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Abstract: In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A
controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented for two actuated and un-
actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due
to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights
are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in
which some uncertain and unknown parameters are intractable to be determined. Moreover, stability of the sliding surfaces is proved
to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and
real-life systems, where the results obtained by our method are highly promising.
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1 Introduction

An overhead crane, also known as a bridge crane, plays
a critical role in many factories or industries to transport
heavy payloads or hazardous wastes/materials from one
place to another place or in harbour ports to load and un-
load cargo from ships[1], [2]. The overhead crane is classified
into a class of under-actuated mechanical systems, where
a number of outputs is greater than a number of control
inputs. On the other hand, in modern factories, due to re-
quirement of increasing productivity, a bridge crane system
is frequently operated at high speed, which mainly leads
to payload oscillations severely affecting on safety of oper-
ators, cargo or surrounding items[3]. Moreover, the cargo
oscillations are nonlinear and highly coupled with motions
of actuators such as bridge, trolley or hoist[4]. Due to these
complicated dynamics and non-holonomic behaviours, an
overhead crane is deemed to be difficult to control. There-
fore, a fundamental problem in designing a controller for a
3D overhead crane system is that control law is required to
minimize swings of a cargo while moving it fast to a desired
destination[5].

In order to optimally address the aforesaid control issues
for a crane system, many approaches have been proposed
in the past decades. All those control laws can be pri-
marily classified into two categories of the open-loop and
closed-loop methods. The former is quite simple since it
is straightforward to implement, no additional angle sensor
requirement[6]–[8]. Nonetheless, the open-loop control tech-
nique is very sensitive to external disturbances such as wind
when a 3D bridge crane is utilized outdoors[9]. In contrast
to the open-loop approach, the closed/feedback-loop con-
trol method employs sensor measurements and system state
estimations to adjust actuators to obtain desired outputs,
which enables a crane system to be less sensitive to exter-
nal disturbances as well as uncertainties[10]. For instance,
in [11], by using LaSalle’s invariance set theorem, Fang et
al. proposed a proportional-derivative control scheme to
adjust motions of the bridge and cargo in a two degree-of-

freedom overhead crane. They then relied on both squared
and kinetic energies to design two nonlinear control laws
to enhance performance of the system in transient states.
Likewise, the work in [12] developed a nonlinear two closed-
loop controller to not only fast drive a payload on a desired
trajectory but also eliminate its oscillations. In the context
of partial feedback linearization, the authors in [13] fully
incorporated nonlinear dynamics of a 2D crane system into
a controller that simultaneously controls positions of a trol-
ley and hoisted payload and minimizes load sway angles.
Moreover, Le et al. in their works [14], [15] enhanced the
nonlinear partial feedback linearization controller for a 3D
overhead crane system. By considering nonlinear feedback
of actuated and un-actuated states in a superposition man-
ner, a three input control law was designed to asymptoti-
cally stabilize the states of the crane system. In addition
to the approaches based on the deterministic models of a
crane system, a fuzzy logic controller, which is designed by
representing an overhead crane by not a mathematical but
fuzzy model, has been widely employed in the crane control
community[16]–[18]. Due to its strong adaptability to com-
plexity and nonlinearity of a crane, the fuzzy logic control
law considerably benefits control actions of a 3D overhead
crane.

Nonetheless, if one is interested in robustness of a crane
system regardless its uncertainties and nonlinearities, the
sliding mode control (SMC)[19]–[24] is the best candidate
when considering design of a controller. For an under-
actuated overhead crane, a SMC scheme is not only robust
but also efficient to control the system even it is under un-
certain conditions. Nevertheless, there still exists challeng-
ing issues regarding control in a crane system. For instance,
how to define sliding surfaces so as to guarantee stability
of actuated and un-actuated subsystems while the number
of control inputs is smaller than that of actuators is still a
fully unsolved question for control law makers. In litera-
ture, there have been some works proposed to address the
issue. In [19],[21] a sliding surface is constituted by linearly
combining a sliding surface of actuated states and errors of
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un-actuated states. Furthermore, the authors in [20], [25]
first developed an intermediate variable based on state er-
rors, which then allowed them to form a second-level sliding
surface.

Among approaches of defining a sliding surface for a SMC
scheme, an efficient technique named hierarchical SMC
(HSMC) particularly interests researchers who have been
developing a controller for an under-actuated crane sys-
tem[26]–[29]. Fundamentally, the HSMC approach enables
engineers to design a control scheme based on hierarchi-
cal structure of sliding surfaces. In other words, first-order
sliding surfaces are first formed by linear combination of
state variables, which contribute different degrees of impor-
tance in the system performance, defined by their weights.
Higher order sliding surfaces are then constructed to formu-
late a control law properly. For instance, in [26] Wang et
al. proposed a HSMC strategy for a class of under-actuated
systems, where a second-order sliding surface is formed by
linearly combining all firs-level sliding surfaces correspond-
ing to all subsystems. By extending the method in [26], the
authors of the work[30] proposed another hierarchical struc-
ture of sliding surfaces in designing a control scheme for
single-input-multiple-output under-actuated systems. They
developed the first-layer sliding surface based on the first
subsystem, which is then combined with the sliding surface
of the second subsystem to form the second-layer sliding
surface. This chain is subsequently conducted until the last
subsystem. More importantly, the authors also proved that
all the sliding surfaces in this hierarchical structure are sta-
bilized. In [31], Qian et al. demonstrated feasibility of
employing the HSMC law in an overhead crane system in a
simulation environment.

Nonetheless, it is noted that the SMC strategy is math-
ematically deterministic, where all model parameters are
required to be estimated. On the other hand, those param-
eters are also uncertain due to disturbances in the system.
Some adaptive control strategies have been proposed to take
the parameter uncertainties into account. For instance, in
[32],[33], adaptive SMC schemes were developed for a crane
system, where unknown parameters are estimated by an
adaptive algorithm derived from Lyapunov theory. In the
works [34], [35], a fuzzy uncertainty observer is employed
to represent crane system uncertainties as well as actuator
nonlinearities. Likewise, the SMC strategies were designed
for non-linear systems in which unknown parameters are
estimated by a neural network[36], [37] and a fuzzy-neural
network[38]. Furthermore, an intelligent sliding mode con-
troller comprising fuzzy wavelet neural networks for a 3D
overhead crane is discussed in [39]. Though in the aforesaid
works the approximation methods for estimating the un-
certain parameters were validated in both simulations and
laboratories, to the best of our knowledge, none of them
was validated for a 3D model in a realistic crane system,
where the microcontroller is resource-constrained. That is,
2D overhead cranes were considered in [34], [35] while a 3D
model of an overhead crane was only simulated in [39].

Therefore, in this work, we propose a new efficient adap-
tive sliding mode control scheme for a 3D overhead crane
system that comprises of hierarchical sliding surfaces and
radial basis function networks (RBFN). In literature, the
RBFN based SMC method has been employed in industry

robotic systems [40], manipulators [41], [42], underactuated
mechanical systems [43] and static var compensators [44].
The controller proposed in this paper is first created by
the HSMC approach, where a second-level sliding surface
is linearly constructed by two first-level sliding surfaces of
two corresponding actuated and un-actuated subsystems.
More particularly, nonlinear uncertain parameters of the
system dynamics caused by external disturbances are pre-
sented and adaptively estimated by the use of the RBFN,
which are then updated to the controller. The adaptive
hierarchical sliding mode control (AHSMC) law was imple-
mented and verified in both synthetic simulations and real-
life experiments. The results obtained by the AHSMC are
highly comparable to those obtained by HSMC. However, it
is noticed that the proposed algorithm significantly reduces
difficulties in determining unknown and uncertain parame-
ters of a 3D overhead crane system. The results obtained
by the proposed technique also demonstrate robustness of
the system under uncertain conditions.

The remaining of the paper is organized as follows. Sec-
tion 2 discusses a mathematical model of a 3D overhead
crane while Section 3 presents the hierarchical sliding mode
controller. The AHSMC strategy for a 3D overhead crane
is then introduced in Section 4. Section 5 delineates the
results and effectiveness of the proposed approach imple-
mented in both synthetic simulations and real-life experi-
ments before conclusions are drawn in Section 6.

2 3D Overhead Crane System

2.1 Notations

Let R denote the set of real numbers. The Euclidean
norm is defined by ‖ · ‖. ẏ and ÿ denote, respectively, the
first and second derivatives of y. Moreover, we let tr(A)
denote the trace of a matrix A. Other notations will be
explained in due course.

2.2 3D Overhead Crane Model

A 3D overhead crane can be delineated by a hoist motion
in 3 directions (X, Y and Z) in a Cartesian coordinate,
which means it has three degrees of freedom[4]. Structurally,
the crane consists of three main movable elements including
a bridge, a trolley and a hoist. The bridge can move to the
either left or right of a particular space. While the hoist can
vertically lift cargo up and down, the trolley would carry it
either backward or forward along the bridge.

Physically, a 3D overhead crane is represented by a model
shown in Fig. 1. In a defined coordinate, positions of the
bridge and trolley over time are specifically denoted by x
and y. While we let β and α denote the angle between
the hoist cable and its projection on the X-Z plane and the
angle between the projection of the hoist cable on the X-Z
plane and Z axis, respectively, length of the hoist cable is
defined by l. Furthermore, it is assumed that the bridge
is uniform, and the hoist cable is massless and rigid. If
friction in the crane system is also supposed to be trivial, a
dynamic model of a 3D overhead crane can be derived from
the well-known Euler-Lagrange equation[45] as follows,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi, i = 1, 2, 3, 4, 5, (1)



V-A. LE et al. / An efficient adaptive hierarchical sliding mode control strategy using neural networks for 3D overhead cranes 3

Figure 1: Modelling of a 3D overhead crane.

where qi is the ith element of the output vector q =
[x y l α β]T and τi is the ith control force of the input
vector τ = [τx τy τl 0 0]T . L = T − Π, where T and Π are
the kinetic and potential energies of the system. In the 3D
overhead crane system, the kinetic and potential energies
can be specified by

T =
1

2
mbẋ

2 +
1

2
mt(ẋ

2 + ẏ2) +
1

2
mc(ẋ

2
c + ẏ2c + ż2c ), (2)

Π = mcgzc, (3)

where mb and mt are the masses of the bridge and the
trolley, respectively, mc is the mass of the cargo and g =
9.8m/s2. xc, yc and zc are the positions of the cargo, which
can be obtained by

xc = x+ l cosβ sinα (4)

yc = y + l sinβ (5)

zc = −l cosα sinβ. (6)

In the form of an ordinary differential equation system, the
dynamic model of a 3D overhead crane can be systemati-
cally represented by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ , (7)

where M(q) ∈ R5×5 is the inertial matrix, C(q, q̇) ∈ R5×5

is the centrifugal damping matrix, G(q, q̇) ∈ R5×1 is the
vector of the gravitational forces, and τ = [τx τy τl 0 0]T is
the vector of the control inputs. Elements of those matrices
are computed as follows,

m11 = mb +mt +mc, m12 = m21 = 0,

m13 = m31 = mc sinα cosβ,

m14 = m41 = mcl cosα cosβ,

m15 = m51 = −mcl sinα sinβ,

m22 = m2 +mc, m23 = m32 = mc sinβ,

m24 = m42 = 0, m33 = mc, m34 = m43 = 0,

m35 = m53 = 0, m44 = mcl
2 cos2 β,

m45 = m54 = 0, m55 = mcl
2,

c11 = c12 = 0, c13 = mc(α̇ cosα cosβ − β̇ sinα sinβ),

c14 = −mc(α̇l cosβ sinα+ β̇l cosα sinβ − l̇ cosα cosβ),

c21 = c22 = 0, c23 = mcβ̇ cosβ, c24 = 0,

c25 = mc(l̇ cosβ − β̇l sinβ), c31 = c32 = c33 = 0,

c34 = −mclα̇ cos2 β, c35 = −mclβ̇, c41 = c42 = 0,

c43 = mclα̇ cos2 β, c44 = mcl cosβ(l̇ cosβ − β̇l sinβ),

c45 = −mcl
2α̇ sinβ cosβ, c51 = c52 = 0, c53 = mclβ̇,

c54 = mcl
2α̇ sinβ cosβ, c55 = mcll̇,

g1 = g2 = 0, g3 = mcg cosα cosβ, g4 = mcgl sinα cosβ,

g5 = −mcgl cosα sinβ.

3 Hierarchical Sliding Mode Controller

3.1 Actuated and Un-actuated Decou-
pling

It is well-known challenging to design a controller for a 3D
overhead crane system, which is under-actuated. In other
words, of three outputs of the system qa = [x y l]T are
directly controlled by its real three inputs τ1 = [τx τy τl]

T
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correspondingly while two other outputs qu = [α β]T are
un-actuated. The un-actuated outputs can be only con-
trolled through indirectly adjusting x, y and l. Therefore,
in order to facilitate the process of designing a controller,
the dynamic model in (7) is separated into two equations
and rewritten as follows,

M11(q)q̈a+M12(q)q̈u + C11(q, q̇)q̇a (8)

+C12(q, q̇)q̇u + G1(q) = τ1 (9)

M21(q)q̈a+M22(q)q̈u + C21(q, q̇)q̇a (10)

+C22(q, q̇)q̇u + G2(q) = 0, (11)

where M11(q) ∈ R3×3, M12(q) ∈ R3×2, M21(q) ∈
R2×3 and M22(q) ∈ R2×2 are sub-matrices of M(q).
C11(q, q̇) ∈ R3×3, C12(q, q̇) ∈ R3×2, C21(q, q̇) ∈
R2×3 and C22(q, q̇) ∈ R2×2 are sub-matrices of C(q, q̇).
G1(q) ∈ R3×1 and G2(q) ∈ R2×1 are sub-matrices of G(q),
and 0 = [0 0]T .

Since M22(q) is a positive definite matrix, (10) is rear-
ranged as follows,

q̈u = −M−1
22 (q)[M21(q)q̈a+C21(q, q̇)q̇a (12)

+C22(q, q̇)q̇u + G2(q)].

By substituting (12) into (8), the actuated outputs qa can
be obtained by solving

M̄1(q)q̈a + C̄11(q, q̇)q̇a + C̄12(q, q̇)q̇u + Ḡ1(q) = τ ,
(13)

where

M̄1(q) = M11(q)−M12(q)M−1
22 (q)M21(q)

C̄11(q, q̇) = C11(q, q̇)−M12(q)M−1
22 (q)C21(q, q̇)

C̄12(q, q̇) = C12(q, q̇)−M12(q)M−1
22 (q)C22(q, q̇)

Ḡ1(q) = G1(q)−M12(q)M−1
22 (q)G2(q).

Likewise, the un-actuated outputs qu can be found by solv-
ing

M̄2(q)q̈a + C̄21(q, q̇)q̇a + C̄22(q, q̇)q̇u + Ḡ2(q) = H̄τ ,
(14)

where

M̄2(q) = M22(q)−M21(q)M−1
11 (q)M12(q)

C̄21(q, q̇) = C21(q, q̇)−M21(q)M−1
11 (q)C11(q, q̇)

C̄22(q, q̇) = C22(q, q̇)−M21(q)M−1
11 (q)C12(q, q̇)

Ḡ2(q) = G2(q)−M21(q)M−1
11 (q)G1(q)

H̄ = M21(q)M−1
11 (q).

3.2 Control Strategy

In order to address the un-actuated control issues, many
control schemes have been proposed for a 3D overhead crane
system. Nevertheless, due to its renowned robustness un-
der uncertainty conditions, sliding mode control (SMC) ap-
proach has remarkably attracted many crane control de-
signers. Among the SMC designs, a hierarchical SMC[30]

presents to be effective for the control of an under-actuated
system. In this section, we introduce a second-order slid-
ing mode controller for a 3D overhead crane system, which

will be then employed to develop its adaptive version in the
following section.

Let qad = [xd yd ld]T and qud = [0 0]T denote the output
references for the system, to which the actuated states qa =
[x y l]T and un-actuated states qu = [α β]T are expected to
converge, respectively. Thus, the corresponding errors are
defined as follows,

ea = qa − qad

eu = qu.

We first define two first-level sliding surfaces for the corre-
sponding actuated and un-actuated subsystems as follows,

s1 = ėa + caea,

s2 = ėu + cueu,

where s1 ∈ R3×1, s2 ∈ R3×1, and ca = diag(c1, c2, c3) and
cu = diag(c4, c5) are positive constant parameters. The
second-level sliding surface for the system is then aggre-
gated by,

s = r1s1 + r2s2, (15)

where

r1 = diag(r1, r2, r3)

r2 =

 r4 0

0 r5
0 0


are the matrices of positive gains. It is noticed that the
second-level sliding surface s ∈ R3 can be guaranteed to
converge to zero if an appropriate control law is designed.

To this end, let us consider derivative of the second-level
sliding surface. From equations (13) - (15) it derives that

ṡ = r1ṡ1 + r2ṡ2

= r1(q̈a − q̈ad) + r1ca(q̇a − q̇ad) + r2q̈u + r2cuq̇u

=

 r1M̄−1
1 (τ −C11q̇a −C12q̇u − Ḡ1)− r1q̈ad

+r1caq̇a − r1caq̇ad

+r2M̄−1
2 (H̄τ −C21q̇a −C22q̇u − Ḡ2) + r2cuq̇u

 .
If we differentiate the Lyapunov function candidate V =
1
2
sT s wrt time, and given the derivative of the second-level

sliding surface in (16), it yields

V̇ = ṡT s (16)

=


(r1M̄−1

1 + r2M̄−1
2 H̄τ)

−r1M̄−1
1 (C11q̇a + C12q̇u + Ḡ1)

−r1q̈ad + r1caq̇a − r1caq̇ad

−r2M̄−1
2 (C21q̇a + C22q̇u + Ḡ2) + r2cuq̇u


T

s.

In order to stabilize the second-level sliding surface s, we
let

ṡ + K1sgn(s) + K2s = 0, (17)

where K1 = diag(K11,K12,K13) and K2 =
diag(K21,K22,K23) are the positive control gain ma-
trices. Note that K1 and K2 are chosen so that stability of
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Figure 2: The diagram of the HSMC scheme.

the sliding surface is guaranteed[21]. Therefore, the HSMC
scheme for a 3D overhead crane can be presented as follows

τ = [r1M̄−1
1 + r2M̄−1

2 H̄]−1× (18)

×


r1M̄−1

1 (C11q̇a + C12q̇u + Ḡ1)

−(−r1q̈ad + r1caq̇a − r1caq̇ad

+r2M̄−1
2 (C21q̇a + C22q̇u + Ḡ2)

−r2cuq̇u −K1sgn(s)−K2s

 .
Nonetheless, due to the “chattering” phenomenon, which
may practically affect on the system trajectories that are
consistently expected to be maintained on the sliding sur-
face, a saturation function sat(·) is proposed to replace the
switching function sgn(·) in (18). In this work, the satura-
tion function sat(·) is defined as follows,

sat(x/b) =


−1, if x ≤ −b
x/b, if − b ≤ x ≤ b
1 if x ≥ b,

where b is a parameter that can be chosen by the trial-and-
error method so that all of the chattering will be eliminated
given different frequency bands.

4 Adaptive Hierarchical Sliding Mode
Control Design

4.1 Neural Network based Controller

The HSMC strategy in (18) is mathematically determin-
istic, which means that this control scheme can only be
practical if all the parameters involved in the system model
are known. Nonetheless, determining some of those pa-
rameters is not trivial in a realistic application. On the
other hand, uncertainties of the model parameters are not
considered in (18). Moreover, some other nonlinear char-
acteristics such as the dead-zone band of actuators[46] and
the hysteresis of outputs[47] are disregarded in the deter-
ministic model. Therefore, the deterministic HSMC law is
practically demolished.

To effectively deal with the aforesaid limitations of the
deterministic model, we propose to exploit a Radial Basis

Function Network (RBFN) to adaptively estimate the pa-
rameters in the control strategy for a 3D overhead crane
system. Since the RBFN is capable of processing nonlin-
ear features in a system, both the parameter uncertainties
and external disturbances in the system are well incorpo-
rated into the dynamics in the adaptive hierarchical sliding
mode controller obtained by this learning mechanism. The
structure of the HSMC law is illustrated in Fig. 2

In the context of a feedforward neural network, as dis-
cussed by Park et al. in [48], an N node RBFN based
universal approximation can be represented by

f(Z =

N∑
i=1

ωisi(Z) = WTS(Z), (19)

where si(·) is a radial basis function (RBF), Z is the input
vector, W = [ω1, · · · , ωN ]T ∈ RN is the weight vector and
S(Z) = [s1(‖ Z− µ1 ‖), · · · , sN (‖ Z− µ1 ‖)]T is considered
as a set of activation functions. In fact, there is a family of
RBFs[49], and the widely used Gaussian function is specified
as follows,

si(‖ Z− µ1 ‖) = exp

(
− (Z− µi)

T (Z− µi)

2δ2i

)
, (20)

where µi = [µi1, · · ·µiq]T is the centre vector and δi is the
standard deviation.

It is noted that if the number of nodes N is large enough,
a RBFN can be approximately presented by a continuous
function. In other words, in steps of designing a control
law for a 3D overhead crane, a RBFN can be intelligently
exploited to model some unknown dynamics in the system.
To this end, the HSMC strategy in (18) can be rewritten
by

τ = [r1M̄−1
1 + r2M̄−1

2 H̄]−1× (21)

×

[
r1M̄−1

1 fa(q, q̇)−(−r1q̈ad + r1caq̇a − r1caq̇ad

+r2M̄−1
2 fu(q, q̇)− r2cuq̇u −K1sgn(s)−K2s

]
,

where

fa(q, q̇) = C̄11(q, q̇)q̇aC̄12(q, q̇)q̇u + Ḡ1(q)

fu(q, q̇) = C̄21(q, q̇)q̇aC̄22(q, q̇)q̇u + Ḡ2(q)



6 International Journal of Automation and Computing X(X), X X

are the continuous functions corresponding to the actuated
and un-actuated outputs. If we define the state inputs of
a RBFN as Z = [est est]

T ∈ R6 with est = [l α β]T ∈ R3,
let f̂a(Z) ∈ R3 and f̂u(Z) ∈ R2 denote the corresponding
approximations of fa(q, q̇) and fu(q, q̇), which are obtained
by the RBFNs and given as follows,

f̂a(Z) = ŴT
a S(Z)

f̂u(Z) = ŴT
u S(Z),

where ŴT
a ∈ R3×N and ŴT

u ∈ R2×N are the adaptive
weight matrices, which can be obtained by the use of the
Lyapunov stability and presented by

˙̂Wa = −ΓaS(Z)sTr1M̄−1
1 (22)

˙̂Wu = −ΓuS(Z)sTr2M̄−1
2 , (23)

where Γa = diag(Γa1,Γa2, · · · ,ΓaN ) and Γu =
diag(Γu1,Γu2, · · · ,ΓuN ) are positive definite matrices.
Therefore, the HSMC scheme (21) is adaptively approxi-
mated by

τ = [r1M̄−1
1 + r2M̄−1

2 H̄]−1× (24)

×

[
r1M̄−1

1 f̂a(q, q̇)− (−r1q̈ad + r1caq̇a − r1caq̇ad

+r2M̄−1
2 f̂u(q, q̇)− r2cuq̇u −K1sgn(s)−K2s

]
.

4.2 Sliding Surface Stability Analysis

In order to demonstrate effectiveness of the proposed
adaptive HSMC (AHSMC) scheme (24) for a 3D overhead
crane, this section discusses stability of the closed-loop con-
trol system. Lets consider the Lyapunov function candi-
date, specified by

V =
1

2
sTs +

1

2
tr(W̃T

a Γ−1
a W̃a) +

1

2
tr(W̃T

u Γ−1
u W̃u), (25)

where W̃a = Ŵa −Wa and W̃u = Ŵu −Wu are the
weight errors. And its derivative wrt time is in the form
of

V̇ = sTṡ + tr(W̃T
a Γ−1

a
˙̂Wa) + tr(W̃T

u Γ−1
u

˙̂Wu) (26)

=

 sT ((r1M̄−1
1 + r2M̄−1

2 H̄)τ − r1M̄−1
1 fa

−r1q̈ad + r1caq̇a − r1caq̇ad − r2M̄−1
2 fu

+r2cuq̇u) + tr(W̃T
a Γ−1

a
˙̂Wa) + tr(W̃T

u Γ−1
u

˙̂Wu)



=


sT ((r1M̄−1

1 + r2M̄−1
2 H̄)τ − r1M̄−1

1 f̂a
−r1q̈ad + r1caq̇a − r1caq̇ad − r2M̄−1

2 f̂u
+r2cuq̇u)+sTr1M̄−1

1 (fa − f̂a)

+sTr2M̄−1
2 (fu − f̂u) + tr(W̃T

a Γ−1
a

˙̂Wa)

+tr(W̃T
u Γ−1

u
˙̂Wu)

 .

Substituting the AHSMC law (24) into (26) yields

V̇ = −sTK1sgn(s)− sTK2s+sTr1M−1
1 W̃T

a S(Z) (27)

+sTr1M−1
1 W̃T

u S(Z) + tr(W̃T
a Γ−1

a
˙̂Wa)

+ tr(W̃T
u Γ−1

u
˙̂Wu).

Moreover, (27) can be further simplified by using the adap-
tive mechanisms in (22) and (23) as follows,

V̇ = −sTK1sgn(s)− sTK2s ≤ 0. (28)

Integrating (28) yields∫ t

0

dV =

∫ t

0

(−K2sTs−K1|s|)dt = V (t)− V (0). (29)

Hence,

V (t) =
1

2
sTs+

1

2
tr(W̃T

a Γ−1
a W̃a)+

1

2
tr(W̃T

u Γ−1
u W̃u) ≤ V (0),

(30)
which means s, W̃a and W̃u are bounded. Furthermore,
since V (0) ≥ 0, ∫ t

0

(K2sTs−K1|s|)dt ≤ 0. (31)

Thus, limt→∞ s = 0; that is, the second-level sliding surface
s in (15) is asymptotically stabilized.

4.3 Actuator Saturation

In practice, actuators of a crane system have nonlinear
constraints such as backlash, dead-zone band, hysteresis of
outputs or saturation features. In other words, the con-
trol signals may cause actuations to be exceeding a safety
margin, which mitigates quality of the control law and de-
stroys the actuators. To address this issue, we have taken
the actuator saturation into account. The saturation of the
actuators is defined as follows [50].

τs =


τmax if τ > τmax

τ if τmin < τ < τmax

τmin if τ < τmin,

(32)

where τs is the actuator output and τ is the control input
of the actuator. τmax and τmin are the upper and lower
bounds of the actuator characteristics, respectively. If the
control input τ is outside the linear range of the actuator,
there exists the saturation nonlinearity and the calculated
control signal cannot effectively control the object. Thus,
the eliminated term of the control signal can be recomputed
by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τs + δ (33)

where δ = τ − τs represents influence of the saturation fea-
tures. In cases, where effect of the actuator saturation on
system is considered, the control signal τ in (21) is replaced
by τs in (32).

5 Results and Discussions

In order to illustrate effectiveness of the proposed ap-
proach of the AHSMC as compared with that of the HSMC,
this section discusses results obtained in the experiments
conducted on both a synthetic simulation environment and
in a laboratory. The aim was to investigate how efficiently
the responses of the bridge, trolley, hoist and hoist cable
converge to desired steady states after each control action.
It is noted that the RBFN exploited in all the experiments
was constructed by 100 nodes, where their centres were
evenly distributed in µi = [−1.2, 1.2] × [−1.6, 1.6] and the
standard deviation was set to δi = 0.8, for i = 1, 2, · · · , 6.
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Figure 3: Simulation control force signals.

5.1 Simulations

In the first experiments, we synthetically simulated a
real-life 3D overhead crane system that is pictorially shown
in Fig. 6. Therefore, information of the bridge crane was
known. Furthermore, parameters of the controllers were
given. The parameters of the 3D overhead crane system
and its controllers including the HSMC and AHSMC are
summarized as follows

mb = 24.3 kg, mt = 11.2 kg,

c1 = c3 = 4, c2 = 5, c4 = c5 = 0.02,

mc = 0.78 kg, g = 9.81 m/s2,

τmax = [60 30 30 0 0], τmin = [−60 − 30 − 30 0 0],

q(0) = [0 0 0.4 0 0], q̇(0) = [0 0 0 0 0],

r1 = r2 = r3 = 1, r4 = r5 = 0.38,

K11 = K12 = K13 = 2, K21 = K22 = K23 = 0.1,

Γai = Γui = 0.2,

b = 1.

It is important to be noted that in practice motions of the
bridge, trolley and hoist in a 3D overhead crane are simulta-
neously controlled, not in order, which were also simulated
in these synthetic exercises. Moreover, the control force
signals, which were adaptively computed under considera-
tion of influence of the actuator saturation, are illustrated
in Fig. 3.

We first examine the simulation results in terms of mo-
tions of the bridge, trolley and hoist as the actuated outputs
of the system, which are demonstrated in Fig. 4. It was ex-
pected that the bridge was required to move from its initial
position at -1 m to the first desired position at 0.6 m. After
20 s, the bridge was then expected to be returned to the
destination at -0.4 m before it was intentionally driven to 0
m at 40 s. As can be seen in Fig. 4a, in the both forward
and backward motions, the bridge could steadily converge
to the desired positions in less than 5 s time. Similarly,
as illustrated in Fig. 4b, the trolley was expected to move
to the left with a distance of 1.2 m from its starting posi-
tion at -0.5 m and then back to the right with a distance
of 1 m after 20 s time before it was moved 0.3 m to a lo-
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Figure 4: Simulation actuated output results.

cation of 0 m at 40 s. It is noticeable that the converging
time of the trolley in each motion was also under 5 s. Al-
though the overshoots in both bridge and trolley motions
are trivial, the results obtained are highly promising. In
contrast, these is no overshoot in the hoisting motions as
demonstrated in Fig. 4c. Moreover, though the cargo was
required to be first uplifted of 0.4 m, lifted down of 0.2 m
and lifted up of 0.4 m again at 0 s, 20 s and 40 s, respec-
tively, the responding time of both the lifting and unlifting
movements obtained by the proposed algorithm was about
3 s. It can be clearly seen that the actuated outputs in the
3D crane system obtained by both the HSMC and AHSMC
approaches were well tracked the desired positions. Par-
ticularly, performance of the AHSMC scheme was highly
approximate to that of the HSMC law though some of its
parameters are adaptively estimated online. It is noted that
performance of the HSMC is the best since its parameters
are assumed to be certain while the system parameters in
the AHSMC scheme are approximated. Moreover, it can be
seen that there is a trivial steady-state error in the hoisting
motions shown in Fig. 4c. This negligible error is due to

approximation of the unknown and uncertain parameters of
the crane system.

More importantly, we investigated the sway angles of the
payload, which are illustrated in Fig. 5. It can be clearly
seen that those non-actuators responded when the system
moved the bridge and trolley to the new destinations and
the cargo was lifted up or down. It is noted that all the
bridge, trolley and hoist were simultaneously controlled at
0 s, 20 s and 40 s, respectively, which might make the crane
not easy to be controlled as compared with the case where
the actuators are sequentially controlled. As shown in Fig.
5a, the angle between the projection of the hoist cable on
the X-Z plane and Z axis swung at most 0.15 rad, while its
counterpart, the angle between the hoist cable and its pro-
jection on the X-Z plane as demonstrated in Fig. 5b, swung
at most 0.1 rad, when the system started moving. More par-
ticularly, the cargo swings as a result of the AHSMC law
are highly comparable with those obtained by the HSMC
scheme though the AHSMC strategy does not require some
uncertain controlling parameters to be known.
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(a) (b)

Figure 5: Simulation un-actuated output results.

Figure 6: A real-time 3D overhead crane system.

5.2 Experiments

To experimentally evaluate efficacy of the proposed ap-
proach, we implemented the algorithm in a real-life 3D over-
head crane system in a laboratory, as shown in Fig. 6.
Three actuators in the crane include two three-phase asyn-
chronous motors and one direct current (DC) geared motor.
While the alternative current (AC) motors are employed to
drive the bridge and trolley, the DC motor is utilized to
hoist the payload. Electrically, the AC motors are driven
by two Mitsubishi inverters FREQROL-S500, and the DC
motor is driven by the H-bridge circuit MB02A manufac-
tured by HBQ Technology, using the pulse width modula-
tion method. Moreover, five encoders with 200-pulse-per-
round resolution are employed to measure displacements of
the bridge, trolley, cable length and swing angles.

Regarding the central control unit, we implemented our
algorithm on the NI MyRIO 1900 microcontroller, where
the sampling period was set to 10 ms. More particularly,
we also designed a human-machine interface by the use of
LabView 2014, which enables end-users to set desired posi-
tions for the crane, visually monitor the system dynamics

and log data for other report and analysis purposes.
By employing the proposed algorithm, the motions of the

bridge, trolley and hoist of the experimented crane are il-
lustrated in Fig. 8, while its swing angles of are plotted
in Fig. 9. It is noted that the control force signals were
adaptively computed by the microcontroller, as shown in
Fig. 7. The responses of the experimental crane by the use
of our proposed AHSMC scheme are highly similar to those
of the simulated system presented in Section 5.1. In other
words, converging time of the actuation motions in the sim-
ulation is about 5 s while that in the experiments is about 6
s. Moreover, though the experimented 3D crane was under
realistic disturbances and uncertainties, the overshoots of
its motions in transient states as demonstrated in Fig. 8
are trivial. Fig. 9 also shows that the sway angles of the
crane were effectively suppressed by the proposed approach
though many of its complicated uncertainties are unknown.

Another issue that has been observed in the experimen-
tal example as compared to the simulations is the non-
zero steady-state errors as shown in both Figures 8 and
9. Though these errors are negligible, the non-zero conver-
gence appearing in reality is partly caused by the realistic
nonlinearities and external disturbances of the crane sys-
tem. On the other hand, since the proposed algorithm was
implemented on the microcontroller, the sampling rate also
leads to the non-zero convergence of the steady-state errors.
Based on the microcontroller’s oscillator and the sensors’
resolutions, a sampling period of 10 ms was set to guaran-
tee the microcontroller to be able to run the algorithm in
a real time given its computing ability and memory capac-
ity. Though the use of the microcontroller’s capability was
maximized, the non-zero steady state errors generated by
the sampling in the microcontroller were not avoidable in
the realistic experiments.

6 Conclusions

The paper has proposed an adaptive control scheme for
the 3D uncertain overhead crane based on the hierarchi-
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Figure 7: Experimental control force signals.

cal sliding mode control structure. The controller of the
AHSMC law is first designed by the use of the first-order
sliding surfaces of both the actuated and un-actuated sub-
systems. Parameters of the controller are then adaptively
estimated by employing the RBFN, which allows the crane
to effectively deal with its unknown and non-linear un-
certainties and disturbances. The proposed approach was
evaluated by both the synthetic and laboratory experi-
ments, where the results obtained by the proposed algo-
rithm AHSMC are highly promising.
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