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Abstract—This paper presents a model predictive control
(MPC) approach based on the mixed integer linear programming
(MILP) to develop an optimal power management strategy (PMS)
for minimizing the electricity bill of commercial buildings in a
domestic on-grid system. The optimal PMS is first formulated as
a MILP-MPC with time-varying constraints. The constraints are
then linearized at each sampling time so that a receding horizon
principle can be used to determine the control input applied to
the plant and update the model. The time-varying efficiency of
power electronic converters is evaluated for each time interval
and assumed to be persistent for the prediction time horizon. The
numerical results show that the proposed MILP-MPC strategy
with variable efficiency is effective in utilizing photovoltaic power
generation to save the cost on electricity for buildings.

NOMENCLATURE

Acronyms
BESS battery energy storage system
MILP mixed integer linear programming
MPC model predictive control
PMS power management strategy
PV photovoltaic
RBC rule-based control
SoC state of charge
Constants
N number of discrete time intervals
Np prediction horizon
P buy
max maximum allowable buying power from grid [kW]
P ch
max maximum allowable charging power [kW]
P ch
min minimum allowable charging power [kW]
P dis
max maximum allowable discharging power [kW]
P dis
min minimum allowable discharging power [kW]
P sell
max maximum allowable selling power to grid [kW]
SoCmax upper limit of state-of-charge [kWh]
SoCmin lower limit of state-of-charge [kWh]
Ts discrete time interval duration
Decision variables
δb binary variable for charging/discharging power

from/to BESS
δg binary variable for buying/selling power from/to the

grid
P buy power bought from the grid [kW]
P ch power exchanged with BESS during charging [kW]
P dis power exchanged with BESS during discharging

[kW]
P sell power sold to the grid [kW]
Indices
∧ predicted value

j prediction horizon intervals
k discrete time intervals
Parameters
uopt optimal input sequence
ηch efficiency of BESS connected converter during

charging
ηdis efficiency of BESS connected converter during dis-

charging
ηpv efficiency of PV system connected converter
cf feed-in tariff [AUD/kWh]
ctou time-of-usage energy price [AUD/kWh]
P l load power demand [kW]
P pv power generation from PV system [kW]
SoC state-of-charge [kWh]

I. INTRODUCTION

Over the decades, the utilization of sustainable power
sources has received a remarkable interest because of increas-
ing electricity demand, the need to decrease CO2 emissions
and the decay of fossil fuel resources. In this situation, pho-
tovoltaic (PV) and wind power generation appear as the most
promising renewable resources. Prevalently, PV generation is
rapidly developing in the residential energy sector for which
it is particularly relevant. In present times, governments are
assuring the PV development by giving incentive policies
which detail lessened costs. Due to that factor, grid-tied PV
systems are intended to uphold popularity for the following
decade. As a result of the irregular nature of solar radiation,
power management strategy (PMS) becomes complex. An
imbalance of dynamic power demand and the PV generation is
a major challenge. As of late, the battery energy storage system
(BESS) has been used in combination with a solar system to
address this concern. Consequently, along with the utility grid,
modern home power system also comprises BESS and PV
system [1]. On the contrary, the energy management capability
and effectiveness limit the integration of grid-connected BESS.

Home PMS can control and supervise the power flow
from/to the grid for matching the power consumption to that
of the PV generation and also to reduce the overall cost
of electrical power delivered to the residential systems. A
BESS device introduces an extra investment cost and also has
operating constraints. Moreover, power electronics converters
are used as an interface of a home energy system and, thus,
the consideration of the dynamic efficiency of these power
converters should account for the real-time power conversion
losses. These together with the dynamic energy pricing model

978-1-5386-6375-2/19/$31.00 ©2019 IEEE 1113



for energy consumption from the grid and feed-in tariff will
involve high nonlinearities, yielding a complicated optimiza-
tion problem, for which the main objective is to find the
charging/discharging schedule of BESS which minimizes the
electricity bill.

Different methodologies for microgrid energy management
have been introduced in the literature. Most of the studies
related to the cost optimization techniques concentrate on a
PMS between distributed generation, BESS and connected
loads for minimizing the electricity cost, improving generation
efficiency, saving energy and stabilizing the power system [2].
Because of the unpredictability of the microgrid optimization
and extensive financial advantages that could come about
because of enhanced solutions, extensive consideration is
being committed to the improvement of better optimization
algorithms and suitable modeling frameworks [3], [4]. Most
of the proposed solution techniques incorporate mathematical
programming [5], heuristics [6] and priority rules [7]. The
authors in [8] proposed energy management solutions by
applying a model predictive control (MPC) approach that
considering fixed power conversion loss which is making the
problem unrealistic. In [9], MPC methodology is applied to
tackle the dynamic economic dispatch problem, aimed at min-
imizing the generation cost over a finite time horizon. Many
researchers centered the long-term objectives on the efficient
utilization of renewable energy within microgrids, e.g., the
designing of BESS schedule to store the electricity locally
generated from renewable sources and reuse it during peak
load demand periods. Furthermore, all works are comprised
of linearities and solved with implicit MPC to achieve control
objectives without updating the plant model.

It is observed in the existing literature that the formulation
of saving energy bills into a mixed integer linear programming
(MILP) optimization problem with time-varying constraints
has not been addressed. As MILP mostly uses the branch-and-
bound algorithm which gives the global optimum solution with
minimum computational time, this approach can be applied
to more complex microgrids. As such, we propose here to
use a MILP-MPC for dealing with dynamic control and state
constraints while satisfying performance specifications. This
proposed control strategy provides advantages in terms of
feedback control technique to predict the future response
of the plant over a finite horizon, incorporates constraints
explicitly, easy to formulate as a constrained optimization
problem, closed-loop stability and inherent robustness [10].
The objective function and constraints are formulated into a
finite-time optimal control problem. At each sampling period,
a set of system states are updated, the optimal control problem
is solved online, and the controller time horizon recedes by
another step [11]. To the best of our knowledge, there are
no current models including power electronic converters with
consideration of dynamic efficiencies due to intermittent nature
of renewable generation and variable load demand.

This paper also compares the results obtained from the
proposed MILP-MPC with those from a rule-based control
(RBC) algorithm. The RBC algorithm determines all the

Fig. 1: A case study of microgrid.

control inputs based on a series of rules of ‘if & then
conditions’ which are associated with numerical values that
need to be chosen. Our contributions are: (i) the formulation of
the building energy cost for a microgrid into a multiobjective
optimization problem subject to variable constraints; (ii) the
development of a MILP-MPC scheme to deal with time-
varying constraints involved in the problem.

II. SYSTEM DESCRIPTION, MODELING AND CONSTRAINTS

In this work, the focus is on minimizing the electricity
bill of a typical residential commercial building, using an
integrated PV system and BESS with consideration of the
dynamic efficiency of power converters as depicted in Fig.
1. Here, the target is to minimize the energy cost for a week
by optimally managing the flow from the PV power and power
exchanged with BESS during charging and discharging based
on a dynamic electricity pricing model. For this case, a slotted
time approach is used, whereby a week is divided into N
discrete time intervals and each interval with a duration of Ts
(e.g., N = 336 for Ts = 30 minutes).

A. Storage Dynamics

In the power management of microgrids, the state-of-charge
(SoC) of BESS, plays an important role. For any sampling time
k, its dynamics are described by [12]:

SoCk+1 = SoCk + Tsη
ch
k P ch

k − TsP dis
k , (1)

A good range should be considered for the charg-
ing/discharging operation to improve the life of BESS. Such
a constraint is expressed as:

SoCmin ≤ SoCk ≤ SoCmax. (2)

The BESS is restricted with the maximum allowable amount
of power flowing in/out during charging/discharging, respec-
tively. Therefore, the system must satisfy the following con-
straints:

δbkP
dis
min ≤ P dis

k ≤ δbkP dis
max, (3)

(1− δbk)P ch
min ≤ P ch

k ≤ (1− δbk)P ch
max. (4)
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According to the limitations on BESS power during charg-
ing/discharging, a binary variable, δb, is considered, as per:

δbk =

{
0 for charging,
1 for discharging.

B. Grid interactions

Here we consider a grid-tied system, which facilitates the
power selling and buying from the utility grid. According to
the standard approach discussed in [13], the building energy
system must hold the following inequalities to sell and buy
energy from the grid:

0 ≤ P buy
k ≤ δgkP

buy
max, (5)

0 ≤ P sell
k ≤ (1− δgk)P

sell
max. (6)

In addition, a binary variable, δg , is considered and as per:

δgk =

{
0 for selling energy,
1 for buying energy.

According to the mathematical formulation laid out above
and different power flow directions in the given system, a
global power balance equation is needed for any discrete
sampling time k, which is defined as:

ηpvk P pv
k + ηdisk P dis

k + P buy
k − (P sell

k + P ch
k + P l

k) = 0. (7)

where 0 < ηch, ηdis < 1, which balances the energy flow
in/out in the BESS.

In this study, two electricity price functions are considered
such as ToU which varies with time and feed-in-tariff which
is assumed as constant, i.e., 0.1 AUD/kWh [14]. The ToU
price function varies with three different price periods during
a weekday: the shoulder-peak period from 07:00 to 13:59, and
from 20:00 till 21:59; the high-peak hours from 14:00 to 19:59;
the rest are off-peak hours. Weekends rates are shoulder and
off-peak.

C. Power Converter Efficiency

In this paper, the case studied microgrid elements are inter-
faced with two power conversion converters, whose efficiency
is an empirically modeled using a curve fitting technique, e.g.
from quadratic interpolation [15].

η = 1−
1

R
× (α1 + α2 ×R+ α3 ×R2), (8)

where R is the normalized input power of the converter which
varies with time. the power conversion efficiency is calculated
using (8) and applied on converters to solve the PMS.

Figure 2 illustrates, respectively, the power conversion ef-
ficiency characteristics of PV-connected and BESS-connected
converters. It is observed that the efficiency of converter is
lower when the input power to the converter is less than 15%
of the nominal power.

Fig. 2: Power converters efficiency plots. (a) BESS-connected
bi-directional converter, (b) PV-connected converter.

III. MILP-MPC FORMULATION

Due to the dynamic nature of solar irradiation and power
demand, this is a dynamic decision-making problem. Its ob-
jective is to minimize power consumption from the utility
grid while satisfying operational constraints. Here, the power
management problem can be viewed as a MILP optimization
problem. The requirement of a real-time online control strategy
has motivated us to use an MPC formulation.

As the problem is formulated in a MILP, which minimizes
the linear function, fTu, subject to the constraints, is typically
defined as :

min
u
fTu subject to


δb and δg are integers,
Aineq · u ≤ bineq,
Aeq · u = beq,

lb ≤ u ≤ ub.

(9)

In this work, the objectives are to simultaneously minimize
the energy consumption and maximize the energy selling at
each instant k over a week (k ∈ {0, 1, . . . , N − 1}). To do
this, it is required to find the optimal input variables, uopt

k .
Subsequently, The optimal economical problem can be defined
as:

Jopt = min
u

N−1∑
k=0

(
ctouk P buy

k Ts − cfkP
sell
k Ts

)
, (10)

where uk = [P dis
k P ch

k P buy
k P sell

k δbk δgk]
T . Here,

The objective is to use predicted values of the electricity
price, load demand and the available PV energy to find
out the optimal consumption/selling at each time instant k.
Consequently, we consider solving this optimal problem taking
predictions into account over a desirable prediction horizon,
i.e., Np < N . Hence, the following optimal control problem
can be solved at each instant k as follows:

uopt
k = argmin

u

Np−1∑
j=0

(
ctouj P buy

j Ts − cfjP
sell
j Ts

)
, (11)
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subject to

δbjP
dis
min ≤ P dis

j ≤ δbjP dis
max, (12)

(1− δbj)P ch
min ≤ P ch

j ≤ (1− δbj)P ch
max, (13)

0 ≤ P buy
j ≤ δgjP

buy
max, (14)

0 ≤ P sell
j ≤ (1− δgj )P

sell
max, (15)

0 ≤ δbj ≤ 1, (16)

0 ≤ δgj ≤ 1, (17)

SoCmin ≤ ˆSoCj ≤ SoCmax, (18)
ˆSoCj+1 = ˆSoCj + Tsη

ch
k P ch

j − TsP dis
j , (19)

ηpvk
ˆP pv

j + ηdisk P dis
j + P buy

j − (P sell
j + P ch

j + P̂ l
j) = 0,

(20)

for all j ∈ {0, 1, . . . , Np − 1}, where the initial predictive
values ˆSoC0 = SoCk, ˆP pv

0 = P pv
k , P̂ l

0 = P l
k, ĉtou0 = ctouk

and ĉf0 = cfk are known. So the optimal input sequence for the
prediction horizon Np can be obtained as

uopt
k =

[
(uopt0 )T (uopt1 )T · · · (uoptNp−1)

T
]T
. (21)

Lastly, the decision variables to minimize the objective
function at each sampling time k is only the first element
in uopt

k , i.e.,
uoptk = uopt0 , (22)

where the remaining optimal values in uopt
k , are discarded. The

MILP optimization problem is repeated for the next sampling
instant using new predicted values in order to attain a new
optimal sequence uopt

k+1. This process is known as receding
horizon policy which is summarized in the proposed pseudo-
code Algorithm. Here, the prediction values of buying energy,
selling energy, PV power, and load demand are obtained by
the off-line prediction function PRED(·) [16].

Remark 1. At each control interval, the MPC controller
updates the plant model and evaluates each converter’s ef-
ficiency by using current optimal input values. It is important
to notice that ηpv , ηch and ηdis are considered as persistent
over prediction horizon, Np.

The constraints in the optimization problem from (12) to
(20) can be solved using a MILP technique and rewritten as
the model (9), comprised of following matrices and vectors:

Aineq =



I 0 0 0 −P dis
maxI 0

−I 0 0 0 P dis
minI 0

0 I 0 0 P ch
maxI 0

0 −I 0 0 −P ch
minI 0

0 0 I 0 0 −P buy
maxI

0 0 0 I 0 P sell
maxI

Tsφ −Tsηchk φ 0 0 0 0
−Tsφ Tsη

ch
k φ 0 0 0 0


,

Aeq =
[
ηdisk I −I I −I 0 0

]
,

beq =
[
(P l − ηpvk P pv)

]T
,

Algorithm Optimal power dispatch strategy

Initialization:
k ← 0, Np ← 8

while (1) do
· Price predictor
ctou0 ← ctouk

ctouk = ctou-PRED(·)
ctouk ← {ctou0 , ĉtou1 , . . . , ĉtouNp−1}
cf0 ← cfk
cfk = cf -PRED(·)
cfk ← {c

f
0 , ĉ

f
1 , . . . , ĉ

f
Np−1}

· PV predictor
P pv
0 ← P pv

k

P pv
k = Ppv-PRED(·)
P pv

k ← {P
pv
0 , ˆP pv

1, . . . , ˆP pv
Np−1}

· Load predictor
P l
0 ← P l

k

P l
k = Pl-PRED(·)
P l

k ← {P l
0, P̂

l
1, . . . , P̂ l

Np−1}
· Optimization
ˆSoC0 ← SoCk

uopt
k = OPT( ˆSoC0, c

tou
k , cfk ,P

pv
k ,P l

k, SoC
min, SoCmax,

P ch
max, P

ch
min, P

dis
max, P

dis
min, P

buy
max, P

sell
max)

uopt
k ← {uopt0 , uopt1 , . . . , uoptNp−1}
· Receding Horizon Policy
uoptk ← uopt0

SoCk+1 = SoCk + Tsη
ch
k P ch

k − TsP dis
k

k ← k + 1
end while

bineq =



0
0

P ch
max1
−P ch

min1
0

P sell
max1

(−SoCmin + SoCk)1
(SoCmax − SoCk)1


,φ =


1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

 ,

lb =


P dis
min

P ch
min

0
0
0
0

 , ub =


P dis
max1
P ch
max1
P buy
max1
P sell
max1
1
1

 , 1 =


1
1
...
1
1

 .
Remark 2. In this work, the MILP-MPC strategy depends
on the predicted values of PV generation, load demand and
energy market price. It is important to notice that, we have
not designed any actual predictor models in this paper. The
function PRED(·) used here, gives off-line predictions by
adding an error of 10% to the actual values. As matter of fact,
the main objective is to attain an optimal battery schedule in
order to minimize the electricity bill for a week.

IV. RESULTS AND DISCUSSIONS

In this study, we considered the microgrid is in on-grid
mode and consists of a PV system, BESS and power electronic
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Fig. 3: Flowchart for the RBC algorithm.

converters interface. The proposed MILP-MPC strategy is
tested with a real PV power data of a typical microgrid and
real-time electricity market price data. The PV observation
data has been taken from the PV system of an office building
[17]. The nominal power of the PV system is 20 kW and the
energy capacity of BESS is 100 kWh (2 × 50 kWh Zn-Br2
batteries). The values of the minimum and maximum rate of
charging are 120 W and 17 kW, whereas for discharging 20
W and 25 kW respectively. The storage energy available at
the beginning of day is assumed to 20% of BESS capacity. In
order to preserve the long life cycle, we considered the upper
and lower limits for the BESS as 20% (SoCmin) and 80%
(SoCmax) of its capacity. We choose a sampling time of 30
minutes such that one-week operational cycle consists of 336
discrete time intervals and simulations are performed for the
period of a week.

The proposed MILP-MPC is compared with a rule-based
control algorithm whose flowchart is shown in Fig. 3. Figure
4 depicts the power exchanged with BESS for the MILP-MPC
and RBC strategies. The energy available at the beginning of
the day is not sufficient to guarantee peak shaving for the rest
of the day. Thus, with MILP-MPC, BESS absorbs the energy
from PV and grid during low price periods, i.e., acting as a
load to the system, and delivers electricity during high price
periods, i.e., acting as a power generator. The energy stored in
the battery using MILP-MPC and RBC strategies, is plotted
in the Fig. 5. In both controlling strategies, it is important
to notice that SoC returns to the initial value at the end
of the operational period for optimal power management for
the next operational cycle which allows us to define absolute
energy consumption cost for a week. The power exchange
with the utility grid using MILP-MPC and RBC is illustrated
in the Fig 6. As the energy selling price is constant and low
as compared with the buying price, the proposed strategy
preferred to charge the battery instead of selling the power
to the utility grid when the excess PV power is available.

Fig. 4: Power exchanged with battery: (a) MILP-MPC, (b)
RBC.

Fig. 5: Energy stored in the battery: (a) MILP-MPC, (b) RBC.

Due to the irregularity in PV power generation, more power
is consumed from the utility grid in RBC strategy as compared
with the proposed strategy. For a clear view, we plotted BESS
and grid power profiles of the proposed method for the 2nd

day of the week in the Fig. 7. The electricity consumption cost
per week MILP-MPC and RBC is detailed in Table I, indicates
that the proposed method with variable efficiency results in a
lower electricity bill with around 34.70% saving as compared
to the RBC strategy. In this study, the simulation was repeated
for MILP-MPC strategy with a fixed efficiency of 80%, gives a
13.68% higher cost than the MILP-MPC strategy with variable
efficiency.
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Fig. 6: Power exchanged with the utility grid: (a) MILP-MPC,
(b) RBC.

Fig. 7: MILP-MPC strategy for the 2nd day: (a) Power
exchanged with the battery, (b) Power exchanged with the
utility grid.

TABLE I: Electricity bill for a week

Electricity bill (AUD)

RBC 239.15

MILP-MPC fixed η 181.38

variable η 156.56

V. CONCLUSION

In this paper, a time-varying constrained MILP-MPC has
been proposed for the PMS, that optimizes the energy cost of a
commercial building energy system equipped with PV panels,
BESS and grid connection. The proposed MILP-MPC takes
into account the ToU electricity price function and dynamic
power conversion losses which make the system more realistic.
A case study of the energy management system of a real-world
building is considered. The obtained numerical results indicate

that the proposed MILP-MPC strategy with variable efficiency
can store more energy to the battery with effective utilization
of PV power generation. These together show the benefit in
terms of saving the cost on electricity over the RBC strategy
which is promising for the battery investment payback. Also,
the proposed MILP-MPC with variable efficiency gives less
power conversion losses as compared to MILP-MPC with fixed
efficiency. Future work will focus on the implementation of
the transactive power management and fair cost distribution
among multiple house microgrids.
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