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Abstract
The complexity class PPA consists of NP-search problems which are reducible to the parity
principle in undirected graphs. It contains a wide variety of interesting problems from graph
theory, combinatorics, algebra and number theory, but only a few of these are known to be
complete in the class. Before this work, the known complete problems were all discretizations or
combinatorial analogues of topological fixed point theorems.

Here we prove the PPA-completeness of two problems of radically different style. They are
PPA-Circuit CNSS and PPA-Circuit Chevalley, related respectively to the Combinatorial
Nullstellensatz and to the Chevalley-Warning Theorem over the two elements field F2. The input
of these problems contain PPA-circuits which are arithmetic circuits with special symmetric
properties that assure that the polynomials computed by them have always an even number of
zeros. In the proof of the result we relate the multilinear degree of the polynomials to the parity
of the maximal parse subcircuits that compute monomials with maximal multilinear degree, and
we show that the maximal parse subcircuits of a PPA-circuit can be paired in polynomial time.
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1 Introduction

1.1 The class PPA
The complexity class TFNP [21] consists of NP-search problems corresponding to total
relations. In the last 25 years various subclasses of TFNP have been thoroughly investigated.
The polynomial parity argument classes PPA and PPAD were defined in the seminal work
of Papadimitriou [22]. PPA consists of the search problems which are reducible to the parity
principle stating that in an undirected graph the number of odd vertices is even. The more
restricted class PPAD is based on the analogous principle for directed graphs.

The class PPAD contains a relatively large number of complete problems from various
areas of mathematics. In his paper Papadimitrou [22] has already shown that among others
the 3-dimensional Sperner and Brouwer problems, as well as the Exchange Equilibrium
problem from mathematical economics were PPAD-complete. A few years later Chen and
Deng [9] proved that 2-dimensional Sperner was also PPAD-complete, and after a sequence
of beautiful papers Chen and Deng [10] has established the PPAD-completeness of computing
2-player Nash equilibrium, see also [11]. Kintali [18] has compiled a list of 25 PPAD-complete
problems; the list is far from complete.

In comparison with PPAD, relatively few complete problems are known in the class PPA,
all of which are discretizations or combinatorial analogues of topological fixed point theorems.
While the original paper of Papadimitriou [22] exhibited a large collection of problems in
PPA, none of them was proven to be PPA-complete. Historically the first PPA-completeness
result was given by Grigni [14] who, realizing that analogues of PPAD-complete problems in
non-orientable spaces could become PPA-complete, has shown the PPA-completeness of the
Sperner problem for a non-orientable 3-dimensional space. This result was strengthened by
Friedl et al. [17] to a non-orientable and locally 2-dimensional space. Up to our knowledge,
until 2015 just these two problems were known to be PPA-complete. Last year Deng et
al. [13] established the PPA-completeness of several 2-dimensional problems on the Möbius
band, including Sperner and Tucker, and they have obtained similar results for the Klein
bottle and the projective plane. Recently Aisenberg, Bonet and Buss [1] have shown that
2-dimensional Tucker in the Euclidean space was PPA-complete.

Compared to the fundamental similarity of these complete problems in PPA, the list of
problems in the class for which no completeness result is known is very rich. Already in
Papadimitriou’s paper [22] we find problems from graph theory, such as Smith and Hamilto-
nian decomposition, from combinatorics, such as Necklace splitting and Discrete
Ham sandwich (the proof in [23] that these problems are in PPAD was incorrect [1]), and
from algebra, a variant of Chevalley’s theorem over the 2 elements field F2, which we call
Explicit Chevalley. Cameron and Edmonds [8] gave new proofs based on the parity
principle for a long series of theorems from graph theory [25, 29, 6, 5, 7], the corresponding
search problems are therefore in PPA. Recently Jeřábek [15] has put several number theoretic
problems, such as square root computation and finding quadratic nonresidues modulo n into
PPA, and he has also shown that Factoring is in PPA under randomized reduction.

1.2 Our contribution
The main result of this paper is that two appropriately defined problems related to Chevalley-
Warning Theorem [12, 28] and to Alon’s Combinatorial Nullstellensatz [2] over F2 are
complete in PPA. These are the first PPA-completeness results involving problems which are
not inspired by topological fixed point theorems.
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The Chevalley-Warning Theorem is a classical result about zeros of polynomials. It says
that if P1, . . . , Pk are n-variate polynomials over a field of characteristic p such that the
sum of their degrees is less than n, then the number of common zeros is divisible by p. The
Combinatorial Nullstellensatz (CNSS) of Alon states that if P is an n-variate polynomial
over F whose degree is d1 + · · ·+ dn, and this is certified by the monomial cxd1

1 · · ·xdn
n , for

some c 6= 0, then in S1 × · · · × Sn ⊆ Fn there exists a point where P is not zero, whenever
|Si| > di, for i = 1, . . . , n. The CNSS has found a wide range of applications among others
in graph theory, combinatorics and additive number theory [2, 3].

Over the field F2 the two theorems greatly simplify via the notion of multilinear degree.
For any polynomial P over F2, there exists a unique multilinear polynomial M such that P
and M compute the same function on Fn

2 . We call the degree of M the multilinear degree
of P , denoted as mdeg(P ). We use deg(P ) to denote the usual degree of P . Then the
Chevalley-Warning Theorem and the CNSS over F2 are equivalent to the following statement:
An n-variate F2-polynomial has an odd number of zeros if and only if its multilinear degree
is n. The natural search problem corresponding to the CNSS therefore is: given an n-variate
polynomial P whose multilinear degree is n, find a point a where P (a) = 1. Similarly, the
search problem corresponding to the Chevalley-Warning Theorem is: given an n-variate
polynomial P whose multilinear degree is less than n and a zero of P , find another zero.

Obviously, these problems are not yet well defined algorithmically, since it is not specified,
how the polynomial P is given. The starting point of our investigations is the result of
Papadimitriou about some instantiation of the Chevalley-Warning Theorem. Specifically,
in [22] Papadimitriou considered the following problem. Let the polynomials P1, . . . , Pk be
given explicitly as sums of monomials, and define P (x) = 1 +

∏k
i=1(Pi(x) + 1). We have then

deg(P ) =
∑k

i=1 deg(Pi), and clearly P (x) = 0 if and only if Pi(x) = 0, for i ∈ [n]. Suppose
that deg(P ) < n, and that we are given a ∈ Fn

2 such that P (a) = 0. Then the task is to find
a′ 6= a such that P (a′) = 0. We call this problem Explicit Chevalley, and Papadimitriou
has shown [22] that it is in PPA.

Could it be that Explicit Chevalley is PPA-complete? We find this highly unlikely.
There are two restrictions on the input of Explicit Chevalley. Firstly, the polynomial P
is given by an arithmetic circuit (in fact by an arithmetic formula) of specific form. Secondly,
and more importantly, the number of variables not only upper bounds the multilinear degree
of P , but also the degree of P . The first restriction can be easily relaxed. We can define
and compute recursively very easily the circuit degree (also known as the formal degree; see
Section 2.3) of the arithmetic circuit which is an upper bound on the degree of the polynomial
computed by the circuit. Could it be that the problem, specified by an arithmetic circuit
whose circuit degree is less than n, becomes PPA-complete? While this problem might be
indeed harder than Explicit Chevalley, we still don’t think that it is PPA-complete.

We believe that the more important restriction in Papadimitriou’s problem is the one on
the degree of the polynomial P computed by the input circuit. As we have seen, to have an
even number of zeros, mathematically it is only required that the multilinear degree of P
is less than n, so putting the restriction on the degree of P is too stringent. Let’s try then
to consider instances specified by arithmetic circuits computing polynomials of multilinear
degree less than n. However, here we face a serious difficulty. We can’t just promise that the
polynomial has multilinear degree less than n since PPA is a syntactic class. We must be
able to verify syntactically that it is indeed the case.

The multilinear degree of the polynomial is decided by the parity of the monomials
computed by the circuit which contain every variable. Let us call such monomials maximal.
Indeed, the multilinear degree of P is less than n if and only if an even number of maximal
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monomials are computed by the circuit. A very general way to prove efficiently that a set is of
even cardinality is to give a polynomial Turing machine which computes a perfect matching
on the elements of the set. However, the parsing of monomials in arbitrary arithmetic circuits
is a rather complex task [19]. For a start, the number of maximal monomials computed by a
polynomial size arithmetic circuit can be doubly exponential, making even the description of
such a monomial impossible in polynomial time. Fortunately, the situation over the field
F2 simplifies a lot, thanks to cancellations due to certain symmetries. In fact, we are able
to show that over F2 it is sufficient to consider only those monomials which are computed
by consistent left/right labellings of the sum gates participating in the computation of the
monomial, because the rest of the monomials cancel out. We call such labellings parse
subcircuits, and we call those parse subcircuits which compute maximal monomials maximal.
The introduction of parse subcircuits was inspired by the concept of parse trees in [16, 20].
Technically, this results shows that that computing the multilinear degree is in ⊕P, the
complexity class Parity P.

Is there a chance that for a general circuit computing the multilinear degree is in P?
As it turns out not, unless ⊕P = P, because we can show that computing the multilinear
degree is also ⊕P-hard. Therefore we have to identify a restricted class of circuits computing
polynomials of even multilinear degree which satisfy two properties: the class is on the one
hand restricted enough that we are able to construct a polynomial time perfect matching for
the maximal parse subcircuits, but it is also large enough that finding another zero for the
circuit is PPA-hard. The main contribution of this paper is that we identify such a class of
arithmetic circuit which we call PPA-circuits.

The definition of these circuits is inspired by a rather straightforward translation of
Papadimitriou’s basic PPA-problem into a problem for arithmetic circuits. In a nutshell,
the basic PPA-problem is the following. Given a degree-one vertex of a graph, in which
every vertex has degree at most two, find another degree-one vertex. Here, the graph, whose
vertices are the 0-1 strings of given length, is given via a polynomial time Turing machine M
determining the neighbourhood of any specified node. We construct an arithmetic circuit
over F2 which, given a vertex v in this graph, computes the opposite parity of the number
of v’s neighbours. Therefore, finding another degree-one vertex is then just the same as
finding another zero of the polynomial computed by the circuit. Most importantly, the
circuit is constructed to be in a special form, which allows for a polynomial-time-computable
perfect matching over its maximal parse subcircuits. Roughly speaking, from the Turing
machine M that describes the neighbours of vertices, we extract two arithmetic circuits
D and F that also describe the neighbours in a certain way. We then define the so-called
PPA-composition of these two circuits, which produces a circuit C that accesses D and F in
a black box fashion. Symmetries of the PPA-composition, reflecting the special structure of
degree computation, enable us to construct a polynomial-time-computable perfect matching
over its maximal parse subcircuits (cf. Lemma 8). Finally we define a PPA-circuit as the
sum of a PPA-composition and another circuit whose circuit degree is less than n. This is
just a minor extension of the family of PPA-compositions since circuits with degree less than
n don’t have maximal parse subcircuits. The reason for considering this extended family is
that this way our result immediately generalizes Papdimitrou’s result [22] about Explicit
Chevalley, and it makes also easier to express the equivalence between the algorithmic
versions of the Chevalley-Warning theorem and the CNSS.

The definition of our problems, PPA-Circuit-CNSS and PPA-Circuit-Chevalley,
is therefore the following. In both cases we are given an n-variable, PPA-circuit C over F2
and an element a ∈ Fn

2 . In the case of PPA-Circuit Chevalley, a is a zero of C, and for
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PPA-Circuit CNSS, we consider the sum of the circuits C and La, where La is a simple
Lagrange-circuit having a as its only zero and having a single maximal parse subcircuit. The
computational task is to compute another zero of C in case of PPA-Circuit Chevalley,
and a satisfying assignment for C + La in case of PPA-Circuit CNSS. Our result is then
stated in the following theorem.

I Theorem 1. The problems PPA-Circuit CNSS and PPA-Circuit Chevalley are
PPA-complete.

Since the two problems are easily interreducible, for the proof of Theorem 1 we will
show that PPA-Circuit CNSS is PPA-easy and PPA-Circuit Chevalley is PPA-hard.
For the easiness part we define a graph, inspired by Papadimitriou’s construction, whose
vertices are the assignments for the variables and the parse subcircuits. There is an edge
between a parse subcircuit and an assignment if the monomial defined by the subcircuit
takes the value 1 on the assignment. In addition, we also put an edge between two maximal
parse subcircuits of the PPA-composition part of the circuit if they are paired by the perfect
matching. As it turns out, the odd degree vertices in this graph are exactly the assignments
where the polynomial defined by the circuit is 1, and the unique maximal parse subcircuit of
the Lagrange-circuit. Technically, the main part of the proof is to give, for every assignment,
a polynomial time computable pairing between its exponentially many neighboring parse
subcircuits. For the hardness part (which is much simpler to prove) we express the basic
PPA-complete problem as a PPA-composition, as we explained above.

1.3 Previous work

Papadimitriou has proven that Explicit Chevalley is in PPA. Varga [27] has shown
the same for the special case of CNSS where the input polynomial P is specified as the
sum of a polynomial number of polynomials Pi, where each Pi is the product of explicitly
given polynomials whose sum of degrees is at most n. In addition, the input also contains
a polynomial time computable matching for all but one of the monomials x1 · · ·xn of P .
However, the paper doesn’t address the question why this doesn’t make the problem a
promise problem. Concerning the hardness of CNSS, Alon proved in [3] the following result.
Let P be specified by an arithmetic circuit in a way that it can be checked efficiently that its
multilinear degree is n. If a polynomial time algorithm can find a point a where P (a) = 1,
then there are no one-way permutations.

1.4 Structure of the paper

In Section 2 we recall the definition of the class PPA, the Combinatorial Nullstellensatz and
the Chevalley-Warning Theorem, and arithmetic circuits. In Section 3 we define the parse
subcircuits of an arithmetic circuit over F2, and in Proposition 6 we prove that the polynomial
computed by the circuit is the sum of the monomials computed by the parse subcircuits. In
Section 4 we define PPA-circuits, and in Lemma 8 we prove that in such circuits a perfect
matching for the maximal parse subcircuits can be computed in polynomial time. In Section 5
we state the problems PPA-Circuit CNSS and PPA-Circuit Chevalley over F2 and
observe that they are polynomially interreducible. In Section 6 in Theorem 11 we prove that
PPA-Circuit CNSS is in PPA, and in Section 7 in Theorem 13 we prove that PPA-Circuit
Chevalley is PPA-hard.
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2 Preliminaries

2.1 Total functional NP and the class PPA

We denote the set {1, . . . , n} by [n]. A polynomially computable binary relation R ⊆
{0, 1}∗ × {0, 1}∗ is called balanced if for some polynomial p(n), for every x and y such that
R(x, y) holds, we have |y| ≤ p(|x|). Such a relation defines an NP-search problem ΠR whose
input is x, and the task is to find for inputs x, where R(x, y) holds for some y, such a solution
y, and report “failure” otherwise. The class FNP of functional NP consists of NP-search
problems. For two problems ΠR and ΠS in FNP, we say that ΠR is reducible to ΠS if there
exist two functions f and g computable in polynomial time such that for every positive x,
S(f(x), y) implies R(x, g(x, y)).

An NP-search problem is total if for every x, there exists a solution y. The class of these
problems is called TFNP (for Total Functional NP) by Megiddo and Papadimitriou [21].
Problems in TFNP exhibit very interesting complexity properties. An FNP-complete search
problem can not be total unless NP = coNP. It is also unlikely that every problem in TFNP
could be solved in polynomial time since this would imply P = NP ∩ coNP. TFNP is a
semantic complexity class, in the sense that it involves a promise about the totality of the
relation R. It is widely believed that such a promise can not be enforced syntactically on a
Turing machine, in fact there is no known recursive enumeration of Turing machines that
compute total search problems. As usual with semantic complexity classes, TFNP doesn’t
seem to have complete problems. On the other hand, several syntactically defined subclasses
of TFNP with a rich structure of complete problems have been identified along the lines of
the mathematical proofs establishing the totality of the defining relation.

The parity argument subclasses of TFNP were defined by Papadimitriou [22, 23]. They
can be specified via concrete problems, by closure under reduction. The Leaf problem is
defined as follows. The input is a triple (z,M, ω) where z is a binary string and M is the
description of a polynomial time Turing machine1 that defines a graph Gz = (Vz, Ez) as
follows. The set of vertices is Vz = {0, 1}p(|z|) for some polynomial p. For any vertex v ∈ Vz,
the machine M outputs on (z, v) a set of at most two vertices. Then, we define Gz as a graph
without self-loops, where {v, v′} ∈ Ez for v 6= v′, if v′ ∈M(z, v) and v ∈M(z, v′). Obviously
Gz is an undirected graph where the degree of each vertex is at most 2, and therefore the
number of leaves, that is of degree one vertices, is even. Finally ω ∈ Vz is a degree one vertex
that we call the standard leaf. The output of the problem Leaf is a leaf of Gz different from
the standard leaf. The Polynomial Parity Argument class PPA is the set of total search
problems reducible to Leaf. The directed class PPAD is defined by D-Leaf, the directed
analog of Leaf. In the problem D-Leaf the Turing machine defines a directed graph, where
the indegree and outdegree of every vertex is at most one. The standard leaf ω is a source,
and the output is a sink or source different from the ω.

As shown in [23], the definition of PPA can capture also those problems for which the
underlying graph has unbounded degrees and we are seeking for another odd-degree vertex.
Specifically, suppose there exists a polynomial time edge recognition algorithm ε(v, v′), which
decides whether {v, v′} ∈ Ez. Assume also, that in addition we have a polynomial time
pairing function φ(v, w), where by definition, for every vertex v, the function φ(v, ·) satisfies
the following properties. For every even degree vertex v, it is a pairing between the vertices
adjacent to v, that is for every such vertex w, we have φ(v, w) = w′, where w′ 6= w, w′ is also

1 The requirement for M to run in polynomial can be imposed by adding a clock.
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adjacent to v, and φ(v, w′) = w. For odd degree vertices v, we have exactly one adjacent
vertex w such that w is mapped to itself, and on the remaining adjacent vertices it is pairing
as in the case of an even degree vertex v. The input also contains an odd degree vertex v
with a proof for that, in the form of an adjacent vertex w, such that φ(v, w) = w. In [23,
Corollary to Theorem 1], Papadimitriou showed that any problem defined in terms of an
edge recognition algorithm and a pairing function is in PPA.

2.2 Combinatorial Nullstellensatz and Chevalley-Warning Theorem
Let F be a field. An polynomial over F (or shortly a polynomial) in n variables is a formal
expression P (x) = P (x1, . . . , xn) of the form

P (x1, . . . , xn) =
∑

d1,...,dn≥0
cd1,...,dn

xd1
1 · · ·xdn

n ,

where the coefficients cd1,...,dn
are from F, and only a finite number of them are different from

zero. The degree deg(P ) of P is the largest value of d1 + · · ·+ dn for which the coefficient
cd1,...,dn

is non-zero, where by convention the degree of the zero polynomial is −∞. The ring
of polynomials over F in n variables is denoted by F[x1, . . . , xn].

Every polynomial P ∈ F[x1, . . . , xn] defines naturally a function from Fn to F. While over
infinite fields this application is one-to-one, this is not true over finite fields where different
polynomials might define the same function. For example, over the field Fq of size q, the
polynomial xq − x is not the zero polynomial (it has degree q), but it computes the zero
function.

Numerous results are known about the properties of zero sets of polynomials. The
Combinatorial Nullstellensatz of Alon [2] is a higher dimensional extension of the well known
fact that a non-zero polynomial of degree d has at most d zeros. It was widely used to prove a
variety of results, among others, in combinatorics, graph theory and additive number theory.

I Theorem 2 (Combinatorial Nullstellensatz). Let F be a field, let d1, . . . , dn be non-negative
integers, and let P ∈ F[x1, . . . , xn] be a polynomial. Suppose that deg(P ) =

∑n
i=1 di, and that

the coefficient of xd1
1 · · ·xdn

n is non-zero. Then for all subsets S1, . . . , Sn of F with |Si| > di,
for i = 1, . . . , n, there exists (s1, . . . sn) ∈ S1 × · · · × Sn such that P (s1, . . . , sn) 6= 0.

The classical result of Chevalley [12] and Warning [28] asserts that if the sum of degrees
of some polynomials is less than the number of variables, than the number of their common
zeros is divisible by the characteristic of the field.

I Theorem 3 (Chevalley-Warning Theorem). Let F be a field of characteristic p, and let
P1, . . . , Pk ∈ F[x1, . . . , xn] be non-zero polynomials. If

∑k
i=1 deg(Pi) < n, then the number

of common zeros of P1, . . . , Pk is divisible by p. In particular, if the polynomials have a
common zero, they also have another one.

Both of these results clearly suggest a computational problem in TFNP: Given a (set of)
polynomial(s) satisfying the respective condition of these theorems, find an element in Fn

satisfying the respective conclusion. We study here these problems over the two-element field
F2 where both theorems have a particularly simple form, in fact they become almost the
same statement. To see that, let us recall that a multilinear polynomial is a polynomial of the
form M(x1, . . . , xn) =

∑
T⊆{1,...,n} cTxT , where xT stands for the monomial

∏
i∈T xi, and

the coefficients cT are elements of F2. We say that a monomial xT is in M if cT = 1. The
degree of a multilinear polynomial M is the cardinality of the largest set T such that xT is

CCC 2017
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in M . It is well known that for every polynomial P over F2, there exists a unique multilinear
polynomial MP (x1, . . . , xn) such that P and MP compute the same function. We define the
multilinear degree of a polynomial P over F2 by mdeg(P ) = deg(MP ). We call a monomial
maximal if its multilinear degree is n. Clearly mdeg(P ) ≤ deg(P ), and mdeg(P ) = n if and
only if the number of maximal monomials of P is odd. Using the notion of multilinear degree,
we can now state the rather simple equivalent formulations of the above theorems over F2.

I Theorem 4 (Combinatorial Nullstellensatz over F2). Let P ∈ F2[x1, . . . , xn] be a polynomial
such that mdeg(P ) = n. Then there exists a ∈ Fn

2 such that P (a) = 1.

I Theorem 5 (Chevalley-Warning Theorem over F2). Let P ∈ F2[x1, . . . , xn] be a polynomial
such that mdeg(P ) < n, and let a ∈ Fn

2 such that P (a) = 0. Then there exists b 6= a such
that P (b) = 0.

2.3 Arithmetic circuits
An n-variable, m-output arithmetic circuit C over a field F is a vertex-labeled, acyclic
directed graph whose vertices are called gates. It has n variable gates of in-degree 0, labeled
by the variables x1, . . . , xn. There is at most one constant gate of in-degree 0, labeled by
the constant, for each non-zero field element. The variable and constant gates are called
input gates. The other gates are of in-degree 2, and are called computational gates. They
are labeled by + or ×, the former are the sum gates, and the latter the product gates. The
number of computational gates of out-degree 0 is m, and they are called the output gates.

×

+ +

+x1

x2 x3

x4

Figure 1 A 4-variable, single-output arithmetic circuit.

For a computational gate g, we distinguish its two children, by specifying the left and the
right child. The left child is denoted by g` and the right child by gr. We denote the set of
sum gates by G+, and the set of product gates by G×. The size of C is the number of its
gates, and the depth of C is the length of the longest path from an input gate to an output
gate.

The definition of an arithmetic circuit can be extended naturally to include computational
gates of in-degree different from 2. Unary computational gates by definition act as the
identity operator. The children of computational gates of in-degree k > 2 are distinguished
by some some distinct labeling over some set of size k. It is easy to see that such an extended
circuit can be simulated by a circuit with binary computational gates, which computes the
same polynomial, and has only a polynomial blow-up in size. Our default circuits will be
with binary computational gates, and we will mention explicitly when this is not the case.

A subcircuit of a circuit C is a subgraph of C which is also a circuit. The subcircuit rooted
at gate g is the subgraph induced by all vertices contained on some path from the input gates
to g, it will be denoted by Cg. The left subcircuit of C, denoted by C`, is the subcircuit
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rooted at the left child of the root of C, and the right subcircuit Cr is defined similarly.
The composition of arithmetic circuits is defined in a natural way. If C1 is an n-variable,
m-output circuit and C2 is a k-variable, n-output circuit then C1 ◦ C2 is the k-variable,
m-output circuit composed of C1 and C2 where the output gates of C1 are identified with the
variable gates of C2, and the identical constant gates of the two circuits are also identified.
Let C1 and C2 be n-variable, single-output arithmetic circuit. The disjoint sum C1 ⊕ C2 of
C1 and C2 is the n-variable, single-output arithmetic circuit whose output gate is a sum
gate, its left and right subcircuits are disjoint copies of C1 and C2 except for the input gates
that C1 and C2 share. The disjoint sum naturally generalizes to more than two circuits.

Every gate g in an arithmetic circuit computes an n-variable polynomial Pg(x) in the
natural way, which can be defined by recursion on the depth of the gate. An input gate
g labeled by α ∈ {x1, . . . , xn} ∪ F computes Pg = α. If g ∈ G+ then Pg = Pg`

+ Pgr , if
g ∈ G× then Pg = Pg`

Pgr
. The polynomial computed by a single-output arithmetic circuit

C is the polynomial computed by its output gate, which we will denote by C(x). We define
similarly by recursion the circuit degree cdeg(C) of C. If an input gate g is labeled by
α ∈ F then cdeg(Cg) = 0, and if it is labeled by α ∈ {x1, . . . , xn} then cdeg(Cg) = 1. For
computational gates, if g ∈ G+ then cdeg(Cg) = max{cdeg(Cg`

), cdeg(Cgr )}, and if g ∈ G×
then cdeg(Cg) = cdeg(Cg`

) + cdeg(Cgr
). The circuit degree can be computed in polynomial

time, and we clearly have deg(C(x)) ≤ cdeg(C).
Over the base field F2, we call an element a ∈ Fn

2 , such that C(a) = 1, a satisfying
assignment for C, and an element a, such that C(a) = 0, a zero of C. For every a ∈ Fn

2 , we
define the Lagrange-circuit La as C1 × · · · × Cn, where Ci = xi if ai = 1, and Ci = xi + 1 if
ai = 0. Clearly mdeg(La(x)) = n, and the only satisfying assignment for La is a.

×

+ +x1

x2 1 x3

Figure 2 Lagrange-circuit L100.

3 Parse subcircuits

We would like to understand how monomials are computed by a single-output arithmetic
circuit C. If g is a sum gate, then the set of monomials computed by Cg is a subset of the
union of the set of monomials computed by Cg`

and by Cgr
. If g is a multiplication gate,

then every monomial computed by Cg is the product of a monomial computed by Cg`
and

a monomial computed by Cgr
. A marking of the gates in G+ from the set {`, r} therefore

computes naturally a monomial of C(x). At first sight it seems that by considering markings
restricted to the sum gates effectively participating in the computing of the monomial, we
could compute all of them. This is in fact the case when the fanout of every sum gate is one,
but this is not true in general circuits since the sum gates can be used several times in the
computation of a monomial with possibly inconsistent markings. However, as we show it
below, this is essentially true over fields of characteristic 2, where it is sufficient to consider
only consistent markings. By doing that, we have to be careful about two things: when
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computing a monomial by some marking, we shouldn’t mark those sum gates which don’t
participate in its computation. Indeed, by considering the two possible markings also for
irrelevant gates, we would assure that the monomial is necessarily computed an even number
of times, making the whole process false. On the other hand, we should mark all the sum
gates necessary for the computation of the monomial. We make all this precise by the notion
of closed marking and parse subcircuit.

Let C be a single-output arithmetic circuit. A marking of C is a partial function
S : G+ → {`, r}, from the sum gates of C to the marks {`, r}. We can equivalently specify
a marking by a total function S∗ : G+ → {`, r, ∗} where S∗(g) = ∗ if and only if S(g) is
undefined. We denote by Dom(S) the domain of S. For the output gate of C, let S` be the
restriction of S to the sum gates in C` and let Sr be the restriction of S to the sum gates in
Cr. We define GS = (VS , ES), the accessibility graph of S by induction on the depth of C.
If C is a single vertex then VS consists of this vertex, and ES = ∅. Otherwise, if the output
gate is a product gate, then VS consists of the output gate of C added to VS`

∪ VSr
, and

ES consists of the two edges from the two children of the output gate to the output gate,
added to ES`

∪ ESr
. If the output gate of C is a sum gate with mark ` then VS consist of

the output gate of C added to VS`
, and ES consists of the edge from the left child of the

output gate to the output gate, added to ES`
. The definition in the case when the mark

of the output gate is r is analogous. If the output gate of C doesn’t have a mark then the
accessibility graph is just this single node.

×

+
r

+
`

+
r

x1

x2 x3

x4

(a) parse subcircuit computing x2
3

×

+
`

+
r

+
∗

x1

x2 x3

x4

(b) parse subcircuit computing x1x4

Figure 3 Two parse subcircuits for Figure 1, note that the second one doesn’t access all sum
gates.

We say that a marking S is closed if Dom(S) = VS ∩G+, that is if the accessible sum
gates of C are exactly those where S is defined. If S is closed then the accessibility graph
GS , with the vertex labels inherited from C, is in fact a subcircuit of C. The inclusion
Dom(S) ⊆ VS ∩ G+ ensures that the only node of out-degree 0 in GS is the output gate
of C, and the inclusion VS ∩G+ ⊆ Dom(S) ensures that the leaves of GS are leaves in C.
We call this subcircuit the parse subcircuit induced by S, and denote it by CS . The set of
parse subcircuits of C will be denoted by S(C). Observe that a parse subcircuit has binary
product gates but unary sum gates which act as the identity operator. The polynomial CS(x)
computed by the parse subcircuit CS is therefore a monomial, which we denote by mS(x).
We say that a parse subcircuit CS is maximal if the multilinear degree of mS(x) is n, that is
mS(x) = x1 · · ·xn. We say that two parse subcircuits CS and CS′ are consistent if for every
g ∈ Dom(S) ∩Dom(S′), we have S(g) = S′(g).

Clearly, the mapping from closed markings to induced parse subcircuits is a bijection.
Therefore, to ease notation, we will often call the closed marking S itself the parse subcircuit,
and we will speak about the gates, subcircuits and other circuit related notions of S, instead
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of CS . The notation used for the monomial computed by a parse subcircuit is already
consistent with this convention.

I Proposition 6. Let C be a single-output arithmetic circuit over a field F of characteristic
2. Then

C(x) =
∑

S∈S(C)

mS(x).

Proof. We prove by induction on the depth of the circuit. If C consists of a single gate, the
statement is obvious.

Otherwise, the parse subcircuits of S(C`) (respectively S(Cr)) are exactly the parse
subcircuits of S(C) restricted to the sum gates of C` (respectively Cr). When the output gate
of C is a sum gate then conversely, S(C) can be obtained from S(C`) ∪ S(Cr) by extending
the markings in the latter set with the appropriate mark for the root of C. Therefore, using
the definitions of C(x) and mS(x), we get

C(x) = C`(x) + Cr(x)

=
∑

S∈S(C`)

mS(x) +
∑

S∈S(Cr)

mS(x)

=
∑

S∈S(C), S(root)=`

mS`
(x) +

∑
S∈S(C), S(root)=r

mSr (x)

=
∑

S∈S(C)

mS(x),

where the second equality comes from the inductive hypothesis.

×

+U + W

+

g

x1

x2 x3

x4

(a) inconsistent U,W

×

+U ′ + W ′

+

g

x1

x2 x3

x4

(b) inconsistent U ′,W ′

Figure 4 The involutive pair (U,W ) ↔ (U ′,W ′) in the proof of Proposition 6 with mUmW =
x2x3 = mU′mW ′ contributes zero to C(x).

When the output gate of C is a product gate, the situation is more complicated. The parse
subcircuits S` and Sr are always consistent for S ∈ S(C), but an arbitrary parse subcircuit
U ∈ S(C`) is not necessarily consistent with an arbitrary parse subcircuit W ∈ S(Cr).
Therefore the crux of the induction step is to show that the contribution of mU (x)mW (x) to
C(x) is zero when we sum over all inconsistent U and W . Indeed, we claim that∑

(U,W )∈S(C`)×S(Cr), U,W inconsistent

mU (x)mW (x) = 0.

To prove this, we define an involution (U,W ) ↔ (U ′,W ′) over inconsistent pairs in
S(C`) × S(Cr) such that mU (x)mW (x) + mU ′(x)mW ′(x) = 0. For this let us fix some
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topological ordering of the gates in C with respect to the edges of the circuit, and let g be
the first sum gate in this ordering where U and W have different marks, say U(g) = ` and
W (g) = r. Let the restriction of U to the sum gates of Cg be T0 and let the restriction ofW to
the sum gates of Cg be T1. Both T0 and T1 are parse subcircuits in Cg, which are inconsistent
only at g. Also, for some monomials m0(x) and m1(x), we have mU (x) = m0(x)mT0(x) and
mW (x) = m1(x)mT1(x). The parse subcircuit U ′ is obtained from U by exchanging inside
Cg the parse subcircuit T0 for the parse subcircuit T1, that is U ′ = (U \ T0) ∪ T1. The parse
subcircuit W ′ is similarly defined from W with the roles of T0 and T1 reversed. It follows
from the choice of g that U ′ and W ′ are parse subcircuits respectively in S(C`) and S(Cr)
such that the first inconsistency between them in the topological order is at g. Therefore
starting the same process with (U ′,W ′) we obtain (U,W ), and thus the mapping is indeed
an involution. Since mU ′(x) = m0(x)mT1(x) and mW ′(x) = m1(x)mT0(x), we can conclude
that mU (x)mW (x) +mU ′(x)mW ′(x) = 0.

We can now complete the induction step for product gates by observing the equalities

C(x) = C`(x)× Cr(x)

=

 ∑
U∈S(C`)

mU (x)

×
 ∑

W∈S(Cr)

mW (x)


=

∑
(U,W )∈S(C`)×S(Cr), U,W consistent

mU (x)mW (x)

=
∑

S∈S(C)

mS`
(x)mSr

(x)

=
∑

S∈S(C)

mS(x). J

Though it is not directly related to the main result of the paper, we prove here, essentially
as a corollary of the previous proposition, that deciding if the polynomial computed by a
circuit over the two elements field has maximal multilinear degree is ⊕P-complete. Note that
by the Chevalley-Warning theorem, the multilinear degree of a circuit is maximal if and only
if it has odd number of satisfying assignments, and via this correspondence Proposition 7
can also be proved by using the number of 1’s to build a balanced relation. The point of our
proof of Proposition 7 is to show this without referring to the Chevalley-Warning theorem,
and therefore illustrate the use of maximal parse subcircuits.

I Proposition 7. Let C be an n-variable, single-output arithmetic circuit over the field F2.
The problem of deciding if mdeg(C(x)) = n is ⊕P-complete.

Proof. For the easiness part, we can define a balanced relation R(C, S) where S ∈ S(C),
which equals 1 if and only if S is a maximal parse subcircuit. By Proposition 6, we know
that the polynomial computed by the circuit C is the sum of all the monomials computed by
the parse subcircuits. Among all the parse subcircuits, only the monomials computed by
maximal parse subcircuits have degree n. Thus mdeg(C(x)) = n if and only if there is an
odd number of maximal parse subcircuits.
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×

+
α1

+
α2

+
α3

×
x1

×
x1

×
x2

×
x2

×
x3

×
x3

F1 F2 F3

Figure 5 Image of (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) by the reduction.

For the hardness part, we will reduce the well known ⊕P-complete problem ⊕3-SAT [26]
to the maximality of mdeg(C(x)). Let φ = {F1, F2, . . . , Fm} be an instance of 3-SAT, where
the clause Fi is the conjunction of three literals belonging to {x1, x1, . . . , xn, xn}. The
reduction maps φ to an m-variable, single-output and depth-3 arithmetic circuit C defined
as follows. The output gate at level 0 is a product gate. It has n children α1, . . . , αn, all plus
gates, which compose the first level of the circuit. At level 2, for all 1 ≤ j ≤ n, the gate αj

has two children xj and xj , which are product gates. The gate xj is the left child of αj , and
xj is its right child. Finally at level 3 are the m variable gates F1, . . . , Fm, such that Fi is a
child of y ∈ {x1, x1, . . . , xn, xn} if y ∈ Fi in φ. The following is an illustration of the circuit
which is the image of the formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) by the reduction.

We give a one-to-one mapping S from the assignments of φ to the parse subcircuits of
S(C). Since all plus gates of C are reachable from the output gate, a parse subcircuit of C
is an {`, r}-marking of the gates α1, . . . , αn. The parse subcircuits are therefore naturally
identified with the elements of {`, r}n. For an assignment x ∈ {0, 1}n, the map S is defined
as

S(x)i =
{
` if xi = 1
r if xi = 0.

To finish the proof we show that x is a satisfying assignment if and only if S(x) is a
maximal parse subcircuit. To see that, observe that x is a satisfying assignment if and only if
each Fi in φ contains a true literal. By the definition of S, the clause Fi contains a true literal
exactly when the variable Fi of C is in the parse subcircuit CS(x). Since CS(x) is maximal if
and only if Fi is in the parse subcircuit CS(x) for all i, this concludes the proof. J

4 PPA-circuits

Given an arbitrary circuit C and a satisfying assignment, asking for another satisfying
assignment would be an NP-hard problem. We want to restrict the form of the circuit C in
a way which takes into consideration the structure of problems in PPA.
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×

+ · · · +

x1 · · · xn y1 · · · yn 1

(a) The arithmetic circuit I.

C

x1 · · · xn

1

+ · · · +

×

· · ·

· · ·

(b) The compound arithmetic circuit I � C.

Figure 6 The arithmetic circuits I and I � C.

For this, we use repeatedly a 2n-variable, single-output arithmetic circuit I. The circuit
I is of depth 2, its output gate is a product gate with n children, all sum gates. Every sum
gate has 3 children, the left child of the ith gate is the variable gate xi, its center child is the
variable gate yi, and its right child is the constant gate 1. For an n-variable, n-output circuit
C, we define I � C, the diamond composition of I with C, as the n-variable, single-output
circuit composed from a circuit I at the top and C below. More precisely, the variable
gates of I � C labeled by x1, . . . , xn are also the first n variables of I, and the variable gates
y1, . . . , yn of I are identified with the output gates of C. If C has also a constant gate 1, it
is identified with the constant gate 1 of I.

The polynomial computed by the circuit I is I(x1, . . . , xn, y1, . . . , yn) =
∏n

i=1(xi +yi + 1).
It is easy to check that I(x, y) is 1 if and only if the two n-bit strings x1, . . . , xn and y1, . . . , yn

are equal. Therefore I � C(x) = 1 if and only if C(x) = x.

Given two n-variable, n-output arithmetic circuits D and F , we consider the set of six
n-variable, single-output circuits

CD,F = {I1 �D1 ◦ F1, I2 � F2 ◦D2, I3 �D3 ◦D4, I4 �D5, I5 � F3 ◦ F4, I6 � F5},

where I1, . . . , I6 are copies of I; D1, . . . , D5 are copies of D; F1, . . . , F5 are copies of F ,
and the six circuits share the same input gates. The PPA-composition of D and F is the
n-variable, single-output circuit CD,F is the disjoint sum of the six circuits in CD,F . We call
the circuits in CD,F the components of CD,F . The polynomial computed by CD,F is

CD,F (x) = I(x,D(F (x))) + I(x, F (D(x))) + I(x,D(D(x)))
+ I(x,D(x))) + I(x, F (F (x))) + I(x, F (x))).
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+

x1 · · · xn

I1 �D1 ◦ F1
· · ·

I2 � F2 ◦D2
· · ·

I3 �D3 ◦D4
· · ·

I4 �D5
· · ·

I5 � F3 ◦ F4
· · ·

I6 � F5
· · ·

Figure 7 The circuit CD,F , the PPA-composition of the circuits D and F .

The main structural property of a PPA-composition C is that it computes a polynomial
whose multilinear degree is less than n. Moreover, a witness for that can be computed in
polynomial time. By Proposition 6, the multilinear degree of C(x) is determined by the
parity of its maximal parse subcircuits, mdeg(C(x)) = n if and only if the parity of the
maximal parse subcircuits is odd. Thus, the multilinear degree of C(x) can be certified by a
special type of syntactically defined matching over its maximal parse subcircuits. Formally, a
matching for maximal parse subcircuits in C is a polynomial time Turing machine µ which
defines a matching over the maximal parse subcircuits of C as follows: S and S′ are matched
if µ(C, S) = S′ and µ(C, S′) = S. If µ defines a perfect matching between the maximal parse
subcircuits, then mdeg(C(x)) < n. If µ defines a perfect matching outside some maximal
parse subcircuit T , meaning that T is the only maximal parse subcircuit without a matching
pair in µ, then mdeg(C(x)) = n.

All the above statements hold also for circuits which are the direct sum of a PPA-
composition and another circuit which certifiably has no maximal parse subcircuit. This is
obviously the case of circuits which compute polynomials of degree less than n. Our final set
of authorized circuits are of this form. We say that a circuit C is a PPA-circuit if for some
D and F , we have C = CD,F ⊕ C ′, where mdeg(C ′) < n.

I Lemma 8. If C is a PPA-circuit then mdeg(C(x)) < n, and a perfect matching µ between
the maximal parse subcircuits of C can be computed in polynomial time.

Proof. Let C = CD,F ⊕ C ′ where mdeg(C ′) < n. We can suppose without less of generality
that C ′ is the empty circuit, that is C = CD,F . Since the six components of C are pairwise
disjoint (except for the input gates), every maximal parse subcircuit in C consists of the
mark of the root of C from the set {1, . . . , 6}, and a maximal parse subcircuit in the
corresponding component. For the definition of µ we decompose C into the disjoint sum of
three circuits C1, C2 and C3 where each of them is the disjoint sum of two PPA-components,
and will define the matching inside each of these circuits. The three circuits are as follows:
C1 = I1 �D1 ◦F1⊕ I2 �F2 ◦D2, C2 = I3 �D3 ◦D4⊕ I4 �D5, and C3 = I5 �F3 ◦F4⊕ I6 �F5.
Clearly C2 and C3 are similar, therefore it is sufficient to define µ for C1 and C2.
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+

+C1 +C2 +C3

x1 · · · xn

I1 �D1 ◦ F1
· · ·

I2 � F2 ◦D2
· · ·

I3 �D3 ◦D4
· · ·

I4 �D5
· · ·

I5 � F3 ◦ F4
· · ·

I5 � F5
· · ·

Figure 8 The decomposition C = C1 ⊕ C2 ⊕ C3.

To ease the notation, we rename the subcircuits of C1 as I �D ◦ F and I ′ � F ′ ◦D′, and
we suppose that I �D ◦ F is the left subcircuit of C1 and I ′ � F ′ ◦D′ is its right subcircuit.
Let us denote the output (sum) gate of C1 by h, the sum gates of I by h1, . . . , hn, the output
gates of D by d1, . . . dn, and the output gates of F by f1, . . . , fn. For every gate g in I,D
and F , we denote the corresponding gate in I ′, D′ and F ′ by g′, and we also set h′ = h. Let
us recall the hi has three children, the left child is the input gate xi, the center child is di,
the ith output gate of D, and its right child is the constant gate 1. A parse subcircuit can
map hi into one of the three marks `, c and r, corresponding respectively to its left, center,
and right child.

We define µ(S) for the maximal parse subcircuits of I �D ◦ F , that is when S(h) = `.
The definition for the case S(h) = r is symmetric. Let us first define three sets of indices
Sout, Smiddle, Sin ⊆ [n]. Let Sout = {i ∈ [n] : S(hi) = c}, that is Sout contains those indices i
for which the edge from the di to hi belongs to S. By definition i ∈ Smiddle if there exists an
edge in S from fi to a gate in D. Finally, i ∈ Sin if there exists an edge in S from xi to a
gate in F . We claim that Sout ⊆ Sin. This is indeed true, since if there exists i ∈ Sout \ Sin
then the monomial mS(x) wouldn’t contain the variable xi, contradicting its maximality.
We are now ready to define S′ = µ(S) by distinguishing two cases, depending on if Sout is a
proper subset of Sin or not.

x1 x2 x3

1

+h1 +h2 +h3

×

D

F
f1 f2 f3

d1 d2 d3

Sin = {1, 2, 3}

Smiddle = {1, 3}

Sout = {1, 2}

Figure 9 The left subcircuit I �D ◦ F of C1 and the index sets Sin, Smiddle and Sout.
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Case 1: Sout ⊂ Sin. Let i be the smallest index in Sin \ Sout. By definition, we let S′ be
the same as S, except on hi, where S′ takes the mark r when S(hi) = `, and it takes the
mark ` when S(hi) = r. This means that the only difference between S and S′ is that at the
ith sum gate of I, one subcircuit contains the edge from xi to hi, whereas the other contains
the edge from 1 to hi. S′ is therefore a parse subcircuit. To show that S′ is also maximal,
the interesting case is when S(hi) = ` and S′(hi) = r, that is mS′(x) doesn’t directly pick up
xi at hi. But since i ∈ Sin, the variable xi is still in S′, which is therefore maximal. Finally
clearly µ(S′) = S.

×

+`

xi di 1

(a) maximal parse subcircuit S

×

+r

xi di 1

(b) maximal parse subcircuit S′

Figure 10 Case 1 of the matching µ for C1 where i is the smallest index in Sin \ Sout.

+

D

F

x3

x1 x2

(a) maximal parse subcircuit S

+

F ′

D′

x2 x3

x1

(b) maximal parse subcircuit S′

Figure 11 Case 2 of the matching µ for C1: Sout = Sin.

Case 2: Sout = Sin. In that case first observe that for every index i 6∈ Sout, we have
S(hi) = `, that is S contains the edge (xi, hi), since otherwise mS(x) wouldn’t contain xi.
By definition, let Dom(S′) = {g′ ∈ G+ : g ∈ Dom(S)}. For the output gate h′ = h of C1
we set S′(h′) = r, that is S′ will be a parse subcircuit of I ′ �D′ ◦ F ′. For the sum gates
h′1, . . . , h

′
n of I, we set S′(h′i) = c if i ∈ Smiddle, and we set S′(h′i) = ` otherwise. Finally, for

every sum gate g ∈ Dom(S) in D or in F , we set S′(g′) = S(g).
Let us recall that VS is the set of vertices of the accessibility graph GS of S. The proof

that S′ is a maximal parse subcircuit immediately follows from the following proposition.

I Proposition 9. For every computational gate g in I �D ◦ F , we have

g ∈ VS if and only if g′ ∈ VS′ .

Proof. We show the implication from left to right. This is certainly true for the computational
gates of I since they are all accessible in GS , as well as the computational gates of I ′ in GS′ .

If g ∈ VS is a computational gate of D then there is a path p in GS from g to h which
can be decomposed into p = p1p2, where p1 goes from g to di for some i ∈ Sout, and p2 is the
path from di to h. In GS′ we have therefore a path p′1 from g′ to d′i. Since Sout = Sin, in GS
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we have a path p3 from xi to fj for some j ∈ Smiddle. Therefore in GS′ there exists a path
p′2 from d′i to f ′j . Finally, in GS′ there is also a path p′3 from f ′j to h′ because j ∈ Smiddle.
Then p′ = p′1p

′
2p
′
3 is a path from g′ to h′.

If g ∈ VS is a computational gate of F then there is a path p in GS from g to h which
can be decomposed into p = p1p2p3, where p1 goes from g to di for some i ∈ Smiddle, p2 goes
from di to fj for some j ∈ Sout, and p3 is the path from fj to h. Then in GS′ there exists a
path p′1 from g′ to d′i, and a path p′2 which goes from d′i to h′ since i ∈ Smiddle. Then the
path p′ = p′1p

′
2 goes from g′ to h′.

The implication from right to left follows from the symmetry between S and S′. For this,
it is useful to observe that S′out = S′in = Smiddle, and S′middle = Sout = Sin. J

We have Dom(S) = VS∩G+ since S is a parse subcircuit. Proposition 9 and the definition
Dom(S′) = {g′ ∈ G+ : g ∈ Dom(S)} imply that Dom(S′) = VS′ ∩ G+, and therefore S′ is
a parse subcircuit. To prove the maximality of S′ let us show that every input gate is in
VS′ . If i ∈ Smiddle then the path p defined above for the computational gates in D yields a
path p′ from xi to h′. If i 6∈ Smiddle then the direct path p′ from xi to h′ via h′i exists in GS′ .
Finally µ is clearly involutive in that case too.

We now turn to the description of µ for C2, where we rename its two subcircuits as
I �D ◦D′ and I∗ �D∗. The matching for C2 has strong analogies with the matching for C1,
to better see this we also use the names I ′, F and F ′ respectively for the circuits I,D′ and D.
This means that I �D ◦ F and I ′ � F ′ ◦D′ are just different names for the circuit I �D ◦D′.
We suppose that I �D ◦D′ is the left subcircuit of C2 and I∗ �D∗ is its right subcircuit.
Similarly to the circuit C1, we denote the output gate of C2 by h, the sum gates of I by
h1, . . . , hn, the ouput gates of D by d1, . . . dn, and the output gates of D′ by d′1, . . . , d′n. For
every gate g in I,D and D′, we denote the corresponding gate respectively in I ′, D′ and D
by g′. For every gate g in I and D, we denote the corresponding gate in I∗ and D∗ by g∗.
We also set h∗ = h′ = h. Again, hi has three children, the left child is the input gate xi, the
center child is di, the right child is the constant gate 1, and the respective marks are `, c and
r.

We first describe S′ = µ(S) when S is a maximal parse subcircuit of I �D ◦D′. We define
Sout, Smiddle, Sin the same way as for the circuit I �D ◦ F , keeping in mind that F = D′. As
before, we have Sout ⊆ Sin. For the definition of µ we now distinguish three cases.

Case 1: Sout ⊂ Sin. The definition of S′ is identical to the first case of the definition of
the matching for C1.

Case 2: Sout = Sin and there exists a sum gate g inD such that S(g) 6= S(g′). The
definition of S′ is identical to the second case of the definition of the matching for C1, with
one exception. The difference is that S′ remains in the left subcircuit of C2, that is for the
output gate h′ = h we set S′(h′) = `.
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+

D

D′

x3

x1 x2

(a) maximal parse subcircuit S

+

D

D′

x3

x1 x2

(b) maximal parse circuit S′

Figure 12 Case 2 of the matching µ for C2: Sout = Sin and ∃g, S(g) 6= S(g′).

Case 3: Sout = Sin and for all sum gate g in D, we have S(g) = S(g′). By definition
we set Dom(S′) = {g∗ ∈ G+ : g ∈ Dom(S)}. For the output gate h∗ = h of C2 we set
S′(h∗) = r, that is S′ will be a parse subcircuit of I∗ � D∗. For every other sum gate
g ∈ Dom(S), we set S′(g∗) = S(g).

The description S′ = µ(S) when S is a maximal parse subcircuit of I∗ �D∗ is as follows.
By definition we set Dom(S′) = {g, g′ ∈ G+ : g∗ ∈ Dom(S)}. We set S′(h) = `, that is S′ is
a parse subcircuit of I �D ◦D′. For the sum gates of I, we set S′(hi) = S(h∗i ). For every
sum gate g∗ ∈ Dom(S) which is in D∗, we set S′(g) = S′(g′) = S(g∗).

+

D

D′

x3

x1 x2

(a) maximal parse subcircuit S

+

D∗x3

x1 x2

(b) maximal parse subcircuit S′

Figure 13 Case 3 of the matching µ for C2: Sout = Sin and ∀g, S(g) = S(g′).

The proof that S′ is a maximal parse subcircuit is basically the same as for the case
of circuit C1. It follows immediately from the definition that µ is an involution. The only
additional point to see is that in the second case S′ 6= S because S(g) 6= S(g′), for some gate
g in D. J

5 The computational problems

We are now ready to define PPA-Circuit CNSS and PPA-Circuit Chevalley, the
two computational problems corresponding to the CNSS and to the Chevalley-Warning
theorem over F2. The input will be in both cases an n-variable, single-output PPA-circuit C,
and an element a ∈ Fn

2 . In the case of PPA-Circuit Chevalley, it is a zero of C, and
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Lemma 8 ensures that C satisfies the hypotheses of the Chevalley-Warning Theorem. For
PPA-Circuit CNSS, we consider the circuit C ⊕ La, and Lemma 8 again ensures that this
circuit satisfies the hypothesis of the CNSS. The computational task is to compute b ∈ Fn

2
whose existence is stipulated by these theorems.

The definition of the two problems is the following.

PPA-Circuit Chevalley
Input: (C, a), where C is an n-variable PPA-circuit over F2, and a is a zero of C.
Output: Another zero b 6= a of C.

PPA-Circuit CNSS
Input: (C ′, a), where C ′ is an n-variable PPA-circuit over F2, and a ∈ Fn

2 .
Output: An element b ∈ Fn

2 satisfying C = C ′ ⊕ La.

Let us restate here our main theorem.

I Theorem 1 (restated). The problems PPA-Circuit CNSS and PPA-Circuit Chevalley
are PPA-complete.

Proof. In Proposition 10 below we show that PPA-Circuit CNSS and PPA-Circuit
Chevalley are polynomially interreducible. In Theorem 11 in Section 6 we prove that
PPA-Circuit CNSS is in PPA, and in Theorem 13 in Section 7 we prove that PPA-Circuit
Chevalley is PPA-hard. J

We now turn to the proof of the various parts of Theorem 1.

I Proposition 10. PPA-Circuit CNSS and PPA-Circuit Chevalley are polynomially
equivalent.

Proof. First we reduce PPA-Circuit CNSS to PPA-Circuit Chevalley. Let (C ′, a)
be an instance of PPA-Circuit CNSS, and set C = C ′ ⊕ La. We can suppose that
C ′(a) = 1, since otherwise we are done. We define the circuit C ′′ = C ⊕ 1. Then clearly C ′′
is a PPA-circuit, and C ′′(a) = 0. The result of the reduction is then the input (C ′′, a) to
PPA-Circuit Chevalley. If the solution to that input is another zero b 6= a of C ′′(x),
then clearly C(b) = 1.

The reduction from PPA-Circuit Chevalley to PPA-Circuit CNSS is very similar.
Let (C, a) be an instance of PPA-Circuit Chevalley. We set C ′ = C⊕1, and C ′′ = C ′⊕La.
Clearly C ′ is a PPA-circuit. The result of the reduction is (C ′, a). If the solution to that
input is a satisfying assignment C ′′(b) = 1 then b is a zero of C. Also, b 6= a since C ′′(a) = 0,
therefore b is another zero of C. J

6 PPA-easiness

I Theorem 11. PPA-Circuit CNSS is in PPA.

Proof. We will give a reduction from PPA-Circuit CNSS to Leaf. Given an input N =
(C ′, a) to PPA-Circuit CNSS, we set C = C ′ ⊕ La. We construct a graph GN = (VN , EN )
by a polynomial time edge recognition algorithm and a polynomial time pairing function φ
as explained in Section 2.1. The vertices of GN are VN = Fn

2 ∪ S(C).
There are two types of edges in EN , the first type is between an assignment and a parse

subcircuit, and the second type is between two maximal parse subcircuits. By definition, the
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edge {a, S} exists between a ∈ Fn
2 and S ∈ S(C) if mS(a) = 1. Such an edge can be easily

recognized since the monomial mS(x) can be evaluated in linear time in the size of C.
Since C is the disjoint sum of C ′ and La, the maximal parse subcircuits of C are the

maximal parse subcircuits of C ′ extended with the appropriate mark at the output gate, and
the unique maximal parse subcircuit of La, again extended with the appropriate mark at the
output gate. Let us denote the latter parse subcircuit by T . Let µ be a polynomial time
computable perfect matching between the maximal parse subcircuits of C ′, which exists by
Lemma 8. By definition, the edge {S, S′} exists between S, S′ ∈ S(C ′) if both are extensions
of maximal parse subcircuits of C ′, and their restrictions to C ′ are matched by µ.

Observe that by Proposition 6, a vertex a ∈ Fn
2 has odd degree if and only if C(a) = 1. If

S is a maximal parse subcircuit then among the vertices in Fn
2 it is only connected to 1n. If

S 6= T , then it has one more neighbor, its matching pair given by µ, and therefore its degree
is two. On the other hand, the degree of T is one and therefore it is odd. We can therefore
take T as the standard leaf.

We first give the pairing for the vertices in S(C). We fix S ∈ S(C), and let a ∈ Fn
2 such

that mS(a) = 1. If S is not a maximal parse subcircuit then let i ∈ [n] be the smallest
integer such that xi is not in mS(x), and let a′ be obtained from a by flipping the ith bit.
Then by definition φ(S, ·) pairs a with a′. If S 6= T is a maximal parse subcircuit then it has
two neighbors: its matching pair S′ by µ and 1n, and φ(S, ·) pairs these two neighbors. For
every S, the mapping φ(S, ·) is clearly involutive.

We now turn to the more complicated pairing for the vertices in Fn
2 . Observe that this

depends only on the edges of the first type, that is edges between an assignment a ∈ Fn
2 and

a parse subcircuit S ∈ S(C). These edges can be defined actually for an arbitrary circuit C.
Let us denote by G(C) the graph with vertex set Fn

2 ∪ S(C) and with edges of the first type
from GN . First we prove the following lemma about G(C) on induction of the size of C.

I Lemma 12. For every n-variable, single-output circuit C, and for every vertex a ∈ Fn
2 in

G(C),
(a) if deg(a) is even then for all S ∈ S(C) such that mS(a) = 1, there exists g ∈ Dom(S)

with Pg(a) = 0,
(b) if deg(a) is odd then there exists a unique S ∈ S(C) such that mS(a) = 1, and Pg(a) = 1

for all g ∈ Dom(S).

Proof. If C consists of a single node, the statement is obviously true. Otherwise we first
handle a). When deg(a) is even then C(a) = 0. If the root is a sum gate then we are done
since it is in the domain of every parse subcircuit. If the root is a product gate then at
least one of its children (say the left without loss of generality) also evaluates to 0, that is
C`(a) = 0. Let S ∈ S(C) be such that mS(a) = 1, then we also have mS`

(a) = 1. By the
inductive hypothesis there exists g ∈ Dom(S`) with Pg(a) = 0, and since g is also in the
domain of S, we are again done.

We now deal with the induction step of b). When deg(a) is odd then C(a) = 1. If the root
is a sum gate then one of its children evaluates to 0, and the other one to 1, say C`(a) = 0
and Cr(a) = 1. By the inductive hypothesis there exists a unique S′ ∈ S(Cr) such that
mS′(a) = 1, and Pg(a) = 1 for all g ∈ Dom(S′). On the other hand, if S ∈ S(C) such that
mS(a) = 1 and the mark of S at the root is `, then S` ∈ S(C`) and mS`

(a) = 1, and by a)
there exists g ∈ Dom(S) with Pg(a) = 0. Therefore the unique S satisfying the hypothesis of
the statement is S′ extended with the mark r at the root.

To finish the induction step for b), let us suppose now that the root of C is a product gate.
Then by the inductive hypothesis there exists a unique S′ ∈ S(C`) such that mS′(a) = 1,
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and Pg(a) = 1 for all g ∈ Dom(S′), and similarly there exists a unique S′′ ∈ S(Cr) such that
mS′′(a) = 1, and Pg(a) = 1 for all g ∈ Dom(S′′). We claim that S′ and S′′ are compatible,
and therefore their union S = S′ ∪ S′′ is the unique parse subcircuit of C satisfying the
claim. Suppose that it is not the case, that is there exists g ∈ Dom(S′) ∩ Dom(S′′) such
that S′(g) 6= S′′(g). Since Pg(a) = 1, for one of its children, say for g`, we have Pg`

(a) = 0,
contradicting the inductive hypothesis about the parse subcircuit in {S′, S′′} which takes
the value ` in g. J

We give now the pairing φ(a, ·) for a ∈ Fn
2 . If deg(a) is even then let S ∈ S(C) be

such that mS(a) = 1. By Lemma 12 there exists a sum gate in the domain of S where P
evaluates to 0. Let g be in some topological ordering of the gates of C the first sum gate
such that Pg(a) = 0, and suppose without loss of generality that S(g) = `. Let Z ∈ S(Cg)
be the restriction of S to Cg, and we obviously have mZ(a) = mZ`

(a) = 1. We claim that
Pg`

(a) = Pgr (a) = 1. Indeed, if Pg`
(a) = Pgr (a) = 0, then by Lemma 12, applied to Cg`

,
there exists g′ ∈ Dom(Z`) with Pg′(a) = 0, which contradicts the choice of g. Therefore
again by Lemma 12 there exists a unique Z ′′ ∈ S(Cgr ) such that mZ′′(a) = 1, and Ph(a) = 1
for all h ∈ Dom(Z ′′). We let Z ′ ∈ S(Cg) be the extension of Z ′′ with Z ′(g) = r. Finally we
define φ(a, S) as the parse subcircuit S′ obtained from S by exchanging Z with Z ′, that is
S′ = (S \ Z) ∪ Z ′. It is clear that mS′(a) = 1, and φ(a, S′) = S.

If deg(a) is odd then by Lemma 12 there exists a unique parse subcircuit S such that
mS(a) = 1, and Pg(a) = 1, for all g ∈ Dom(S). We set φ(a, S) = S. For all parse subcircuits
S such that Pg(a) = 0, for some g ∈ Dom(S), the construction of S′ = φ(a, S) is identical to
the previous case.

The finish the proof, observe that the vertices of odd degree in VN other than the standard
leaf T are the elements a ∈ Fn

2 such that C(a) = 1. Therefore the output of the reduction is
a satisfying assignment a for C. J

7 PPA-hardness

I Theorem 13. PPA-Circuit Chevalley is PPA-hard.

Proof. We will reduce Leaf to PPA-Circuit Chevalley. Let (z,M, ω) be an instance
of Leaf, where M defines the graph Gz = (Vz, Ez) with Vz = {0, 1}n, for some polynomial
function n of |z|, and ω is the standard leaf in Gz. We know that for every vertex u, M(z, u)
is a set of at most two vertices. Composing the standard simulation of polynomial time
Turing machines by polynomial size boolean circuits [24] with the obvious simulation of
boolean circuits by arithmetic circuits, there exist two n-variables, n-output polynomial size
arithmetic circuits D and F with the following properties:

if M(z, u) = ∅ or M(z, u) = {u} then D(u) = F (u) = u,
if M(z, u) = {v} or M(z, u) = {v, u} with v 6= u then D(u) = v and F (u) = u,
if M(z, u) = {v, w} with v 6= u 6= w then D(u) = v and F (u) = w (or vice versa).

Consider the PPA-composition CD,F of D and F . We claim that for every vertex u,
the degree of u in Gz is odd if and only if u is a satisfying assignment for CD,F . This is
equivalent to saying that the parity of the degree of u is the same as the parity of the satisfied
components of CD,F . The proof of this claim is straightforward, but somewhat tedious. We
distinguish three cases in the proof, depending on the cardinality of M(z, u) \ {u}.

Case 1: M(z, u) \ {u} = ∅. Then u is an isolated vertex, and all six components are
satisfied.
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Case 2: M(z, u) \ {u} = {v}.
a) If u ∈M(z, v) then the degree of u is one, and I5 � F3 ◦ F4, I6 � F5 and exactly one of
the two components I2 � F2 ◦D2, I3 �D3 ◦D4 are satisfied.
b) If u 6∈M(z, v) then u is an isolated vertex, and I5 � F3 ◦ F4 and I6 � F5 are satisfied.
Case 3: M(z, u) \ {u} = {v, w}.
a) If u ∈ M(z, v) ∩M(z, w) then the degree of u is two, and exactly one of the two
components I2 � F2 ◦D2, I3 �D3 ◦D4 and exactly one of the two components I1 �D1 ◦
F1, I5 � F3 ◦ F4 are satisfied.
b) If u ∈ M(z, v) but u 6∈ M(z, w) and say D(u) = v, then exactly one of the two
components I2 � F2 ◦D2, I3 �D3 ◦D4 is satisfied.
c) Finally, if u 6∈ M(z, v) ∪ M(z, w) then u is an isolated vertex, and none of the
components is satisfied.

u

(a) Case 1

u v
· · ·

(b) Case 2-a

u v
· · ·

(c) Case 2-b
uv w

· · · · · ·

(d) Case 3-a

uv w
· · · · · ·

(e) Case 3-b

uv w
· · · · · ·

(f) Case 3-c

Figure 14 The six cases of Theorem 13.

This finishes the proof of the claim. It follows that the number of satisfying assignments
for CD,F is equal to the number of leaves in Gz, which is even. The standard leaf ω is a
satisfying assignment for CD,F , and therefore the output of PPA-Circuit Chevalley is
another satisfying assignment, which is another leaf in Gz. J
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