the
features used for building detection can also contribute to
improving the boundary delineation of objects. This property
is extremely useful in counting the buildings in the study area
with better accuracy. Furthermore, building detection with
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dimensionality reduction (10 features), (c) example of a detected building through a complete set of input features, and (d) example of
building detection after feature reduction by the autoencoder dimensionality reduction approach.

accurate boundary can calculate several spatial and geometric Furthermore, the proposed model was also used to detect
attributes of the objects with high precision. The model out-  buildings in the testing area, and the results are shown in
puts that apply autoencoders for feature fusion and abstrac-  Figure 6. The model was applied with and without feature
tion allow exporting of building information in the study  reduction. Figure 6(a) shows the buildings in the testing area
area that can be useful for decision-making and urban plan-  obtained by the model without using autoencoders. The

ning, among other applications. number of buildings in this map is 1029, which is 4.47%
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dimensionality reduction (10 features), (c) example of a detected building through a complete set of input features, and (d) example of
building detection after feature reduction by the autoencoder dimensionality reduction approach.

higher than the ground truth number. The geometry of the
detected objects also shows noisy boundaries and additional
nearby objects, such as trees combined with building objects
(Figure 6(c)). The noisy boundaries limit the applications of
the produced building map due to insufficient accuracy
regarding counting and geometry. By contrast, the model
that uses autoencoders presents better results (Figures 6(b)
and 6(d)). The number of buildings calculated in the map is
256 (1.11% higher than the ground truth). Similarly, the
results indicate that reducing the number of features by using
the autoencoder approach can improve building detection
accuracy and its boundary delineation.

3.3. Sensitivity Analysis. The proposed model has several
hyperparameters with significant effects on the accuracy
of building detection from the fusion of LiDAR-orthophoto
data. Thus, this section presents a sensitivity analysis of
these hyperparameters.

TasLE 3: Effects of dimensionality reduction on building detection
accuracy.

Number of features

Accuracy (%)

Working area

Testing area

21 86.06 77.92
15 85.90 76.71
10 86.19 81.86
5 84.77 78.26

3.3.1. Effects of Dimensionality Reduction. Autoencoders can
reduce the dimensionality of input features to a lower num-
ber of features by specifying the dimension of its central
layer. Table 3 shows the different experiments applied to
detect buildings in the input data with different dimensions
of the middle layer of the autoencoder model. The dimen-
sions explored were 15, 10, and 5. The model with the com-
plete set of features achieved an accuracy of 86.06% and
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77.92% in the working and testing areas, respectively. After
reducing the number of features to 15, the model detected
the buildings in the areas with accuracies of slightly less than
those using the complete set of features. The accuracy in the
working and testing areas with 15 features were 85.90% and
76.71%, respectively. In addition, the use of 10 features
offered the best results in the working and testing areas with
overall accuracies of 86.19% and 81.86%, respectively. By
contrast, when the number of features was reduced to 5, the
overall accuracy of building detection decreased by 1.29%
in the working area and slightly improved in the testing area
compared with using the complete set of features.

Autoencoders learn a compressed representation of the
input; thus, using the transformed features instead of the
complete set of features can reduce noise and redundant
information in the features. Although the use of autoencoders
in DL models can exhibit lower performance in the training
data, better generalization power can still be attained. More-
over, reducing the number of features improves the comput-
ing performance of the model while keeping accuracy as high
as possible. The use of autoencoders can be more efficient
than the multiclass recognition problem or the one-class clas-
sification problem for building detection. The main reason
for this finding is that detecting one feature type frequently
requires relatively fewer significant features than using many
features, wherein some of the features may be irrelevant to
the task. In the case of multiclass recognition problems, fea-
tures that are irrelevant to a specific class may be significant
for others, and vice versa.

3.3.2. Effects of the CNN Model. The CNN model has several
hyperparameters, such as the number of filters, the optimizer,
the number of hidden units in the fully connected layer,
batch size, and dropout rate. The selection of hyperparameter
values significantly affects detection accuracy; therefore, the
parameters were carefully analyzed and optimized. Figure 7
shows the results of the sensitivity analysis of these parame-
ters evaluated based on the 10-fold cross-validation accuracy
achieved for building detection in the testing area. With
regard to the number of filters, the results show that the best
number of filters is 128, which achieves an accuracy of
81.86%. The lowest accuracy (15.5%) was obtained with 64
filters. The analysis also shows that the best optimizer is Ada-
max, which realized an accuracy of 81.41% and is signifi-
cantly better than other methods. By contrast, the number
of hidden units in the dense layer has disregarded effects.
The highest accuracy (81.86%) was attained by using 10 units
or 100 units. The use of 3 units and 50 units obtained slightly
lower accuracy (81.61%). The use of a lower number of units
in the fully connected layer improves the computing perfor-
mance of the model; therefore, the optimal value of these
parameters is regarded as 10. Furthermore, the sensitivity
analysis results show that the best batch size is 8, which
achieved an accuracy of 81.86%. The use of a batch size of 4
also attained a slightly similar accuracy (81.32%). However,
the use of batch sizes larger than 8 shows a reduction in accu-
racy of nearly 50%. Finally, the analysis indicates that the
dropout rate can have direct effects on the accuracy of build-
ing recognition. The best dropout rate is 0.2, which achieved

an accuracy of 81.73%. The combination of the best parame-
ter values is considered the best set of parameters and thus is
used to produce the final maps (Figures 5 and 6).

3.4. Comparison with Support Vector Machine (SVM). The
proposed model was compared with the traditional machine
learning method of SVM. Table 4 shows the accuracy assess-
ment of the different methods applied to detect buildings in
the working and testing areas. The results of the comparison
experiments in the working area show that the best accuracy
(86.19%) was obtained using the proposed model with a
lower number of features selected by the autoencoder model.
The proposed model without dimensionality reduction also
obtained higher accuracy than the SVM models. The results
show that the SVM model can achieve relatively good accu-
racy when its hyperparameters are optimized. However, the
SVM model with default parameters can attain the lowest
accuracy (76.56%). The experiments in the testing area simi-
larly show that the best accuracy (81.86%) can be obtained
using the proposed model with dimensionality reduction.
However, the SVM model with optimized hyperparameters
outperforms the proposed model without dimensionality
reduction. The accuracy of the SVM model with optimization
is 79.27%, whereas the DL model without using autoencoders
for dimensionality reduction achieved 77.92% building detec-
tion accuracy. The SVM model with default parameters
obtained the lowest accuracy (74.11%).

Figure 8 presents an example of the building detection
results from the testing area for the proposed model and
SVM method. Figure 8(a) shows the study subset that
contains different building types with various geometric
and roofing characteristics. The results of the proposed
model without dimensionality reduction are presented in
Figure 8(b), whereas those with dimensionality reduction
are presented in Figure 8(c). The results that used autoen-
coders are more accurate, with less noise in nearby building
boundaries. For example, the results show that the pro-
posed model with a lower number of features can obtain
results that are more precise with regard to building geom-
etry. The buildings in Figure 8(b) were combined, and the
model could not detect the features between the buildings.
By contrast, the results of the proposed model (with 10 fea-
tures) present better building separation compared with
those using the complete set of features. Furthermore, using
the transformed features instead of the original set of fea-
tures can better distinguish between buildings and nearby
trees. The SVM models present relatively similar results.
However, the optimized SVM exhibits better detection
accuracy and less misclassification between buildings and
nearby trees. Moreover, the results of the optimized SVM
show better building separation as highlighted by the green
circles in Figure 8(d). Overall, the accuracy assessment and
visual interpretation of the classification results show that
the proposed model is more accurate than the SVM model.

4. Conclusion

This study developed a DL approach based on autoencoders
and CNN models to detect buildings in a fused LiDAR-
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TABLE 4: Accuracy assessment of the testing area.
Dataset Model Properties Accuracy (%)
Proposed model Without dimensionality reduction 86.06
. Proposed model With dimensionality reduction 86.19
Working area ] o
SVM Without optimization 76.56
SVM With optimization 82.34
Proposed model Without dimensionality reduction 77.92
. Proposed model With dimensionality reduction 81.86
Testing area ] o
SVM Without optimization 74.11

SVM With optimization 79.27
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FiGUre 8: Examples of the results of the proposed model and the
SVM method: (a) orthophoto of the area, (b) results of the
proposed model without dimensionality reduction, (c) results of the
proposed model with dimensionality reduction, (d) SVM results
without optimization, and (e) SVM results with optimization.

orthophoto dataset. The proposed architecture includes mul-
tiresolution and spectral difference segmentations to create
objects by grouping the image pixels according to their shape
and spectral properties. A total of 21 features from spectral,
textural, LiDAR, and spatial features were identified for
building detection. These low-level features were then
fused at the feature level and compressed into 10 features
using the autoencoder model. The compressed features
were transformed into high-level features, which were then
used to classify the objects into buildings and nonbuild-
ings. The main advantages of applying such architecture
to building detection include automatic feature selection
and removal of redundant features for improved building
detection in datasets.

The main findings of the study suggest that using autoen-
coders as a dimensionality reduction step can improve the
accuracy of building recognition and improve the computing
performance of the model. The proposed model achieved the
best accuracy of 86.19% in the working area and 81.86% in
the testing area. The comparative study shows that the pro-
posed model outperforms the SVM model in the working
and testing areas. Furthermore, the sensitivity analysis indi-
cates that the hyperparameters of the DL model and SVM
method should be fine-tuned to obtain better accuracy levels
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in building detection. Although the proposed method that
was determined to be useful for building detection achieves
better results than the SVM model, several points still have
to be considered in the future. Further research should be
performed to improve the proposed model for large-scale
building mapping and testing. Future studies should also test
whether using satellite images instead of orthophotos can
improve accuracy or will only increase the cost of data.
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