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Generalized Wong sequences

and their applications to Edmonds’ problems

Gábor Ivanyos∗ Marek Karpinski† Youming Qiao‡ Miklos Santha§

Abstract

We design two deterministic polynomial-time algorithms for variants of a problem
introduced by Edmonds in 1967: determine the rank of a matrix M whose entries are
homogeneous linear polynomials over the integers. Given a linear subspace B of the
n× n matrices over some field F, we consider the following problems: symbolic matrix

rank (SMR) is the problem to determine the maximum rank among matrices in B,
while symbolic determinant identity testing (SDIT) is the question to decide whether
there exists a nonsingular matrix in B. The constructive versions of these problems are
asking to find a matrix of maximum rank, respectively a nonsingular matrix, if there
exists one.

Our first algorithm solves the constructive SMR when B is spanned by unknown
rank one matrices, answering an open question of Gurvits. Our second algorithm
solves the constructive SDIT when B is spanned by triangularizable matrices, but the
triangularization is not given explicitly. Both algorithms work over fields of size at least
n+1, and the first algorithm actually solves (the non-constructive) SMR independent
of the field size. Our framework is based on a generalization of Wong sequences, a
classical method to deal with pairs of matrices, to the case of pairs of matrix spaces. 1

1 Introduction

In 1967, Edmonds introduced the following problem [9]: Given a matrix M whose entries are
homogeneous linear polynomials over the integers, determine the rank of M . The problem is
the same as determining the maximum rank of a matrix in a linear space of matrices over the
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rationals. In this paper we consider this question and its certain variants over more general
fields.

Let us denote by M(n,F) the linear space of n × n matrices over a field F. We call a
linear subspace B ≤ M(n,F) a matrix space. We define the symbolic matrix rank problem
(SMR) over F as follows: given {B1, . . . , Bm} ⊆ M(n,F), determine the maximum rank
among matrices in B = 〈B1, . . . , Bm〉, the matrix space spanned by Bi’s. The constructive
version of SMR is to find a matrix of maximum rank in B (this is called the maximum rank
matrix completion problem in [15] and in [22]). We refer to the weakening of SMR, when
the question is to decide whether there exists a nonsingular matrix in B, as the symbolic
determinant identity testing problem (SDIT), the name used by [23] (in [18] this variant is
called Edmonds’ problem). The constructive version in that case is to find a nonsingular
matrix, if there is one in B. We will occasionally refer to any of the above problems as
Edmonds’ problem.

The complexity of the SDIT depends crucially on the size of the underlying field F. When
|F| is a constant then it is NP-hard [5]. On the other hand if the field size is large enough
(say ≥ 2n) then by the Schwartz-Zippel lemma [29, 34] it admits an efficient randomized
algorithm [25]. Obtaining a deterministic polynomial-time algorithm for the SDIT would
be of fundamental importance, since Kabanets and Impagliazzo [23] showed that such an
algorithm would imply strong circuit lower bounds which seem beyond current techniques.

Previous works on Edmonds’ problems mostly dealt with the case when the givenmatrices
B1, . . . , Bm satisfy certain property. For example, Lovász [26] considered several cases of
SMR, including when the Bi’s are of rank 1, and when they are skew symmetric matrices
of rank 2. These classes were then shown to have deterministic polynomial-time algorithms
[15, 27, 19, 16, 14, 22], see Section 1.1 for more details.

Another direction also studied is when instead of the given matrices, the spanned matrix
space B = 〈B1, . . . , Bm〉 satisfies certain property. Since such a property is just a subset of
all matrix spaces, we also call it a class of matrix spaces. Gurvits [18] presented an efficient
deterministic algorithm for the SDIT over subfields of C, when the matrix space falls in a
special class, what we call the Edmonds-Rado class. We shall review the definition of this
class in Section 1.1. In this paper, our main goal is to consider Edmonds’ problems for the
following two classes.

• The class of rank-1 spanned matrix spaces, R1: a matrix space B ≤M(n,F) is in R1,
if B has a basis consisting of rank-1 matrices over F′, where F′ is some extension field
of F.2

• The class of (upper) triangularizable matrix spaces, UT: a matrix B ≤ M(n,F) is in
UT, if there exist nonsingular C,D ∈ M(n,F′), where F′ is some extension field of F,
such that for all B ∈ B, the matrix DBC−1 is upper-triangular.

It is known that the Edmonds-Rado class includes R1 and UT. See Section 1.1 for more
details. While Gurvits presented an efficient deterministic SDIT algorithm for the Edmonds-
Rado class over subfields of C, the same problem over (large enough) finite fields is still open,

2Note that it is possible for B to have a rank-1 basis over F′ but no such over F. See [17] for an example.
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even for special classes like R1 and UT. In fact, Gurvits stated as an open question the
complexity of the SMR for R1 over finite fields [18, page 456].

The difference between properties of matrices and properties of matrix spaces is critical
for Edmonds’ problems. In particular, whether a matrix space satisfies a certain property or
not, should not depend on choices of basis. We are not aware of any result on the complexity
of finding rank one generators for a subspace B in R1 if it is given by a basis consisting of
not necessarily rank one matrices. We believe that the problem is hard. Thus the existence
of algorithms for SMR when the Bi’s are rank-1 does not immediately imply algorithms for
matrix spaces in R1.

Furthermore, most properties we encounter in practice respect the following equivalence
relation of matrix spaces. Two matrix spaces A and B in M(n,F) are equivalent, if there
exist nonsingular C,D ∈M(n,F), s.t. A = CBD := {CBD | B ∈ B}. Edmonds-Rado class,
R1 and UT all respect this equivalence relation. Again, given matrices B1, . . . , Bm, and
suppose B = 〈B1, . . . , Bm〉 is in UT, it is not clear how difficult is computing matrices C,D
that triangularize B. The problem does not look as hard as finding rank one generators, see
Section 7 for some details. Thus while SDIT for upper-triangular Bi’s is easy, it does not
immediately suggest an algorithm for matrix spaces in UT.

To ease the description of our results, we make a few definitions and notations. We
denote by rank(B) the rank of a matrix B, and we set corank(B) = n − rank(B). For a
matrix space B we set rank(B) = max{rank(B) | B ∈ B} and corank(B) = n− rank(B). We
say that B is singular if rank(B) < n, that is if B does not contain a nonsingular element,
and nonsingular otherwise.

For a subspace U ≤ Fn, we set B(U) = 〈B(u) | B ∈ B, u ∈ U〉. Let c be a nonnegative
integer. We say that U is a c-singularity witness of B, if dim(U)− dim(B(U)) ≥ c, and U is
a singularity witness of B if for some c > 0, it is a c-singularity witness. Note that if there
exists a singularity witness of B then B can only be singular. Let us define the discrepancy
of B as disc(B) = max{c ∈ N | ∃ c-singularity witness of B}. Then it is also clear that
corank(B) ≥ disc(B).

Our main results are algorithms that run in polynomial time on an algebraic RAM [24],
a random access machine in which the field operations as well as testing equality of field
elements are performed at unit cost. Over finite fields, the straightforward implementations
of these algorithms automatically have polynomial (in log F and n) Boolean (“bit”) complex-
ity. With some effort, we are also able to present deterministic algorithms over the rationals
which have Boolean complexity polynomial in the number of bits representing the input data.
We now state our main theorems.

Theorem 1. There are deterministic algorithms which solve the SMR on an algebraic RAM
for F or over Q, respectively, in polynomial time if B is spanned by rank-1 matrices. If the
size of the base field is at least n+1, the algorithm solves the constructive SMR, and it also
outputs a corank(B)-singularity witness.

Theorem 2. Assume that the size of the base field F is at least n + 1. Then there are
deterministic polynomial-time algorithms which solve the constructive SDIT on an algebraic
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RAM for F or over Q, respectively, if B is triangularizable. Furthermore, when B is singular,
the algebraic RAM algorithm also outputs a singularity witness.

Theorem 1 can be slightly strengthened as follows: instead of assuming that the whole
space B is rank-1 spanned, it is sufficient to suppose that a subspace of B of co-dimension
one is spanned by rank-1 matrices. See Remark 15 (2) for the work needed to achieve this.

Let us comment briefly on the framework for our algorithms. We generalize the first and
second Wong sequences for matrix pencils (essentially two-dimensional matrix spaces) which
have turned out to be useful among others in the area of linear differential-algebraic equations
(see the recent survey [30]). These were originally defined in [33] for a pair of matrices (A,B),
and were recently used to compute the Kronecker normal form in a numerical stable way
[2, 3]. We generalize Wong sequences to the case (A,B) where A and B are matrix spaces,
and show that they have analogous basic properties to the original ones. We relate the
generalized Wong sequences to Edmonds’ problems via singularity witnesses. Essentially
this connection allows us to design the algorithm for R1 using the second Wong sequence,
and the algorithm for UT using the first Wong sequence. We remark that the application of
the second Wong sequence is not new. Similar techniques were used in [22] to find maximum
rank matrices in the case where rank one generators for B were given. Furthermore, while
preparing the present version, we became aware of the paper [13] by Fortin and Reutenauer
in which essentially the same method is used for testing existence of corank(B)-singularity
witnesses (on a randomized algebraic RAM).

1.1 Comparison with previous works

The idea of singularity witnesses was already present in Lovász’s work [26]. Among other
things, Lovász showed that for the rank-1 spanned case, the equality corank(B) = disc(B)
holds, by reducing it to Edmonds’ Matroid Intersection theorem [10], which in turn can be
deduced from Rado’s matroidal generalization of Hall’s theorem [28] (see also [32]). Inspired
by this fact, Gurvits introduced the term Edmonds-Rado property for membership in the class
of matrix spaces which are either nonsingular, or have a singularity witness. Throughout
this paper we refer to this class as the Edmonds-Rado class. Gurvits listed several subclasses
of the Edmonds-Rado class, including R1 (by the aforementioned result of Lovász) and UT.
A well-known example of a matrix space outside the Edmonds-Rado class is the linear space
of skew symmetric matrices of size 3 [26].

As we stated already, Gurvits has presented a polynomial-time deterministic algorithm
for the SDIT over subfields of C for matrix spaces in the Edmonds-Rado class. Therefore
over these fields, his algorithm covers the SDIT for R1 and for UT. Our algorithms (in the
algebraic RAMmodel) are valid over arbitrary sufficiently large fields. In the triangularizable
case we also deal with the SDIT, but for R1 we solve the more general SMR. In fact, it is not
hard to reduce SMR for the general to SMR for the triangularizable case (see Lemma 27), so
solving SMR for UT is as hard as the general case. In both cases the algorithms solve the
constructive version of the problems, and they also construct singularity witnesses. Finally,
they work in polynomial time when the field size is at least n + 1. Moreover, for R1 the
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algorithm solves the non-constructive SMR in polynomial time even over arbitrarily small
finite fields, settling an open problem of Gurvits.

Over fields of constant size, the SMR has certain practical implications [19, 20], but is
shown to be NP-hard [5] in general. Some special cases have been studied, mostly in the
form of the mixed matrices, that is linear matrices where each entry is either a variable or
a field element. Then by restricting the way variables appear in the matrices some cases
turn out to have efficient deterministic algorithms, including when every variable appears
at most once ([19], building on [15, 27]), and when the mixed matrix is skew-symmetric
and every variable appears at most twice ([16, 14]). Finally in [22], Ivanyos, Karpinski and
Saxena present a deterministic polynomial-time algorithm for the case when among the input
matrices B1, . . . , Bm all but B1 are of rank 1.

As a computational model of polynomials, determinants with affine polynomial entries
turn out to be equivalent to algebraic branching programs (ABPs) [31, 4] up to a polynomial
overhead. Thus the identity test for ABPs is the same as SDIT. For restricted classes of
ABPs, (quasi)polynomial-time deterministic identity test algorithms have been devised (cf.
[12] and the references therein). Note that identity test results for SDIT and ABPs are in
general incomparable. For an application of SDIT to quantum information processing see
[7].

Organization. In Section 2 we define Wong sequences of a pair of matrix spaces, and
present their basic properties. In Section 3 the connection between the second Wong sequence
and singularity witnesses is shown. Based on this connection we introduce the power overflow
problem, and reduce the SMR to it. We also prove here Theorem 1 under the hypothesis
that there is a polynomial time algorithm for the power overflow problem. In Section 4 we
show an algorithm for the power overflow problem that works in polynomial time for rank-1
spanned matrix spaces. Section 5 is devoted to the algorithm for triangularizable matrix
spaces, proving Theorem 2. Finally, in Section 6 we propose and investigate some natural
subclasses of the Edmonds-Rado class.

2 Wong sequences for pairs of matrix spaces

For n ∈ N, we set [n] = {1, . . . , n}. We use 0 to denote the zero vector space. In this
section we generalize the classical Wong sequences of matrix pencils to the situation of pairs
of matrix subspaces. This is the framework for the algorithms in this work. Let V and V ′

be finite dimensional vector spaces over a field F, and let Lin(V, V ′) be the vector space of
linear maps from V to V ′. Suppose n = dim(V ) and n′ = dim(V ′).

Let U ≤ V and W ≤ V ′ be subspaces of V and V ′, respectively. For A ∈ Lin(V, V ′),
the image of U under A is A(U) = {A(u) | u ∈ U}, and the preimage of W under A is
A−1(W ) = {v ∈ V | A(v) ∈ W}. To define generalized Wong sequences, the first step is to
generalize the definitions of image and preimage under a single linear map A, to those under
a matrix space A ≤ Lin(V, V ′).
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Naturally, the image of U under A is the span of the images of U under every A ∈ A, that
is A(U) = 〈∪A∈AA(U)〉 = 〈{A(u) | A ∈ A, u ∈ U}〉. On the other hand, the preimage of W
under A may be somewhat unexpected. It turns out that we need to take the intersection of
the preimages of W under every A ∈ A, that is A−1(W ) = ∩A∈AA

−1(W ) = {v ∈ V | ∀A ∈
A, A(v) ∈ W}. Note that A(U) (resp. A−1(W )) is a subspace of V ′ (resp. V ). Moreover, if
A is spanned by {A1, . . . , Am}, then A(U) = 〈∪i∈[m]Ai(U)〉, and A−1(W ) = ∩i∈[m]A

−1
i (W ).

Some easy and useful facts are the following.

Lemma 3. For A,B ≤ Lin(V, V ′), and U, S ≤ V , W,T ≤ V ′, we have:

1. If U ⊆ S and W ⊆ T , then A(U) ⊆ A(S) and A−1(W ) ⊆ A−1(T );

2. If B(U) ⊆ A(U) and B(S) ⊆ A(S), then B(〈U ∪ S〉) ⊆ A(〈U ∪ S〉);

3. If B−1(W ) ⊇ A−1(W ) and B−1(T ) ⊇ A−1(T ), then B−1(W ∩ T ) ⊇ A−1(W ∩ T );

4. A−1(A(U)) ⊇ U , and A(A−1(W )) ⊆W .

We now define two Wong sequences for a pair of matrix subspaces.

Definition 4. Let A,B ≤ Lin(V, V ′). The sequence of subspaces (Ui)i∈N of V is called the
first Wong sequence of (A,B), where U0 = V , and Ui+1 = B−1(A(Ui)). The sequence of
subspaces (Wi)i∈N of V ′ is called the second Wong sequences of (A,B), where W0 = 0, and
Wi+1 = B(A

−1(Wi)).

When A = 〈A〉 and B = 〈B〉 are one dimensional matrix spaces, the Wong sequences for
(A,B) coincide with the classical Wong sequences for the matrix pencil Ax−B [33, 2]. The
following properties are straightforward generalizations of those for classical Wong sequences.
We start by considering the first Wong sequence.

Proposition 5. Let (Ui)i∈N be the first Wong sequence of (A,B). Then for all i ∈ N, we
have Ui+1 ⊆ Ui. Furthermore, Ui+1 = Ui if and only if B(Ui) ⊆ A(Ui).

Proof. Firstly we show that Ui+1 ⊆ Ui, for every i ∈ N. For i = 0, this holds trivially. For
i > 0, by Lemma 3 (1) we get Ui+1 = B

−1(A(Ui)) ⊆ B
−1(A(Ui−1)) = Ui, since Ui ⊆ Ui−1.

Suppose now that B(Ui) ⊆ A(Ui), for some i. Then Ui ⊆ B
−1(B(Ui)) ⊆ B

−1(A(Ui))
respectively by Lemma 3 (4) and (1), which gives Ui+1 = Ui. If B(Ui) 6⊆ A(Ui) then there
exist B ∈ B and v ∈ Ui such that B(v) 6∈ A(Ui). Thus v 6∈ B

−1(A(Ui)) = Ui+1, which gives
Ui+1 ⊂ Ui.

Given Proposition 5, we see that the first Wong sequence stabilizes after at most n
steps at some subspace. That is, for any (A,B), there exists ℓ ∈ {0, . . . , n}, such that
U0 ⊃ U1 ⊃ · · · ⊃ Uℓ = Uℓ+1 = · · · . In this case we call the subspace Uℓ the limit of (Ui)i∈N,
and we denote it by U∗.

Proposition 6. U∗ is the largest subspace T ≤ V such that B(T ) ⊆ A(T ).

6



Proof. By Proposition 5 we know that U∗ satisfies B(U∗) ⊆ A(U∗). Consider an arbitrary
T ≤ V such that B(T ) ⊆ A(T ), we show by induction that T ⊆ Ui, for all i. When i = 0 this
trivially holds. Suppose that T ⊆ Ui, for some i. Then by repeated applications of Lemma 3
we have T ⊆ B−1(B(T )) ⊆ B−1(A(T )) ⊆ B−1(A(Ui)) = Ui+1.

Analogous properties hold for the second Wong sequence (Wi)i∈N. In particular the
sequence stabilizes after at most n′ steps, and there exists a limit subspace W ∗ of (Wi)i∈N.
We summarize them in the following proposition.

Proposition 7. Let (Wi)i∈N be the second Wong sequence of (A,B). Then

1. Wi+1 ⊇Wi, for all i ∈ N. Furthermore, Wi+1 = Wi if and only if B−1(Wi) ⊇ A
−1(Wi).

2. The limit subspace W ∗ is the smallest subspace T ≤ V ′ s.t. B−1(T ) ⊇ A−1(T ).

It is worth noting that the second Wong sequence can be viewed as the dual of the first
one in the following sense. Assume that V and V ′ are equipped with nonsingular symmetric
bilinear forms, both denoted by 〈, 〉. For a linear map A : V → V ′ let AT : V ′ → V stand for
the transpose of A with respect to 〈, 〉. This is the unique map with the property 〈AT(u), v〉 =
〈u,A(v)〉, for all u ∈ V ′ and v ∈ V . For a matrix space A, let AT be the space {AT|A ∈ A}.
For U ≤ V , the orthogonal subspace of U is defined as U⊥ = {v ∈ V | 〈v, u〉 = 0 for all
u ∈ U}. Similarly we define W⊥ for W ≤ V ′. Then we have ((AT)−1(U))⊥ = A(U⊥), and
(AT(V ))⊥ = A−1(V ⊥). It can be verified that if (Wi)i∈N is the second Wong sequence of
(A,B) and (Ui)i∈N the first Wong sequence of (AT,BT), then Wi = U⊥

i . We note that the
duality of Wong sequences was already derived in [2] for pairs of matrices.

For a matrix space A and a subspace U ≤ V given in terms of a basis we can compute
A(U) by applying the basis elements for A to those of U and then selecting a maximal set of
linearly independent vectors. A possible way of computing A−1(U) for U ≤ V ′ is to compute
first U⊥, then AT(U⊥) and finally A−1(U) = (AT(U⊥))⊥. Therefore we have

Proposition 8. Wong sequences can be computed in time using (n+n′)O(1) on an algebraic
RAM.

Unfortunately, we are unable to prove that over the rationals the bit length of the entries
of the bases describing the Wong sequences remain polynomially bounded in the length of
the data for A and B. However, in Section 3.1 we show that if A = 〈A〉, then the first
few members of the second Wong sequence which happen to be contained in im(A) can be
computed in polynomial time using an iteration of multiplying vectors by matrices from a
basis for B and by a pseudo-inverse of A.

We also observe that if we consider the bases for A and B as matrices over an extension
field F′ of F then the members of the Wong sequences over F′ are just the F′-linear spaces
spanned by the corresponding members of the Wong sequences over F. In particular, the
limit of the first Wong sequence over F is nontrivial if and only if the limit of the first Wong
sequence over F′ is nontrivial.
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3 The second Wong sequence and rank-1 spanned ma-

trix spaces

3.1 Second Wong sequences and singularity witnesses

As in Section 2, let V and V ′ be finite dimensional vector spaces over a field F, of respective
dimensions n and n′. For A ∈ Lin(V, V ′) we set corank(A) = dim(ker(A)). For B ≤
Lin(V, V ′), the concepts of c-singularity witnesses, disc(B) and corank(B), defined for the
case when n = n′, can be generalized naturally to B. We also have that corank(B) ≥ disc(B),
and that a corank(B)-singularity witness of B does not exist necessarily. Let A ∈ B, and
consider (Wi)i∈N, the second Wong sequence of (A,B). The next lemma states that the limit
W ∗ is basically such a witness under the condition that it is contained in the image of A.
Moreover, in this specific case the limit can be computed efficiently.

Lemma 9. Let A ∈ B ≤ Lin(V, V ′), and let W ∗ be the limit of the second Wong sequence of
(A,B). There exists a corank(A)-singularity witness of B if and only if W ∗ ⊆ im(A). If this
is the case, then A is of maximum rank and A−1(W ∗) is a corank(B)-singularity witness.

Proof. We prove the equivalence. Firstly suppose that W ∗ ⊆ im(A). Then dim(A−1(W ∗)) =
dim(W ∗) + dim(ker(A)). Since W ∗ = B(A−1(W ∗)) and dim(ker(A)) = corank(A), it follows
that A−1(W ∗) is a corank(A)-singularity witness of B.

Let us now suppose that some U ≤ V is a corank(A)-singularity witness, that is dim(U)−
dim(B(U)) ≥ corank(A). Then dim(U)−dim(A(U)) ≥ corank(A) because A ∈ B. Since the
reverse inequality always holds without any condition on U , we have dim(U)−dim(A(U)) =
corank(A). Similarly we have dim(U)−dim(B(U)) = corank(A), which implies that dim(A(U)) =
dim(B(U)), and therefore A(U) = B(U). For a subspace S ≤ V the equality dim(S) −
dim(A(S)) = corank(S) is equivalent to ker(A) ⊆ S, thus we have ker(A) ⊆ U from which it
follows that U = A−1(A(U)). But then B−1(A(U)) = B−1(B(U)) ⊇ U = A−1(A(U)). Since
W ∗ is the smallest subspace T ≤ V ′ satisfying B−1(T ) ⊇ A−1(T ), we can conclude that
W ∗ ⊆ A(U).

The existence of a corank(A)-singularity witness obviously implies that A is of maximum
rank, and when W ∗ ⊆ im(A) we have already seen that A−1(W ∗) is a corank(A)-singularity
witness of B. Since corank(A) = corank(B), it is also a corank(B)-singularity witness.

We remark that in [13], a slightly different version of this statement is proved. We
decided to keep our original proof for completeness. In our terminology, Theorem 3 of [13]
states that the existence of a corank(A)-singularity witness is equivalent to the equality
dim(A−1(W ∗)) = dim(W ∗) + dim(ker(A)). Both versions offer a straightforward method
for testing existence of (and computing) corank(A)-singularity witnesses. Besides that our
version resembles the concept of augmenting paths in algorithms for matchings in bipartite
graphs, it offers the possibility of stopping the construction of the Wong sequence at the point
after which (while working over the rationals) data blowup can occur; this data blowup can
occur if we adopt the naive way of computing the preimage of a subspace under A. Before
that point, we will make use of a pseudo-inverse of A. We describe now this method.
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Let n = dim(V ) and n′ = dim(V ′). First of all we assume without loss of generality that
n = n′. Indeed, if n < n′ we can add as a direct complement a suitable space to V on which
B acts as zero, and if n > n′, we can embed V ′ into a larger space. In terms of matrices, this
means augmenting the elements of B by zero columns or zero rows to obtain square matrices.
This procedure affects neither the ranks of the matrices in B nor the singularity witnesses.

We say that a nonsingular linear map A′ : V ′ → V is a pseudo-inverse of A if the
restriction of A′ to im(A) is the inverse of the restriction of A to a direct complement of
ker(A). Such a map can be efficiently constructed as follows. Choose a direct complement
U of ker(A) in V as well as a direct complement U ′ of im(A) in V ′. Then take the map
A′

0 : im(A) → U such that AA′
0 is the identity of im(A) and take an arbitrary nonsingular

linear map A′
1 : U

′ → ker(A). Finally let A′ be the direct sum of A′
0 and A′

1.

Lemma 10. Let A ∈ B ≤ Lin(V, V ′) and let A′ be a pseudo-inverse of A. There exists a
corank(A)-singularity witness of B if and only if (BA′)i(ker(AA′)) ⊆ im(A), for all i ∈ [n].
In the algebraic RAM model as well as over Q, this can be tested in deterministic polynomial
time, and if the condition holds then A is of maximum rank and A′(W ∗) is a corank(B)-
singularity witness which also can be computed deterministically in polynomial time.

Proof. It follows from Lemma 9 that a corank(A)-singularity witness exists if and only if
Wi ⊆ im(A), for i = 1, . . . , n. Observing that (BA′)i(ker(AA′)) ⊆ Wi for i = 1, . . . , n, to
prove the equivalence it is sufficient to show that if (BA′)i(ker(AA′)) ⊆ im(A) for i = 1, . . . , n
then Wi = (BA′)i(ker(AA′)) for i = 1, . . . , n. The proof is by induction. For i = 1 the
claim W1 = BA′(ker(AA′)) holds since ker(AA′) = A′−1(ker(A)). For i > 1, by definition
Wi = BA

−1(Wi−1). Since every subspace W ≤ im(A) satisfies A−1W = A′W+ker(A), where
+ denotes the direct sum, we getWi ⊆ BA

′(Wi−1)+B(ker(A)). Observe that B(ker(A)) = W1.
We will show that W1 ⊆ BA

′(Wi−1) and then we conclude by the inductive hypothesis. We
know that W1 ⊆ Wi−1 from the properties of the Wong sequence, therefore it is sufficient
to show that Wi−1 ⊆ BA

′(Wi−1). But Wi−1 = AA′(Wi−1) since Wi ⊆ im(A) and A′ is the
inverse of A on im(A).

Based on this equivalence, testing the existence of a corank(A)-singularity witness can
be accomplished by a simple algorithm. First compute a basis for B, and then multiply it
by A′ to obtain a basis for BA′. Compute also a basis for ker(AA′). We now describe how
to compute bases for the subspaces in the second Wong sequence until either we find i such
that Wi 6⊆ im(A) or we compute W ∗. A basis for W1 can be obtained by applying the basis
elements of BA′ to the basis elements of kerAA′ and then selecting a maximal set of linearly
independent vectors. Having computed a basis for Wi, we stop if it contains an element
outside im(A). Otherwise we apply the basis elements of BA′ to the basis elements of Wi,
and select a maximal set of linearly independent vectors to obtain a basis for Wi+1. When
Wi+1 = Wi we can stop since W ∗ = Wi.

If we find that the condition holds then A′(W ∗) by Lemma 9 is a corank(B)-singularity
witness, and it can be easily computed from W ∗.
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3.2 The power overflow problem

For A ∈ B ≤ Lin(V, V ′), we would like to know whether A is of maximum rank in B.
With the help of the limit W ∗ of the second Wong sequence of (A,B) we have established
a sufficient condition: we know that if W ∗ ⊆ im(A) then A is indeed of maximum rank.
Our results until now do not give a necessary condition for the maximum rank. Now we
show that the second Wong sequence actually allows to translate this question to the power
overflow problem (PO) which we define below. As a consequence an efficient solution of
the PO guarantees an efficient solution for the SMR. The reduction is mainly based on a
theorem of Atkinson and Stephens [1] which essentially says that over large enough fields, in
2-dimensional matrix spaces B, the equality corank(B) = disc(B) holds.

Fact 11 ([1]). Assume that |F| > n, and let A,B ∈ Lin(V, V ′). If A is a maximum rank
element of 〈A,B〉 then there exists a corank(A)-singularity witness of 〈A,B〉.

Combining Lemma 10 and Fact 11 we get also an equivalent condition for A being of
maximum rank.

Lemma 12. Assume that |F| > n. Let A ∈ B ≤ Lin(V, V ′), and let A′ be a pseudo-inverse
of A. Then A is of maximum rank in B if and only if for every B ∈ B and for all i ∈ [n],
we have

(BA′)i(ker(AA′)) ⊆ im(A).

Proof. First observe that A is of maximum rank in B if and only if for every B ∈ B, it is
of maximum rank in 〈A,B〉. For a fixed B, by Fact 11 and Lemma 10, A is of maximum
rank in 〈A,B〉 exactly when (〈B,A〉A′)i(ker(AA′)) ⊆ im(A), for all i ∈ [n]. From that we
can conclude since A′ is the inverse of A on im(A).

This lemma leads us to reduce the problems of deciding if A is of the maximum rank, and
finding a matrix of rank larger than A when this is not the case, to the following question.

Problem 13 (The power overflow problem). Given D ≤ M(n,F), U ≤ Fn and U ′ ≤ Fn,
output D ∈ D and ℓ ∈ [n] s.t. Dℓ(U) 6⊆ U ′, if there exists such (D, ℓ). Otherwise say no.

The power overflow problem admits an efficient randomized algorithm when |F| = Ω(n).
For the rank-1 spanned case we show a deterministic solution regardless of the field size.

Theorem 14. Let D ≤ M(n,F) be spanned by rank-1 matrices. Then there exists D ∈ D
and ℓ ∈ [n] such that Dℓ(U) 6⊆ U ′ if and only if there exists ℓ ∈ [n] such that Dℓ(U) 6⊆ U ′.
The power overflow problem for D can be solved deterministically in polynomial time on an
algebraic RAM as well as over Q.

Using this result whose proof is given in Section 4 we are now ready to prove Theorem 1.

Proof of Theorem 1. First we suppose that |F| ≥ n+ 1. Let A be an arbitrary matrix in
B. The algorithm iterates the following process until A becomes of maximum rank.
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We run the algorithm of Lemma 10 to test whether (BA′)i(ker(AA′)) ⊆ im(A) for i ∈ [n].
If this condition holds then A is of maximum rank, and the algorithm also gives a corank(B)-
singularity witness. Otherwise we know by Theorem 14 that there exists B ∈ B and i ∈ [n]
such that (BA′)i(ker(AA′)) 6⊆ im(A). We apply the algorithm of Theorem 14 with input
BA′, ker(AA′) and im(A), which finds such a couple (B, i). Lemma 12 applied to 〈A,B〉
implies that A is not of maximum rank in 〈A,B〉. If A has rank r ≤ n − 1 which is not
maximal in 〈A,B〉, then the determinant of an appropriate (r+1)× (r+1) minor of A+λB
is a nonzero polynomial of degree at most r+1 which has at most r+1 ≤ n roots. We then
pick n + 1 arbitrary field elements λ1, . . . , λn+1, and we know that for some 1 ≤ j ≤ n + 1
we have rank(A + λjB) > rank(A). We replace A by A+ λjB and restart the process.

Over Q, at the end of each iteration, by a reduction procedure described in [8] we can
achieve that the matrix A, written as a linear combination of B1, . . . , Bm has coefficients from
a fixed subset K ⊆ Q of size n+ 1 (say, K = {0, . . . , n}). In fact, if A = α1B1 + α2B2 . . .+
αmBm has rank r then for at least one κ1 ∈ K the matrix κ1B1+α2B2 . . .+αmBm has rank
at least r. This way all the coefficients αj can be replaced with an appropriate element from
K.

As in each iteration we either stop (and conclude with A being of maximal rank), or
increase the rank of A by at least 1, the number of iterations is at most n. Also, each
iteration takes polynomial many steps since the processes of Lemma 10 and Theorem 14 are
polynomial. Therefore the overall running time is also polynomial. This finishes the case for
|F| ≥ n+ 1.

When |F| < n+ 1, we can compute the maximum rank by running the above procedure
over a sufficiently large extension field. The maximum rank will not grow if we go over an
extension. This follows from the fact that the equality corank(B) = disc(B) holds over any
field if B is spanned by an arbitrary matrix and by rank one matrices, see [22].

Remark 15. As mentioned in the introduction, we can generalize to the setting when B is
spanned by rank-1 matrices and an arbitrary matrix, as follows. Let B′ be the subspace of
B generated by rank-1 matrices. As indicated in Lemma 18 in the next section, in this case
the algorithm for power overflow problem with special U = ker(AA′) and U ′ = im(A) is still
guaranteed to succeed if A 6∈ B′. Furthermore, in the update step, the resulting matrix of
higher rank keeps the property of not in B′. So from the given basis B1, . . . , Bm for B, we
apply the procedure in Theorem 1 using Bi as the starting point, for each Bi. Then it is
ensured that for those Bi 6∈ B

′ this procedure will succeed in finding a matrix with maximal
rank. Otherwise if Bi ∈ B

′, then power overflow problem will either get no, or detect that
Hℓ · · ·H1(U) ⊆ U ′, so ending with a safe return.

4 The power overflow problem for rank-1 spanned ma-

trix spaces

In this section we prove Theorem 14.
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The setting. Given subspaces U, U ′ of Fn as well as a basis {D1, . . . , Dm} for a matrix
space D ≤ M(n,F), we will show is that in polynomial time we can decide if Dℓ(U) 6⊆ U ′

for some ℓ, and if this holds then find D ∈ D s.t. Dℓ(U) 6⊆ U ′.
Formally let ℓ = ℓ(D) be the smallest integer j s.t. Dj(U) 6⊆ U ′ if such an integer exists,

and n otherwise. We start by computing ℓ and for 1 ≤ j ≤ ℓ, bases Tj for Dj . Set T1 =
{D1, . . . , Dm}. If D

j(U) 6⊆ U ′ then we set ℓ = j and stop constructing further bases. If j = n
and Dn(U) ⊆ U ′ then we stop the algorithm and output no. Otherwise we compute Tj+1 by
selecting a maximal linearly independent set form the products of elements in Tj and T1.

Helpful subspaces of D. Recall that our goal is to find D such that Dℓ(U) 6⊆ U ′. To
achieve this goal, for i ∈ [ℓ], we define subspaces Hi of D, which play a crucial role in the
algorithm:

Hi = {X ∈ D | D
ℓ−jXDj−1(U) ⊆ U ′, j = 1, . . . , i− 1, i+ 1, . . . , ℓ}.

Let us examine the meaning for some matrix X to be in Hi. Let P be a product of ℓ elements
from D, and suppose X appears in P . Then X ∈ Hi implies that, as long as X appears in
P at the jth position, j 6= i, then it must be that P (U) ⊆ U ′. In other words, for P to be
able to pull U out of U ′, it is necessary that X appears at the ith position.

The following lemma explains why Hi’s are useful for the purpose of powerflow problem.

Lemma 16. For a matrix X = X1 + . . . + Xℓ with Xi ∈ Hi, we have Xℓ(U) ⊆ U ′ if and
only if Xℓ · · ·X2X1(U) ⊆ U ′.

Proof. We have Xℓ =
∑

σ Xσ(ℓ) · · ·Xσ(1), where the summation is over the maps σ : [ℓ]→ [ℓ].
When σ is not the identity map then there exists an index j such that σ(j) 6= j. Then
Xσ(ℓ) · · ·Xσ(1)(U) ⊆ U ′ by the definition of Hσ(j).

Furthermore, Hi’s can be computed efficiently on an algebraic RAM as well as over Q

as follows. Let x1, . . . , xm be formal variables, an element in D can be written as X =
∑

k∈[m] xkDk. The condition Dℓ−jXDj−1(U) ⊆ U ′ is equivalent to the set of the following

homogeneous linear equations in the variables xk: 〈Z(
∑

k∈[m] xkDk)Z
′u, v〉 = 0, where Z is

from Tℓ−j, Z
′ is from Tj−1, u is from a basis for U and v is from a basis for U ′⊥. Thus Hi

can be computed by solving a system of polynomially many homogeneous linear equations.
Note that the coefficients of the equations are scalar products of vectors from a basis for U ′⊥

by vectors obtained as applying products of ℓ matrices from {D1, . . . , Dm} to basis elements
for U .

Back to rank-1 spanned setting. In general, Hi can be 0. In our setting, due to the
existence of a basis of rank-1 matrices, fortunately this is far from the case.

Lemma 17. Suppose B is rank-1 spanned, and ℓ is the smallest integer such that Dℓ(U) 6⊆ U ′.
Then the following hold: (1) ∀i ∈ [ℓ], Hi 6= 0; (2) Hℓ · · ·H1(U) 6⊆ U ′.
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Proof. Assume that D is spanned by the rank one matrices C1, . . . , Cm, where Ci may be
over an extension field F′ of F.

Let us first consider the case when Ci’s are matrices over F. Then there exist indices
k1, . . . , kℓ such Ckℓ · · ·Ck1(U) 6⊆ U ′. We show that Cki ∈ Hi, for i ∈ [ℓ], proving (1). This
also implies immediately Hℓ · · ·H1(U) 6⊆ U ′, proving (2).

Assume by contradiction that Cki 6∈ Hi, for some i ∈ [ℓ]. Then Dℓ−jCkiD
j−1(U) 6⊆

U ′, for some j 6= i. On the other hand Cki satisfies Dℓ−iCkiD
i−1(U) 6⊆ U ′. Since Cki is

of rank 1 we have CkiD
j−1(U) = CkiD

i−1(U), which yields that neither Dℓ−iCkiD
j−1(U)

nor Dℓ−jCkiD
i−1(U) is contained in U ′. However one of these products is shorter than ℓ,

contradicting the minimality of ℓ.
To generalize to Ci’s over an extension field F′, it suffices to lift all objects (D, Hi, U

and U ′) to their spans with the extension field F′ (denoted as F′D, F′Hi, FU and FU ′).
After going through the above argument, we have F′Hi 6= 0 and F′Hℓ · · ·F

′H1(F
′U) 6⊆ F′U ′.

We then have Hi 6= 0 and Hℓ · · ·H1(U) 6⊆ U ′, as it is not hard to see that F′Hi, and
F′Hℓ · · ·F

′H1(F
′U), are spans of Hi and Hℓ · · ·H1(U) with the extension field F′.

That is, in out setting, not onlyHi 6= 0, butHℓ · · ·H1 is able to pull U outside U ′ (instead
of using the full power of Dℓ).

To finish the algorithm, we compute bases for products Hi · · ·H1, for i ∈ [n], in a way
similar to computing bases for Di. Then we search the basis of Hℓ for an element Z such
that ZHℓ−1 · · ·H1(U) 6⊆ U ′. We put Xℓ = Z and continue searching the basis of Hℓ−1

for an element Z such that XℓZHℓ−2 · · ·H1(U) 6⊆ U ′. Continuing the iteration, Lemma 17
ensures that eventually we find Xi ∈ Hi, for i ∈ [ℓ], such that Xℓ · · ·X1(U) 6⊆ U ′. We set
D = X1 + . . . + Xℓ, then by Lemma 16 we have Dℓ(U) 6⊆ U ′. We return D and ℓ. This
finishes the proof of Theorem 14.

Finally, we introduce the following slight extension of Lemma 17 for special subspaces
U, U ′, as applicable to Remark 15 (2).

Lemma 18. Assume that D is spanned by rank one matrices and a projection to U ′ having
kernel U . Then Hℓ · · ·H1U 6⊆ U ′.

Proof. Identical with the proof of Lemma 17, based on the observation that a projection
with the prescribed properties can be deleted from any product mapping U outside U ′.

5 The first Wong sequence and triangularizable matrix

spaces

5.1 The connection

To tackle the triangularizable matrix spaces, our starting point is the following lemma, which
connects first Wong sequences with singularity witnesses.

Lemma 19. Let A ∈ B ≤ M(n,F), and let U∗ be the limit of the first Wong sequence
of (A,B). Set d = dim(U∗). Then either U∗ is a singularity witness of B, or there exist
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nonsingular matrices P,Q ∈ M(n,F), such that ∀B ∈ B, QBP−1 is of the form

[

X Y

0 Z

]

,

where X is of size d× d, and B is nonsingular in the X-block.

Proof. If dim(U∗) > dim(B(U∗)) then U∗ is a singularity witness. If dim(U∗) = dim(B(U∗))
then the choice of P and Q corresponds to an appropriate basis change transformation. To
see that B is nonsingular in the X-block, note that A ∈ B and A(U∗) = B(U∗).

Lemma 19 suggests a recursive algorithm: take an arbitrary A ∈ B and compute U∗,
the limit of the first Wong sequence of (A,B). If we get a singularity witness, we are done.
Otherwise, if U∗ 6= 0, as the X-block is already nonsingular, we only need to focus on the
nonsingularity of Z-block which is of smaller size. To make this idea work, we have to satisfy
essentially two conditions. We must find some A such that U∗ 6= 0, and to allow for recursion
the specific property of the matrix space B we are concerned with has to be inherited by the
subspace corresponding to the Z-block. It turns out that in the triangularizable case these
two problems can be taken care of by the following lemma.

Lemma 20. Let B ≤ F be given by a basis {B1, . . . , Bm}, and suppose that there exist
nonsingular matrices C,D ∈ M(n,F′) such that Bi = DB′

iC
−1, and B′

i ∈ M(n,F′) is upper
triangular for every i ∈ [m]. Then we have the following.

1. Either ∩i∈[m] ker(Bi) 6= 0, or ∃j ∈ [m] and 0 6= U ≤ Fn s.t. Bj(U) = B(U).

2. Suppose there exist j ∈ [m] and 0 6= U ≤ Fn s.t. Bj(U) = B(U), and dim(U) =
dim(Bj(U)). Let B∗

i : Fn/U → Fn/B(U) be the linear map induced by Bi, for i ∈ [m].
Then B∗ = 〈B∗

1 , . . . , B
∗
m〉 is triangularizable over F′.

Proof. 1. Let {ei | i ∈ [n]} be the standard basis of F′n, and ci = C(ei) and di = D(ei) for
i ∈ [n]. If B′

i(1, 1) = 0 for all i ∈ [m] then c1 is in the kernel of every Bi’s. If there exists j
such that B′

j(1, 1) 6= 0, we set U ′ = 〈c1〉 ≤ F′n. Then it is clear that 〈d1〉 = Bj(U
′) = B(U ′).

It follows that the first Wong sequence of (Bj ,B) over F′ has nonzero limit, and therefore
the same holds over F. We can choose for U this limit.

2. First we recall that for a vector space V of dimension n, a complete flag of V is a
nested sequence of subspaces 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V . For A ≤ Lin(V, V ′) with
dim(V ) = dim(V ′) = n, the matrix space A is triangularizable if and only if ∃ complete flags
0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V and 0 = V ′

0 ⊂ V ′
1 ⊂ · · · ⊂ V ′

n = V ′ s.t. A(Vi) ⊆ V ′
i for i ∈ [n].

For U ≤ Fn, let F′U be the linear span of U in F′n. We think of Bi’s and B∗
i ’s as linear

maps over F′ in a natural way. Let ℓ = dim(F′n/F′U). For 0 ≤ i ≤ n set Si = 〈c1, . . . , ci〉 and
Ti = 〈d1, . . . , di〉. Obviously B(Si) ⊆ Ti for 0 ≤ i ≤ n. Let S∗

i = Si/F
′U and T ∗

i = Ti/B(F
′U),

and consider S∗
0 ⊆ · · · ⊆ S∗

n and T ∗
0 ⊆ · · · ⊆ T ∗

n . We claim that ∀i ∈ [n], dim(S∗
i ) ≥ dim(T ∗

i ).
This is because as Ti ∩ B(F

′U) ⊇ Bj(Si ∩ F′U), by dim(F′U) = dim(Bj(F
′U)), dim(Bj(Si ∩

F′U)) ≥ dim(Si ∩ F′U). Thus dim(Si ∩ F′U) ≤ dim(Ti ∩ B(F
′U)), and dim(S∗

i ) ≥ dim(T ∗
i ).

As B∗(S∗
i ) ⊆ T ∗

i , dim(S∗
i+1) − dim(S∗

i ) ≤ 1, and dim(T ∗
i+1) − dim(T ∗

i ) ≤ 1, there exist two
nested sequences S∗

0 ⊂ S∗
j1
⊂ · · · ⊂ S∗

jℓ
= S∗

n and T ∗
0 ⊂ T ∗

k1
⊂ · · · ⊂ T ∗

kℓ
= T ∗

n , s.t. dim(Sjh) =
dim(Tkh) = h. Furthermore, by dim(S∗

i ) ≥ dim(T ∗
i ), jh ≤ kh, thus B

∗(S∗
jh
) ⊆ B∗(S∗

kh
) ⊆ T ∗

kh
,

∀h ∈ [ℓ]. That is, the two nested sequences are complete flags, and B∗ is triangularizable
over F′.

14



5.2 An algorithm on an algebraic RAM

Suppose we are given a basis {B1, . . . , Bm} for B ≤ M(n,F) which is triangularizable over
an extension field F′ of F, i. e., Bi = DB′

iC
−1 for some nonsingular C,D ∈ M(n,F′), and

B′
i ∈ M(n,F′) is upper triangular for every i ∈ [m]. Our problem is to determine whether

there exists a nonsingular matrix in B or not and finding such a matrix if exists.
Given the preparation of Lemma 20, here is the outline of an algorithm using polynomially

many arithmetic operations. The algorithm recurses on the size of the matrices, with the
base case being the size 1. It checks at the beginning whether ∩i∈[m] ker(Bi) = 0. If this
is the case then it returns ∩i∈[m] ker(Bi) which is a singularity witness. Otherwise, for all
i ∈ [m], it computes the limit U∗

i of the first Wong sequence for (Bi,B). By Lemma 20 (1)
there exists j ∈ [m] such that U∗

j 6= 0 and Bj(U) = B(U). The algorithm then recurses on
the induced actions B∗

i ’s of Bi’s, which are also triangularizable by Lemma 20 (2). When B
is nonsingular the algorithm should return a nonsingular matrix. This nonsingular matrix
is built step by step by the recursive calls, at each step we have to construct a nonsingular
linear combination of Bj and the matrix returned by the call. For this we need n + 1 field
elements.

We expand the above idea into a rigorous algorithm, called TriAlgo and present it
in Algorithm 1. This algorithm requires polynomially many arithmetic operations, and
therefore of polynomial complexity in finite fields. The input of the algorithm can be an
arbitrary matrix space (not necessarily triangularizable), but it may fail in certain cases.
For triangularizable matrix spaces the algorithm would not fail due to Lemma 20. Note
that though the algorithm works assuming triangularizability over some extension field, the
algorithm itself does not need to deal with the field extension explicitly by Lemma 20, given
that F is large enough. To allow for recursion, the output of the algorithm can be one of
the following: the first is an explicit linear combination of the given matrices, which gives a
nonsingular matrix. The second is a singular subspace witness. The third one is Fail.

Regarding implementation, it might be needed to comment on Line 13. At this point we
have that dim(U∗) ≤ dim(B(U∗)) ≤ dim(Bj(U

∗)) ≤ dim(U∗). Thus dim(B(U∗)) = dim(U∗),
and note that Bi(U

∗) ⊆ B(U∗), for all i ∈ [m]. Then two bases of Fn can be formed by
extending bases of U∗ and B(U∗) respectively, and w.r.t. these two bases the induced action
Bi from Fn/U∗ to Fn/B(U∗) can be read off easily.

For correctness we distinguish among the types of output of the algorithm, and show
that they indeed have the required property.

If (α1, . . . , αm) is returned: This case occurs in Line 2 and Line 20. Line 2 is trivial. If the
algorithm reaches Line 20, we claim that there exists (λ, µ) ∈ Λ × Λ s.t. λBj + µE is
nonsingular. Let P and Q be the matrices from Lemma 19. Thus ∀i ∈ [m], QBiP

−1 is

of the form:

[

Xi Yi

0 Zi

]

, whereXi is of size (n−ℓ)×(n−ℓ) and Zi is of size ℓ by ℓ. AsXj

is nonsingular and
∑

i∈[m] αiZi is nonsingular, det(xBj + yE) is a nonzero polynomial,

thus from Schwartz-Zippel lemma the existence of (λ, µ) in Λ× Λ is ensured.

If a subspace of Fn is returned: This case occurs in Line 2, 4, 8 and 16. All are straightfor-
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Algorithm 1: TriAlgo(B1, . . . , Bm)

Input: B = 〈B1, . . . , Bm〉 ⊆ M(n,F).
Output: One of the following: (1) (α1, . . . , αm) ∈ Fm s.t.

∑

i∈[m] αiBi is nonsingular.

(2) A singular subspace witness U ≤ Fn. (3) Fail.
// Base case

1 if n = 1 then

2 If ∃ nonzero Bi, return (0, . . . , 1, . . . , 0) where 1 is at the ith position. Otherwise
return Fn.

// Start of the recursive step.

// If ∩i∈[m] ker(Bi) 6= 0 then ∩i∈[m] ker(Bi) is a singular witness itself.

3 if ∩i∈[m] ker(Bi) 6= 0 then

4 return ∩i∈[m] ker(Bi).

5 forall the i ∈ [m] do
6 U∗

i ← the limit of the first Wong sequence of (Bi,B).

7 if ∃i ∈ [m], dim(B(U∗
i )) < dim(U∗

i ) then
8 return U∗

i

9 if 6 ∃j s.t. dim(U∗
j ) > 0 then

10 return Fail

11 U∗ ← U∗
j where U∗

j satisfies that dim(U∗
j ) > 0;

12 forall the i ∈ [m] do
13 B∗

i ← the induced linear map of Bi from Fn/U∗ to Fn/B(U∗).

// Recursive call.

14 X ← TriAlgo(B∗
1 , . . . , B

∗
m);

15 if X is a singular subspace witness W/U∗ then

16 return the full preimage of W/U∗ in the canonical projection Fn → Fn/U∗.

17 else if X is (α1, . . . , αm) then
18 Λ← a set of field element of size n+ 1;
19 E ←

∑

i∈[m] αiBi;

20 Choose (λ, µ) ∈ Λ× Λ, s.t. λBj + µE is nonsingular;
21 return (µα1, . . . , µαj−1, µαj + λ, µαj+1, . . . , µαm)

22 else if X = Fail then

23 return Fail
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ward.

The case of Fail: After Line 3 ∩i∈[m] ker(Bi) = 0. Then Lemma 20 ensures that Fail

cannot be returned for triangularizable matrix spaces.

5.3 An algorithm over the rationals

To obtain a polynomial-time algorithm over rationals, we give first a characterization of
triangularizability of a nonsingular matrix space.

Lemma 21. Assume B ≤ M(n,F) contains a nonsingular matrix S. Then B is triangu-
larizable over F if and only if there exists a nonsingular matrix D ∈ M(n,F) such that
D−1BS−1D consists of upper triangular matrices.

Proof. ⇒: Assume that D−1BC consists of upper triangular matrices. Then C−1S−1D =
(D−1SC)−1 is upper triangular as well, whence – as products of upper triangular matrices
remain upper triangular – D−1BS−1D = (D−1BC)(C−1S−1D) also consists of upper trian-
gular matrices.
⇐: Assume that D−1BS−1D consists of upper triangular matrices. Put C = S−1D.

We have the following criterion of triangularizability:

Lemma 22. Let A ≤ M(n,F) containing the identity matrix and let F′ be the algebraic
closure of F. Then there exists D ∈M(n,F′) such that D−1AD consists of upper triangular
matrices (over F′) if and only if

(An2

[A,A]An2

)n = (0).

Here [A,A] is the space spanned by the commutators [X, Y ] = XY − Y X (X, Y ∈ A).

Proof. Put D = An2

. Then D is the matrix algebra generated by A. The formula expresses
that the two-sided ideal of D generated by the commutators from A is nilpotent. Let
D′ = F′ ⊗ D. Then the formula is also equivalent to that the ideal of D′ generated by the
commutators is nilpotent. This is further equivalent to that the factor algebra D′/Rad(D′) is
commutative. However, over an algebraically closed field a matrix algebra is nilpotent if it is
a conjugate of a subalgebra of the upper triangular matrices. (To see one direction, observe
that the whole algebra of the upper triangular matrices and hence every subalgebra of it
has this property. As for reverse implication, note that all the irreducible representations
of an algebra over an algebraically closed field which is commutative by its radical are one-
dimensional and hence a composition series gives a complete flag consisting of invariant
subspaces.)

Corollary 23. Assume that we are given a nonsingular S ∈ B. Then there is a polynomial
time algorithm (on an algebraic RAM as well as the case F = Q) which decides whether or
not there exists an extension of F over which B is triangularizable.

17



Again, we actually have an algorithm using a polynomial number of arithmetic operations
and equality tests in the black box model for F.

With these preparations we are now ready to prove Theorem 2.

Proof of Theorem 2. On an algebraic RAM Algorithm 1 is all we need. Over ratio-
nals we shall perform a reduction to finite fields via Lemma 22.

We assume that B is given by matrices B1, . . . , Bm over Q. Multiplying by a common
denominator for the entries, we can achieve the situation when the entries of B1, . . . , Bm are
integers. Let b be a bound on the of absolute values of the entries of B1, . . . , Bm. Then a
polynomial-time algorithm should run in time polynomial in n and log b. If B is nonsingular
then there exist integers λ1, . . . , λm, each between 0 and n such that S = λ1B1+. . .+λmBm is
nonsingular. The absolute value of the determinant of S is a nonzero integer whose logarithm
is bounded by a polynomial in log b and n. It follows that there is a prime p bounded by an
(explicit) polynomial in log b and n that does not divide the determinant of S.

Let S ′ = det(S)S−1. We reduce the problem modulo p. We see that S and S ′ are
integral matrices and both are invertible module p. Furthermore, if B is triangulariz-
able over an extension of Q, by Lemma 22 all length-n products of elements of the form
Bi1S

′ · · ·Bi
n2
S ′[Bj1S

′, Bj2S
′]Bk1S

′ · · ·Bk
n2
S ′ vanish, and this will be the case modulo p as

well. It follows that the subspace of matrices over Fp, spanned by the matrices BiS
′, reduced

modulo p, can be triangularized over an extension field of Fp. But then the space spanned
by Bi is also triangularizable (over the same extension).

Thus if B is nonsingular and triangularizable over an extension of Q then there is a
prime p greater than n but smaller than the value of an explicit polynomial function in
log b and n, such that the reduction modulo p gives a nonsingular matrix space which is
triangularizable over an extension field of Fp. The algorithm consists of taking the primes p
up to the polynomial limit and applying the generic method over Fp to the reduced setting.
The method either finds a p and an integer combination of B1, . . . , Bm which is nonsingular
even modulo p or, concludes that B cannot be nonsingular and triangularizable at the same
time. ✷

6 On the Edmonds-Rado class and some subclasses

6.1 Matrix spaces not in the Edmonds-Rado class

Recall that B ≤ M(n,F) is in the Edmonds-Rado class if either B contains nonsingular
matrices, or B is singular and there exists a singularity witness of B. Recall that in Section 1
we defined the discrepancy disc(B) = max{c ∈ N | ∃ c-singularity witness of B}, and from
the definition it is clear that corank(B) ≥ disc(B). In terms of discrepancy, B is in the
Edmonds-Rado class, if disc(B) = 0 ⇐⇒ corank(B) = 0.

A well-known example of a matrix space not in the Edmonds-Rado class is the class sk3
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of 3 dimensional skew symmetric matrices, generated for example by the following:

sk3 =

〈





0 1 0
−1 0 0
0 0 0



 ,





0 0 0
0 0 1
0 −1 0



 ,





0 0 1
0 0 0
−1 0 0





〉

.

Consider the following problem: if a matrix space B has a basis consisting of matrices
with certain property, does it imply that B is in the Edmonds-Rado class? Gurvits has
observed that if B has a basis consisting of triangular or semidefinite matrices then it is in the
Edmonds-Rado class. We now show that the other two basis properties, namely consisting
of projections or positive matrices, do not necessarily imply that B is in the Edmonds-Rado
class. Recall that a matrix over R is positive if every entry in it is positive.

Let B = 〈B1, . . . , Bm〉 ≤ M(n,F), and let A ∈ M(n,F) be an arbitrary nonsingular ma-

trix. For i ∈ [m], we define Yi =

[

A Bi

0 0

]

and Z =

[

0 0
A 0

]

, and let A = 〈Y1, . . . , Ym, Z〉.

Lemma 24. We have disc(A) = disc(B).

Proof. Let E1 ≤ F2n be the coordinate subspace generated by the first n coordinates, and
E2 ≤ F2n be the coordinate subspace generated by the last n coordinates.

To show that disc(A) ≥ disc(B), we take a disc(B)-discrepancy witness U of B, and
embed U into E2. Then 〈E1 ∪ U〉 is a disc(B)-singularity witness of A.

To show that disc(A) ≤ disc(B), let W be disc(A)-singularity witness of A. Let W ′
1 =

W ′∩E1 and W ′
2 = W ′∩E2. Due to the form of the Yi’s and Z, W ′ = W ′

1⊕W ′
2. In particular

note that W ′
2 = Z(W ), and A is nonsingular. So if we set R = {w ∈ W | Z(w) = 0}, we

have R ≤ E2, dim(R) = dim(W )− dim(W ′
2), and dim(W ′

1) ≥ dim(B(R)). Thus disc(A) =
dim(W )−dim(W ′) = (dim(W )−dim(W ′

2))−dim(W ′
1) ≤ dim(R)−dim(B(R)) ≤ disc(B).

Proposition 25. There exist matrix spaces generated by projections or positive matrices
outside the Edmonds-Rado class

Proof. For i ∈ [m], we define Y ′
i , Z

′ ∈M(2n,F) by Y ′
i =

[

A Bi + A
0 0

]

and Z ′ =

[

0 0
A A

]

,

and let A′ = 〈Y ′
1 , . . . , Y

′
m, Z

′〉. It is easy to see that the Y ′
i ’s and Z ′ can be obtained

from the Yi’s and Z via simultaneous row and column operations. Note that simultaneous
row and column operations do not change the rank or the discrepancy of a space, that is
corank(A′) = corank(A) and disc(A′) = disc(A). Observe that corank(A) = corank(B), and
by Lemma 24 we have disc(A) = disc(B). Therefore taking some B not in the Edmonds-
Rado class (for example sk3) it follows that A and A′ are not in the Edmonds-Rado class.
To finish the proof just note that if A = I, then Y ′

i ’s and Z ′ are projections, and if A is a
positive matrix with entries at least the absolute values of the entries in the Bi’s, then Y ′

i ’s
and Z ′ are positive matrices.
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6.2 Compression spaces

If maxrk(B) is of primary interest, in analogy with the Edmonds-Rado class we can define
the following matrix class. Here we allow non-square matrices from M(n×n′,F). Recall that
for A ∈M(n×n′,F), its rank is dim(im(A)), its corank is dim(ker(A)), and A is nonsingular
if rank(A) = min(n, n′).

Following the terminology used in [11, 13], we call a matrix space B ≤ M(n × n′,F) a
compression space if B possesses corank(B)-singularity witnesses. In terms of discrepancy, B
is a compression space if corank(B) = disc(B). Thus, by the result of Lovász discussed in
Subsection 1.1, and by the result of Atkinson and Stephens used in Subsection 3.2, rank-one
spanned matrix spaces as well as two-dimensional matrix spaces over sufficiently large base
fields are compression spaces. As to Wong sequences, from Lemma 9 we immediately have
that if B ≤M(n× n′,F) is a compression space, then for any A ∈ B, A is of maximum rank
if and only if the limit of the second Wong sequence of (A,B) is contained in im(A).

It is clear that when n = n′, if B is a compression space then it is in the Edmonds-Rado
class. The converse is not true.

Proposition 26. There exists a matrix space in the Edmonds-Rado class which is not a
compression space.

The proof of Proposition 26 relies on the following lemma, which also explains why we
do not expect to achieve rank maximization for upper triangular matrices in Theorem 2.

Lemma 27. Rank maximization of matrix spaces can be reduced to rank maximization of
matrix spaces with a basis of pairwise commuting, and strictly upper triangular matrices.

Proof. For B = 〈B1, . . . , Bm〉 ≤ M(n × n′,F) we first pad 0’s to make it a matrix space
of M(max(n, n′),F). Then consider the matrix space in M(2 · max(n, n′),F) generated by

C1, . . . , Cm where Ci =

[

0 Bi

0 0

]

.

Proof of Proposition 26. Consider the following matrix space: apply the construction in
Lemma 27 with sk3, and let the resulting matrix space be B ≤ M(6,Q). B is in the
Edmonds-Rado class as it is spanned by upper-triangular matrices. On the other hand B is
not in the Edmonds-Rado class as corank(B) = 4 while disc(B) = 3.

6.3 The black-box Edmonds-Rado class

Definition 28. Let B ≤ M(n × n′,F). B is in the black-box Edmonds-Rado class if the
following two conditions hold: (1) there exists a corank(B)-singularity witness; (2) for any
A ∈ B, either A is of maximum rank, or B(ker(A)) 6⊆ im(A).

By the first condition, the black-box Edmonds-Rado class is a subclass of the compression
spaces. Also note that B(ker(A)) is just the first item in the second Wong sequence of (A,B).
The second condition says that if A is non-maximum rank then already the first item in the
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second Wong sequence excludes existence of corank(A)-singularity witnesses. In this case
for any matrix B from B with B(ker(A)) 6⊆ im(A), we have rank(B) > rank(A). Therefore
in matrix spaces in this class the following simple algorithm finds an element of maximum
rank over sufficiently large base fields.

Proposition 29. Let B ≤ M(n,F) be in the black-box Edmonds-Rado class, and assume
|F| = Ω(n). Then there exists a deterministic algorithm that solves the constructive SMR
for B using polynomial number of arithmetic operations.

Proof. Given A ∈ B, we compute the rank of A + λB where λ is from a subset of F of size
rank(A) + 1 and B is from a basis of B. If none of these matrices have rank larger than A,
conclude that A is of maximum rank. Otherwise replace A with an A + λB of larger rank.
Iterate the above procedure to obtain A ∈ B of maximum rank.

As a justification for the name of the subclass, observe that this algorithm does not make
use of any properties of matrices other that their rank. It even works in the setting that
instead of inputting the basis B1, . . . , Bm explicitly, we only know m and have an oracle
which, on input (α1, . . . , αm) returns the rank of α1B1 + . . .+ αmBm.

6.3.1 Some matrix spaces in the black-box Edmonds-Rado class.

While this class seems quite restrictive, it contains some interesting cases.
A first example is when B has a basis of positive semidefinite matrices. Let B =

〈B1, . . . , Bm〉 ≤ M(n,R), where Bi’s are positive semidefinite. Then it is seen easily that
A is of maximum rank if and only if ker(A) = ∩i∈[m] ker(Bi). In particular if A is not of
maximum rank then there exists v ∈ ker(A) such that Bj(v) 6∈ im(A), for some j ∈ [m].

Another more interesting scenario is from [6] (see also [22], Lemma 4.2). Let G be a
finite dimensional associative algebra over F and let V, V ′ be semisimple G-modules. Let
B = HomG(V, V

′). Recall that a semisimple module is the direct sum of simple modules
and that in a semisimple module every submodule has a direct complement. We know that
A ∈ B is of maximum rank if and only if for every isomorphism type S of simple modules
for A, the multiplicity of S in im(A) is the minimum of the multiplicities of S in U and V .

If A is not of maximum rank, then for some simple module S there is an isomorphic copy
S1 of S in ker(A) and there is a copy S2 of S in V ′ intersecting im(A) trivially. Also, there
are nontrivial homomorphisms mapping the first copy of S to the second one. For instance,
any isomorphism S1 → S2 can be extended to a homomorphism V → V ′ by the zero map
on a direct complement of S1.

On the other hand, if A is of maximum rank then for every simple submodule in ker(A),
the copies in V ′ isomorphic to it are in im(A), therefore no simple constituent can be moved
out of im(A) via the second Wong sequence.
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7 Concluding remarks

Our main results are deterministic polynomial time algorithms for the constructive version
of Edmond’s problem (that is, finding nonsingular matrices) in certain subclasses of the
Edmonds-Rado class. In the light of Gurvits’ result on the non-constructive version, prob-
ably the most interesting open problem is the deterministic complexity of the constructive
version for the whole Edmonds-Rado class. Regarding the Boolean complexity of some of our
algorithms, the bottleneck is our limited knowledge about the possible blowup of the sizes of
bases for the Wong sequences. We are not even aware of any good bound on the size of bases
for singularity witnesses (except for the rank one generated case). In particular, we do not
know the Boolean complexity of finding singularity witnesses for singular triangularizable
matrix spaces over the rationals.

The deterministic or randomized complexity of finding rank one matrices spanning a rank-
one generated space is another question which is open to our knowledge. We believe that the
problem is hard. In contrast, triangularizing a triangularizable matrix space may be easier.
In the special case when the space is triangularizable over the base field F and it contains a
nonsingular matrix (which can be efficiently found even deterministically), Lemma 21 gives
a reduction to finding composition series for matrix algebras which is further reducible to
factorization of polynomials over F. It would also be interesting finding maximum rank
matrices over very small fields in the rank-one spanned case. The algorithm of [22] does the
job when rank-one generators are at hand.
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