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Gábor Ivanyos† Raghav Kulkarni‡ Youming Qiao§ Miklos Santha¶

Aarthi Sundaram‖

Abstract

In 2013 Bei, Chen and Zhang introduced a trial and error model of computing, and applied to
some constraint satisfaction problems. In this model the input is hidden by an oracle which, for
a candidate assignment, reveals some information about a violated constraint if the assignment
is not satisfying. In this paper we initiate a systematic study of constraint satisfaction problems
in the trial and error model, by adopting a formal framework for CSPs, and defining several
types of revealing oracles. Our main contribution is to develop a transfer theorem for each
type of the revealing oracle. To any hidden CSP with a specific type of revealing oracle, the
transfer theorem associates another CSP in the normal setting, such that their complexities are
polynomial-time equivalent. This in principle transfers the study of a large class of hidden CSPs
to the study of normal CSPs. We apply the transfer theorems to get polynomial-time algorithms
or hardness results for several families of concrete problems.

∗A preliminary report on this work appeared in ICALP 14 as [IKQ+14].
†Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary

(Gabor.Ivanyos@sztaki.mta.hu).
‡Centre for Quantum Technologies, National University of Singapore, Singapore 117543 (kulraghav@gmail.com).
§Centre for Quantum Software and Information, University of Technology Sydney, Australia

(jimmyqiao86@gmail.com).
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1 Introduction

In [BCZ13], Bei, Chen and Zhang proposed a trial and error model to study algorithmic problems
when some input information is lacking. As argued in their paper, the lack of input information can
happen when we have only limited knowledge of, and access to the problem. They also described
several realistic scenarios where the inputs are actually unknown. Then, they formalized this
methodology in the complexity-theoretic setting, and proposed a trial and error model for constraint
satisfaction problems. They further applied this idea to investigate the information needed to solve
linear programming in [BCZ15], and to study information diffusion in a social network in [BCD+13].

As mentioned, in [BCZ13] the authors focused on the hidden versions of some specific constraint
satisfaction problems (H–CSPs), whose instances could only be accessed via a revealing oracle. An
algorithm in this setting interacts with this revealing oracle to get information about the input
instance. Each time, the algorithm proposes a candidate solution, a trial, and the validity of this
trial is checked by the oracle. If the trial succeeds, the algorithm is notified that the proposed trial
is already a solution. Otherwise, the algorithm obtains as an error, a violation of some property
corresponding to the instance. The algorithm aims to make effective use of these errors to propose
new trials, and the goal is to minimize the number of trials while keeping in mind the cost for
proposing new trials. When the CSP is already difficult, a computation oracle that solves the
original problem might be allowed. Its use is justified as we are interested in the extra difficulty
caused by the lack of information. Bei, Chen and Zhang considered several natural CSPs in the trial
and error setting, including SAT, Stable Matching, Graph Isomorphism and Group Isomorphism.
While the former two problems in the hidden setting are shown to be of the same difficulty as in
the normal one, the last two cases have substantially increased complexities in the unknown-input
model. They also studied more problems, as well as various aspects of this model, like the query
complexity.

In this paper, following [BCZ13], we initiate a systematic study of the constraint satisfaction
problems in the trial and error model. To achieve this, we first adopt a formal framework for CSPs,
and based on this framework we define three types of revealing oracles. This framework also helps
to clarify and enrich the model of [BCZ13]. Let us make a quick remark that, our CSP model has a
couple of features that may not be quite standard. We will mention some of these in the following,
and discuss these in detail in Section 2.3.

Our main contribution is to develop a transfer theorem for each type of the revealing oracle,
under a broad class of parameters. For any hidden CSP with a specific type of revealing oracle,
the transfer theorem associates another CSP in the normal (unhidden) setting, such that their
difficulties are roughly the same. This in principle transfers the study of hidden CSPs to the study
of CSPs in the normal setting. We also apply transfer theorems to get results for concrete CSPs,
including some problems considered in [BCZ13], for which we usually get much shorter and easier
proofs.

The framework for CSPs, and hidden CSPs. To state our results we describe informally
the framework of CSPs. A CSP S is defined by a finite alphabet JwK = {0,1, . . . ,w − 1} and
by R = {R1, . . . ,Rs}, a set of relations over JwK of some fixed arity q. For a set of variables
V = {x1, . . . , x`}, an instance of S is a set of constraints C = {C1, . . . ,Cm}, where Cj = R(xj1 , . . . , xjq)
for some relation R ∈R and some q-tuple of variables. An assignment a ∈ JwK` satisfies C if it satisfies
every constraint in it.
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Example 1.1. 1SAT: Here w = 2, q = 1, and R = {Id,Neg}, where Id = {1} is the identity relation,
and Neg = {0} is its complement. Thus a constraint is a literal xi or x̄i, and an instance is just a
collection of literals. In case of 3SAT the parameters are w = 2, q = 3 and ∣R∣ = 8. We will keep for
further illustrations 1SAT which is a problem in polynomial time. 3SAT would be a less illustrative
example since the standard problem is already NP-complete.

To allow for more versatility, we may only be interested in those assignments satisfying certain
additional conditions that cannot be (easily) expressed in the framework of constraint satisfaction
problems. This case happens, say when we look for permutations in isomorphism problems, or
when we view monotone graph properties as CSP problems in Section 6. To cover these cases,
our model will also include a subset W ⊆ JwK` as a parameter and we will look for satisfying
assignments from W , whose elements will be refereed to as admissible assignments. That these
admissible assignments can play a notable role (as in Section 6) is a first feature that may be
somewhat surprising.

Recall that in the hidden setting, the algorithm interacts with some revealing oracle by repeat-
edly proposing assignments. If the proposed assignment is not satisfying then the revealing oracle
discloses certain information about some violated constraint. This can be in principle an index of
such a constraint, (the index of) the relation in it, the indices of the variables where this relation is
applied, or any subset of the above. Here we will require that the oracle always reveals the index
of a violated constraint from C. To characterize the choices for the additional information, for any
subset U ⊆ {R,V} we say that an oracle is U-revealing if it also gives out the information corre-
sponding to U . For a CSP problem S we use H–SU to denote the corresponding hidden problem
in the trial and error model with U-revealing oracle.

Example 1.1 continued. Let us suppose that we present an assignment a ∈ {0,1}` for an instance
of the hidden version H–1SATU of 1SAT to the U-revealing oracle. If U = {V} and the oracle reveals
j and i respectively for the violated constraint and the variable in it then we learn that the jth
literal is xi if ai = 0, and x̄i otherwise. If U = {R} and say the oracle reveals j and Id then we
learn that the jth literal is positive. If U = ∅ and the oracle reveals j then we only learn that the
jth literal is either a positive literal corresponding to one of the indices where a is 0, or a negative
literal corresponding to an index where a is 1.

In order to explain the transfer theorem and motivate the operations which create richer CSPs,
we first make a simple observation that H–S{R,V} and S are polynomial time equivalent, when the
relations of S are in P. Indeed, an algorithm for H–S{R,V} can solve S, as the answers of the oracle
can be given by directly checking if the proposed assignment is satisfying. In the other direction,
we repeatedly submit assignments to the oracle. The answer of the oracle fully reveals a (violated)
constraint. Given some subset of constraints we already know, to find a new constraint, we submit
an assignment which satisfies all the known constraints. Such an assignment can be found by the
algorithm for S.

With a weaker oracle this procedure clearly does not work and to compensate, we need stronger
CSPs. In the case of {V}-revealing oracles an answer helps us exclude, for the specified clause, all
those relations which were satisfied at the specified indices of the proposed assignment, but keep
as possibilities all the relations which were violated at those indices. Therefore, to find out more
information about the input, we would like to find a satisfying assignment for a CSP instance whose
corresponding constraint is the union of the violated relations. This naturally brings us to consider
the constraint satisfaction problem ⋃S, the closure by union of S. The relations for ⋃S are from

⋃R, the closure by union of R, which contains relations by taking union over any subset of R.
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The situation with the {R}-revealing oracle is analogous, but here we have to compensate, in
the stronger CSP, for the lack of revealed information about the variable indices. For a relation R
and q-tuple of indices (j1, . . . , jq), we define the `-ary relation R(j1,...,jq) = {a ∈W ∶ (aj1 , . . . , ajq) ∈

R}, and for a set I of q-tuples of indices, we set RI = ⋃(j1,...,jq)∈I R
(j1,...,jq). The arity extension

of S is the constraint satisfaction problem E–S whose relations are from arity extension E–R
= ⋃I{R

I ∶ R ∈ R} of R. Note that the arity extension produces relations whose arities are as
large as the assignment length. This requires us to consider CSPs where the arities of relations can
be functions in e.g. the assignment length. While such CSPs include some natural instances like
systems of linear equalities, this feature may also be unfamiliar to some readers.

The transfer theorem first says that with ⋃S (resp. E–S) we can compensate the information
hidden by a {V}-revealing (resp. {R}-revealing) oracle, that is we can solve H–S{V} (resp. H–S{R}).
In fact, with ⋃E–S we can solve H–S∅. Moreover, perhaps more surprisingly, it says that these
statements also hold in the reverse direction: if we can solve the hidden CSP, we can also solve the
corresponding extended CSP.

Transfer Theorem (informal statement) Let S be a CSP whose parameters are “reasonable”
and whose relations are in P. Then for any promise W on the assignments, the complexities of the
following problems are polynomial time equivalent: (a) H–S{V} and ⋃S, (b) H–S{R} and E–S, (c)
H–S∅ and ⋃E–S.

The precise dependence on the parameters can be found in the theorems of Section 3. Corol-
lary 3.4 highlights the conditions for polynomial equivalence.

Example 1.1 continued. Since ⋃{Id,Neg} = {∅, Id,Neg,{0,1}}, ⋃1SAT has only the two trivial
(always false or always true) relations in addition to the relations in 1SAT. Therefore it can be solved
in polynomial time, and by the the Transfer Theorem H–1SAT{V} is also in P. On the other hand,

for any index set I ⊆ [`], IdI is a disjunct of positive literals with variables from I, and similarly
NegI is a disjunct of negative literals with variables from I. Thus E–1SAT includes MONSAT,
which consists of those instances of SAT where in each clause either every variable is positive, or
every variable is negated. The problem MONSAT is NP-hard by Schaefer’s characterization [Sch78],
and therefore the Transfer Theorem implies that H–1SAT{R} and H–1SAT∅ are also NP-hard.

In a further generalization, we will also consider CSPs and H–CSPs whose instances satisfy some
property. One such property can be repetition freeness meaning that the constraints of an instance
are pairwise distinct. The promise H–CSPs could also be a suitable framework for discussing
certain graph problems on special classes of graphs. For a promise PROM on instances of S we
denote by SPROM the promise problem whose instances are instances of S satisfying PROM. The
problem H–SPROM

{U} is defined in an analogous way from H–S{U}.
It turns out that we can generalize the Transfer Theorem for CSPs with promises on the

instances. We describe this in broad lines for the case of {V}-revealing oracles. Given a promise
PROM on S, the corresponding promise ⋃PROM for ⋃S is defined in a natural way. We say that
a ⋃S-instance C′ includes an S-instance C if for every j ∈ [m], the constraint C ′

j in C′ and the
constraint Cj in C are defined on the same variables, and seen as relations, Cj ⊆ C

′
j . Then ⋃PROM

is the set of instances C′ of ⋃S which include some C ∈ PROM. The concept of an algorithm solving

⋃S⋃PROM has to be relaxed: while we search for a satisfying assignment for those instances which
include a satisfiable instance of PROM, when this is not the case, the algorithm can abort even if
the instance is satisfiable. With this we have:

Transfer Theorem for promise problems (informal statement) Let S be a constraint sat-
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isfaction problem with promise PROM. Then the complexities of H–SPROM
{V} and ⋃S⋃PROM are

polynomial time equivalent when the parameters are “reasonable” and the relations of S are in P.

Example 1.1 continued. Let RF denote the property of being repetition free, in the case of
1SAT this just means that no literal can appear twice in the formula. Then H–1SATRF

∅ , hidden
repetition-free 1SAT with ∅-revealing oracle, is solved in polynomial time. To see this we first
consider X–1SAT, the constraint satisfaction problem whose relations are all `-ary extensions of Id
and Neg. (See Section 2 for a formal definition.) It is quite easy to see that hidden 1SAT with
∅-revealing oracle is essentially the same problem as hidden X–1SAT with {V}-revealing oracle.
Therefore, by the Transfer Theorem we are concerned with ⋃X–1SAT with promise ⋃RF. The
instances satisfying the promise are {C1, . . . ,Cm}, where Cj is a disjunction of literals such that
there exist distinct literals z1, . . . , zm, with zj ∈ Cj . It turns out that these specific instances of
SAT can be solved in polynomial time. The basic idea is that we can apply a maximum matching
algorithm, and only output a solution if we can select m pairwise different variables xi1 , . . . , xim
such that either xij or xij is in Cj .

Applications of transfer theorems. Since NP-hard problems obviously remain NP-hard in
the hidden setting (without access to an NP oracle), we investigate the complexity of various
polynomial-time solvable CSPs. We first apply the Transfer Theorem when there is no promise on
the instances. We categorize the hidden CSPs depending on the type of the revealing oracle.

With constraint and variable index revealing oracles, we obtain results on several interesting
families of CSPs including the exact-Unique Games Problem (cf. Section 4), equality to a member of
a fixed class of graphs. Interestingly, certain CSPs, like 2SAT and the exact-Unique Game problem
on alphabet size 2 remain in P , while some other CSPs like the exact-Unique Game problem on
alphabet size ≥ 3, and equality to some specific graph, such as k-cliques, become NP-hard in this
hidden input setting. The latter problem is just the Graph Isomorphism problem considered in
[BCZ12, Theorem 13], whose proof, with the help of the Transfer Theorem, becomes very simple.

With constraint and relation index revealing oracles, we show that if the arity and the alphabet
size are constant, any CSP satisfying certain modest requirement becomes NP-hard. To be specific,
we require that that for every element α of the alphabet, the collection R contains a relation which
is violated by the tuple (α, . . . , α). This can be justified by observing that otherwise it would be
easy to find a satisfying assignment for any instance using O(w) trials.

We then study various monotone graph properties like Spanning Tree, Cycle Cover, etc.. We
define a general framework to represent variants of monotone graph property problems as H–CSPs.
Since in this framework only one relation is present, the relation index is not a concern. We deal
with the constraint index revealing oracle, which is equivalent to the constraint and relation index
revealing oracle in this case, and prove that the problems become NP-hard. This framework also
naturally extends to directed graphs.

Finally, we investigate hidden CSPs with promises on the instances. We first consider the
repetition freeness promise, as exhibited by the 1SAT example as above. Though the hidden
repetition free 1SAT problem becomes solvable in polynomial time, 2SAT is still NP-hard. The
group isomorphism problem can also be cast in this framework, and we give a simplified proof of
[BCZ13, Theorem 11]: to compute an explicit isomorphism of the hidden group with Zp is NP-hard.

Comparisons with [BCZ13]. We now compare our framework and results with those in [BCZ13]
explicitly. Recall that we defined three revealing oracles, ∅-, {V}-, and {R}-revealing oracles. The
∅-revealing oracle was the original setting discussed in [BCZ13]. The {V}- and {R}-revealing oracles
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are new, so are the results about specific CSPs in the setting of these two oracles. For the ∅-revealing
oracle, both [BCZ13] and this paper discussed SAT and Group Isomorphism. Isomorphisms of two
graphs and isomorphisms of a graph with a clique were studied in the report [BCZ12]. Here we
prove a hardness result for the latter problem. The paper [BCZ13] further considered several other
problems including stable matching, and Nash Equilibrium. On the other hand the monotone graph
properties (Section 6) and certain promise problems (Section 7) are studied only in this paper.

Bei, Chen and Zhang also gave bounds on the trial complexity of some of the problems considered
in [BCZ13], including stable matching and SAT. (The trial complexity measures the number of
oracle calls to solve them in the hidden model). Although the algorithms outlined in the proofs for
our transfer theorems provide generic upper bounds on the trial complexity, giving tighter bounds
would be beyond the focus of the present paper.

Organization. In Section 2 we formally describe the model of CSPs, and hidden CSPs. In
Section 3, the transfer theorems are stated and proved. Section 4, 5, and 6 contain the applications
of the main theorems in the case of {V}-revealing oracle, {R}-revealing oracle, and monotone graph
properties, respectively. Finally in Section 7 we present the results for hidden promise CSPs.

2 Preliminaries

2.1 The model of constraint satisfaction problems

For a positive integer k, let [k] denote the set {1, . . . , k}, and let JkK = {0,1, . . . , k−1}. A constraint
satisfaction problem, (CSP) S, is specified by its set of parameters and its type, both defined for
every positive integer n.

The parameters. The parameters are the alphabet size w(n), the assignment length `(n), the
set of (admissible) assignments W (n) ⊆ Jw(n)K`(n), the arity q(n), and the number of relations
s(n). To simplify notations, we often omit n from the parameters, and just write w, `,W, q and s.

We suppose that the parameters, as functions of n, can be computed in time polynomial in
n. In many cases (like in classical CSPs) n coincides with `, the assignment length but for e.g.
(monotone) graph properties the n is the number of vertices while the assignment length is (

n
2
),

the number of possible edges.

The type. For a sequence J = (j1, . . . , jq) of q distinct indices we denote WJ the projection of W
to the coordinates from J : WJ = {(v1, . . . , vq) ∈ [w]q ∶ ∃(w1, . . . ,w`) ∈W with wji = vi}. We suppose
that WJ does not depend on the choice of J , that is, for every J consisting of q distinct indices we
have WJ =Wq ∶= {u ∈ JwKq ∶ uv ∈W for some v ∈ JwK`−q}. This condition holds trivially for most
cases, and for other cases (e.g. CSPs related to graphs), holds due certain symmetry condition
there (e.g. graph properties are invariant for isomorphic graphs). A q-ary relation is R ⊆Wq. For
b in Wq, if b ∈ R, we sometimes write R(b) = T, and similarly for b /∈ R we write R(b) = F. The
type of S is a set of q-ary relations Rn = {R1, . . . ,Rs}, where Rk ⊆Wq, for every k ∈ [s]. As for the
parameters, we usually just write R. Observe that the type of a CSP automatically defines among
its parameters the arity and the number of relations.

We assume that the alphabet set and the relation set have succinct representations. Specifically,
every letter and relation can be encoded by strings over {0,1} of length polynomial in n, and given
such a string, we can decide whether it is a valid letter or relation efficiently. We also suppose
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the existence of Turing machines that, given n, words b ∈ JwKq, v ∈ JwK`, k ∈ [s], decide whether
v ∈W , whether b ∈Wq and compute Rk(b) if b ∈Wq. We further introduce the following notations.
For a relation R let comp(R) be the time complexity of deciding the membership of a tuple in
R, and for a set of relations R let comp(R) be maxR∈R comp(R). We denote by dim(R), the
dimension of R, which is the maximum of the integers d such that there exists R1, . . . ,Rd ∈R with
R1 ⊊ R2 ⊊ . . . ⊊ Rd. In other words, dim(R) is the length of the longest chain of relations (for
inclusion) in R.

The instances. We set [`](q) = {(j1, . . . , jq) ∈ [`]q ∶ ∣{j1, . . . , jq}∣ = q}, that is [`](q) denotes the
set of distinct q-tuples from [`]. An instance of S is given by a set of m constraints C = {C1, . . . ,Cm}

over a set V = {x1, . . . , x`} of variables, where the constraint Cj is Rkj(xj1 , . . . , xjq) for some kj ∈ [s]

and (j1, . . . , jq) ∈ [`](q). We say that an assignment a ∈ W satisfies Cj = Rkj(xj1 , . . . , xjq) if
Rkj(aj1 , . . . , ajq) = T. An assignment satisfies C if it satisfies all its constraints. The size of an
instance is n +m(log s + q log `) + ` logw which includes the length of the description of C and the
length of the assignments. In all our applications the instance size will be polynomial in n. A
solution of C is a satisfying assignment if there exists any, and no otherwise.

Note that the size of an instance does not count the descriptions of the relations and the
admissible assignments. This is because the latter information is thought of as the meta data of a
CSP, and is known to the algorithm.

Operations creating new CSPs from old CSPs. We also introduce two new operations which
create richer sets of relations from a relation set. For a given CSP S, these richer sets of relations
derived from the type of S, will be the types of harder CSPs which turn out to be equivalent to
various hidden variants of S. The first operation is standard. We denote by ⋃R the closure of R
by the union operation, that is ⋃R = {⋃R∈R′ R ∶ R′ ⊆ R}. We define the (closure by) union of S
as the constraint satisfaction problem ⋃S whose type is ⋃R, and whose other parameters are the
same as those of S. We assume that a relation R in ⋃R is represented a list of indices for relations
from R whose union is R. We remark that dim(⋃R) ≤ ∣R∣.

For a relation R ∈ R and for (j1, . . . , jq) ∈ [`](q), we define the `-ary relation R(j1,...,jq) =

{a ∈ W ∶ (aj1 , . . . , ajq) ∈ R}, and the arity extension of R, as X–R = {R(j1,...,jq) ∶ R ∈

R and (j1, . . . , jq) ∈ [`](q)}. The set X–R contains the natural extensions of relations in R to
`-ary relations, where the extensions of the same relation are distinguished according to the choice
of the q-tuple where the assignment is evaluated. The arity extension of S is the constraint satis-
faction problem X–S whose type is X–R, and whose other parameters are otherwise the same as
those of S. We assume that a relation R in X–R is represented by the index of a relation in R and
a sequence from [`](q).

The combination of these two operations applied to R gives ⋃ X–R, the union of the arity
extension of R, which contains arbitrary unions of arity extended relations. It will be useful to
consider also restricting the unions to extensions coming from the same base relation. For I ⊆ [`](q),
we set RI = ⋃(j1,...,jq)∈I R

(j1,...,jq), and we define E–R = {RI ∶ R ∈ R and I ⊆ [`](q)}. Relations
from ⋃ X–R are assumed to be represented as a sequence of pairs, each consisting of an index of
a relation in R and an element of [`](q).

The restricted union of arity extension of S is the constraint satisfaction problem E–S whose
type is E–R, and whose other parameters are otherwise the same as those of S. Observe that E–R
⊆ ⋃ X–R = ⋃ E–R.
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2.2 Hidden CSP in the trial and error model

Suppose that we want to solve a CSP problem S whose parameters and type are known to us,
but for the instance C, we are explicitly given only n and the number of constraints m. The
instance is otherwise specified by a revealing oracle V for C which can be used by an algorithm to
receive information about the constraints in C. The algorithm can propose a ∈ W to the oracle
which is conceived as its guess for a satisfying assignment. If a indeed satisfies C then V answers
yes. Otherwise there exists some violated constraint Cj = Rkj(xj1 , . . . , xjq), and the oracle has to
reveal some information about that. We will require that the oracle always reveals j, the index
of the constraint Cj in C, but in addition, it can also make further disclosures. It can be the
relation Rkj in R (or equivalently its index kj); it can also be (j1, . . . , jq), the q-tuple of indices
of the ordered variables xj1 , . . . , xjq in V; or both of these. To characterize the choices for the
additional information, for any subset U ⊆ {R,V}, we require that a U-revealing oracle VU give
out the information corresponding to {C}⋃U ⊆ {C,R,V}. Thus for example a ∅-revealing oracle
V∅ reveals the index j of some violated constraint but nothing else, whereas a V-revealing oracle
V{V} also reveals the indices (j1, . . . , jq) of the variables of the relation in the clause Cj , but not
the name of the relation.

Analogously, for every CSP S, and for every U ⊆ {R,V}, we define the hidden constraint
satisfaction problem (H–CSP) with U-revealing oracle H–SU whose parameters and type are those
of S, but whose instances are specified by a U-revealing oracle. An algorithm solves the problem
H–SU if for all n,m, for every instance C for S, specified by any U-revealing oracle for C, it outputs
a satisfying assignment if there exists any, and no otherwise. The complexity of an algorithm for
H–SU is the number of steps in the worst case over all inputs and all U-revealing oracles, where a
query to the oracle is counted as one step.

2.3 Discussion on the model

Our CSP model as described in Section 2.1 includes the usual model of CSPs, with a few additional
features. Recall that we defined the alphabet size w(n), the arity q(n), and the number of relations
s(n) to be functions in n.1 The most common case is of course when these functions are just
constant. We allow them to be functions for the following two reasons. Firstly, this allows us
to include a couple of natural problems, like systems of linear equations over a finite field (q(n)
and s(n) are not constant; see Claim 5.2) and hyperplane non-cover (w(n) is not constant; see
Section 4). Secondly, and more importantly, the arity extension produces relations whose arities
q are the same as the input length `, which then depends on n. This also makes the number of
relations dependent on n, and the union operator may introduce even more new relations.

We see from above that, allowing w, q, and s to be functions in n is not only flexible, but also
necessary for our purposes. This may cause some problems though, if we do not pose any constraint
on such functions. We remedy these as follows, as already described in in Section 2.1. Firstly, we
assume that all these functions can be computed in time polynomial in n. Secondly, we assume
that the alphabet set and the relation set have succinct representations, and that membership of
tuples in every relation R can be decided in time comp(R).

While the above measures may look somewhat inconvenient, in all concrete CSPs considered in
this paper, they are satisfied in a straightforward manner. In most cases, w(n) is polynomial in n;
the only exception is hyperplane non-cover in Section 4. The non-constant arity situation is mostly

1That the assignment length ` is a function of n is, as far as we can see, quite standard in the literature.

7



caused by arity extensions, in which case the new arity is just the assignment length `, and the
number of new relations can be computed efficiently easily. The only problem with non-constant
arities, not caused by arity extensions, is systems of linear questions as studied in Claim 5.2. The
relations created by the union operation or the arity extension operation have natural succinct
representations, and the number of such relations can be easily computed. Furthermore, starting
with a set of relations R with comp(R), whether an admissible assignment v ∈W satisfies a relation
in ⋃ X–R involving I ⊆ [`](q) can be computed in time O(∣I ∣ ⋅ ∣R∣ ⋅ comp(R)).

Last but not least, the set of admissible assignments W can also play a crucial role. For
example in Section 6 we discuss monotone graph properties and the admissible assignments are
minimal graphs satisfying a particular graph property. This set W may cause similar problems if
we do not pose any conditions on it, so we require that the membership of W can be computed.
For all cases in this paper this is satisfied trivially.

3 Transfer Theorems for Hidden CSPs

In this section we state and prove our transfer theorems between H–CSPs and CSPs with extended
types.

Theorem 3.1. (a) If ⋃S is solvable in time T then H–S{V} is solvable in time O((T+s×comp(R))×

m ×min{dim(⋃R), ∣Wq ∣}).
(b) If H–S{V} is solvable in time T then ⋃S is solvable in time O(T ×m × comp(⋃R)).

We stress that in the theorem above instances of H–S{V} consisting of m relations correspond
to instances of ⋃S also consisting of m relations.

Proof. We first prove (a). Let A be an algorithm which solves ⋃S in time T . We define an
algorithm B for H–S{V}. The algorithm will repeatedly call A, until it finds a satisfying assignment
or reaches the conclusion no. Here is a brief and somewhat informal description.

Initialization. Set A1 = A2 = . . . = Am = ∅ and let I1, . . . , Im be arbitrary q-tuples of variable
indices.

Loop. (Repeat the following steps until termination.)

– Set Cj to be the union of the relations fromR violated by every tuple in Aj (j = 1, . . . ,m).

– Call algorithm A for {C1, . . . ,Cm}. Return no if A returned no. Otherwise let a =

(a1, . . . , a`) be the assignment returned by A.

– Call oracle V with assignment a. Return a if V accepted it. Otherwise let j and I =

(j1, . . . , jq) be the constraint index resp. the variable index array revealed by V.

– Set Ij = I, add a′ = (aj1 , . . . , ajq) to Aj and continue loop.

In the following more detailed description, we indicate the actual repetition number in upper indices.
The instance Ct = {Ct1, . . . ,C

t
m} of the tth call of A is defined as Ctj = ⋃R∈R∶R∩At

j=∅R(xjt1 , . . . , xjtq)

where Atj ⊆Wq and Ij = (jt1, . . . , j
t
q) ∈ [`](q), for j ∈ [m], are determined successively by B. The set

Atj reflects the algorithm’s knowledge after t steps: it contains those q-tuples which, at that instant,

are known to be violating the jth constraint. Initially A1
j = ∅ and (j1

1 , . . . , j
1
q ) is arbitrary. If the
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output of A for Ct is no then B outputs no. If the output of A for Ct is a ∈ W then B submits
a to the {V}-revealing oracle V. If V answers yes then B outputs a. If the oracle does not find
a satisfying, and reveals j and (j1, . . . , jq) about the violated constraint, then B does not change
Ati and (it1, . . . , i

t
q) for i ≠ j, but sets At+1

j = Atj ⋃{(aj1 , . . . , ajq)}, and (jt+1
1 , . . . , jt+1

q ) = (j1, . . . , jq).
Observe that the q-tuple for the jth constraint is changed at most once, the first time when the
revealing oracle gives the index of the jth constraint.

To prove that the algorithm correctly solves H–S{V}, let C = {C1, . . . ,Cm} be an instance of
S and let V be any {V}-revealing oracle for C. We have to show that if B answers no then C
is unsatisfiable. If B answers no, then for some t, the tth call of A resulted in output no. By
construction, Atj and (jt1, . . . , j

t
q) are such that for every j ∈ [m], if R ∩Atj ≠ ∅ then the relation of

Cj can’t be R(xjt1 , . . . , xjtq). Indeed, if Cj = R(xjt1 , . . . , xjtq) and b ∈ R ∩Atj then at the call when b

was added to Atj the oracle’s answer is incorrect. Therefore all possible remaining relations for Cjs

are included in Ctj , and since Ct is unsatisfiable, so is C.

For the complexity of the algorithm let us remark that if for some j and t, the constraint Ctj
is the empty relation then B stops since Ct becomes unsatisfiable. This happens in particular if
Atj =Wq. Since for every call to A one new element is added to one of the Atj and at least one new

relation in R is excluded from Ctj , the number of calls is upper bounded by m×min{dim(R), ∣Wq ∣}.
To compute a new constraint, some number of relations in R have to be computed on a new
argument, which can be done in time s × comp(R).

We now prove (b). Let A be an algorithm which solves H–S{V} in time T . Without loss of
generality we suppose that A only outputs a satisfying assignment a after submitting it to the
verifying oracle. We define an algorithm B for ⋃S. Let C = {C1, . . . ,Cm} be an instance of ⋃S
where for j ∈ [m], Cj = ⋃R∈Rj

R(xj1 , . . . , xjq), for some Rj ⊆ R and Ij = (j1, . . . , jq) ∈ [`](q). The
algorithm B runs A, and outputs no whenever A outputs no. During A’s run B simulates a
{V}-revealing oracle V for A. Here is rather informal description of B.

Initialization. Set A1 = A2 = . . . = Am = ∅ and run A until it calls oracle V first time.

Loop. (Repeat the following steps until termination.)

– Let a = (a1, . . . , a`) be the assignment with which A calls V. Check if a satisfies C.
Return a if yes.

– Choose index j such that a violates Cj and add tuple (aj1 , . . . , ajq) to Aj .

– Run subsequent steps of A (with j and (j1, . . . , jq) as revealed information) until the
next oracle call.

Now we give more details about how B implements V. Simultaneously with V’s description, for
t ≥ 1, we also specify instances Ct = {Ct1, . . . ,C

t
m} of ⋃S which will be used in the proof of correctness

of the algorithm. For j ∈ [m], the constraints of Ct are defined as Ctj = ⋃R∈Rj ∶R∩At
j=∅R(xj1 , . . . , xjq),

where the sets Atj ⊆Wq are determined by the result of the tth call to the oracle. Initially A0
j = ∅.

For the tth request a ∈ W , the algorithm B checks if a satisfies C. If it is the case then V returns
yes and B outputs a. Otherwise there exists j ∈ [m] such that a violates Cj , and the answer of
the oracle is j and (j1, . . . , jq) (where j can be chosen arbitrarily among the violated constraints,
if there are several). Observe that this is a legitimate oracle for any instance of H–S{V} whose jth
constraint is arbitrarily chosen from Rj . We define Atj = A

t−1
j ⋃{(aj1 , . . . , ajq)}, and for i ≠ j we set

Ati = A
t−1
i .
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To show the correctness of B, we prove that whenever A outputs no, the instance C is unsatis-
fiable. Let us suppose that A made t queries before outputting no. An algorithm for H–S{V} can
output no only if all possible instances of S which are compatible with the answers received from
the oracle are unsatisfiable. In such an instance the relation of the jth constraint has necessar-
ily empty intersection with Atj , therefore we can deduce that the ⋃S instance Ct is unsatisfiable.

It also holds that Atj ⋂(⋃R∈Rj
R) = ∅ for every j ∈ [m], since if b ∈ Atj ⋂(⋃R∈Rj

R) then the re-

quest to the oracle that caused b to be added to Atj wouldn’t violate the jth constraint. Thus

⋃R∈Rj
R ⊆ ⋃R∈R∶R∩At

j=∅R, and C is unsatisfiable.

For the complexity analysis we observe that during the algorithm, for every query to the oracle
and for every constraint, one relation in ⋃R is evaluated.

Theorem 3.2. (a) If E–S is solvable in time T then H–S{R} is solvable in time O((T + ∣[`](q)∣ ×

comp(R)) ×m × ∣[`](q)∣).
(b) If H–S{R} is solvable in time T then E–S is solvable in time O(T ×m × comp(E–R)).

Like above, instances of H–S{R} consisting of m relations correspond to instances of E–S also
consisting of m relations.

Proof. The proof is similar to the proof of Theorem 3.1. We first prove (a). Let A be an algorithm
which solves E–S in time T . We define an algorithm B for H–S{R}. The algorithm will repeatedly
call A, until it finds a satisfying assignment or reaches the conclusion no. Since each constraint
of E–S is an `-ary relation, we can identify it with the relation itself. Here is again a brief and
informal description of B.

Initialization. Set A1 = A2 = . . . = Am = ∅ and C1 = C2 = . . . = Cm =W .

Loop. (Repeat the following steps until termination.)

– Call A for (C1, . . . ,Cm). Return no if A returned no. Otherwise let a = (a1, . . . , a`) be
the assignment output by A.

– Call oracle V with assignment a. Return a if V accepted it. Otherwise let j and R be
the constraint index resp. the relation revealed by V.

– Add a = (aj1 , . . . , aj`) to Aj , let I be the set of the variable index arrays (j1, . . . , jq) such
that R(j1,...,jq) is violated by every tuple in Aj , update Cj to be RI , the union of the
relations R(j1,...,jq) over (j1, . . . , jq) ∈ I and continue loop.

In the more detailed description and analysis we again apply repetition indices. For the first
call C1 = {C1

1 , . . . ,C
1
m} we set C1

j = W . For t > 1, the instance of the tth call will be defined

recursively via Atj ⊆ W and Itj ⊆ [`](q), for j ∈ [m], where initially we set A1
1 = . . . = A1

m = ∅ and

I1
1 = . . . = I1

m = [`](q). Here the set Itj reflects the algorithm’s knowledge after t steps: it contains
those q-tuples of indices which, at that instant, can still be the variable indices of the jth constraint.
If the output of A for Ct−1 is no then B outputs no. If the output of A for Ct−1 is a ∈ W then B
submits a to the {R}-revealing oracle V. If V answers yes then B outputs a. If the oracle does not
find a satisfying, and reveals j and R ∈ R about the violated constraint, then B does not change
At−1
i , It−1

i and Ct−1
i for i ≠ j, but sets Atj = A

t−1
j ⋃{a} and Itj = {(j1, . . . , jq) ∶ Atj ⋂R

(j1,...,jq) = ∅}.

Finally we define Ctj = R
Itj .
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To prove that the algorithm correctly solves H–S{R}, let C = {C1, . . . ,Cm} be an instance of
S and let V be any {R}-revealing oracle for C. We have to show that if B answers no then C is
unsatisfiable. If B answers no then for some t, the tth call of A resulted in output no. We claim
that for every constraint Cj whose relation R has been already revealed, if R(j1,...,jq) ∩Atj ≠ ∅ then

Cj can not be R(xj1 , . . . , xjq). Indeed, if Cj = R
(j1,...,jq)(xj1 , . . . , xjq) and a ∈ R ∩ Atj then at the

call when a was added to Atj the oracle answer is incorrect. Therefore Ctj is the union, over all still

possible variable index q-tuples (j1, . . . , jq), of R(j1,...,jq). Since Ct is unsatisfiable, so is C.
For the complexity of the algorithm let us remark that if for some j and t, the constraint Ctj is

the empty relation then B stops since Ct becomes unsatisfiable. This happens in particular if Itj = ∅.

Since for every call to A, for some j, the size of Itj decreases by at least one, the total number of

calls is upper bounded by m× ∣[`](q)∣.To compute a new constraints, at most ∣[`](q)∣ relations from
R evaluated in a new argument. Therefore the overall complexity is as claimed.

We now prove (b). Let A be an algorithm which solves H–S{R} in time T . Without loss of
generality we suppose that A only outputs a satisfying assignment a after submitting it to the
verifying oracle. We define an algorithm B for E–S. Let C = {C1, . . . ,Cm} be an instance of E–S

where for j ∈ [m], we have Cj = R
Ij
kj

for some Rkj ∈R and Ij ⊆ [`](q). The algorithm B runs A, and

outputs no whenever A outputs no. During A’s run B simulates an {R}-revealing oracle V for A.
Here is an informal description of B.

Initialization. Set A1 = A2 = . . . = Am = ∅. Run A until it calls V first time.

Loop. (Repeat the following steps until termination.)

– Let a be the assignment that A submits to V. Return a if it satisfies C.

– Choose and index j such that a violates Cj .

– Run subsequent steps of A with revealed information j and Rkj until the next oracle
call.

Now we give more details. Simultaneously with V’s description, for t ≥ 1, we also specify
instances Ct = {Ct1, . . . ,C

t
m} of E–S which will be used in the proof of correctness of the algorithm.

Again we identify the `-ary constraints with their relations. The constraints of Ct are set to be

Ctj = R
Itj
kj

, where the sets Itj ⊆ [`](q) are defined as Itj = {(j1, . . . , jq) ∶ Atj ⋂R
(j1,...,jq)
kj

= ∅}, and the

sets Atj ⊆ W are determined by the result of the tth call to the oracle. Initially A0
j = ∅. For the

tth request a ∈W , the algorithm B checks if a satisfies C. If it is the case then V returns a and B
outputs a. Otherwise there exists j ∈ [m] such that a violates Cj , and the answer of the oracle is j
and Rkj . Observe that this is a legitimate oracle for any instance of H–S{R} whose jth constraint
is arbitrarily chosen from {Rkj(xj1 , . . . , xjq) ∶ (j1, . . . , jq) ∈ Ij}. We define Atj = A

t−1
j ⋃{a}, and for

i ≠ j we set Ati = A
t−1
i .

To show the correctness of B, we prove that whenever A outputs no, the instance C is unsatis-
fiable. Let us suppose that A made t queries before outputting no. An algorithm for H–S{R} can
output no only of all possible instances of S which are compatible with the answers received from
the oracle are unsatisfiable. In such an instance the jth constraint has necessarily empty intersec-
tion with Atj , therefore we can deduce that the E–S instance Ct is unsatisfiable. It also holds that

Atj ⋂Cj = ∅ for every j ∈ [m], since if a ∈ Atj ⋂Cj then the request to the oracle that caused a to

be added to Atj wouldn’t violate the jth constraint. Thus Cj ⊆ C
t
j , and C is unsatisfiable.
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For the complexity analysis we just have to observe that during the algorithm, for every query
to the oracle and for every constraint, one relation in E–R is evaluated.

Theorem 3.3. (a) If ⋃X–S is solvable in time T then H–S∅ is solvable in time O((T +s× `!
(`−q)! ×

comp(R)) ×m × dim(⋃X–R)).
(b) If H–S∅ is solvable in time T then ⋃X–S is solvable in time O(T ×m × comp(⋃X–R)).

Again, instances of H–S∅ consisting of m relations correspond to instances of ⋃X–(S) also
consisting of m relations.

Proof. Apply Theorem 3.1 to X–S and observe that H–X–S{V} and H–S∅ are essentially the same
in the sense that an algorithm solving one of the problems also solves the other one. Indeed,
the variable index disclosure of the {V}-revealing oracle is pointless since the relations in X–S
involve all variables. Moreover, the map sending a constraint R(xj1 , . . . xjq) of S to the constraint

R(j1,...,jq)(x1, . . . x`) of X–S is a bijection which preserves satisfying assignments.

Corollary 3.4. Let comp(R) be polynomial. Then the complexities of the following problems are
polynomial time equivalent: (a) H–S{V} and ⋃S if the number of relations s is constant, (b) H–S{R}
and E–S if the arity q is constant, (c) H–S∅ and ⋃X–S if both s and q are constant.

The polynomial time equivalences of Theorems 3.1, 3.2, 3.3 and Corollary 3.4 remain true when
the algorithms have access to the same computational oracle. Therefore, we get generic easiness
results for H–CSPs under an NP oracle.

We also remark that the number of iterations in algorithms for the transfer theorems give
generic upper bounds on the trial complexity of the hidden CSPs In the constraint index and
variable revealing model this bound is m×min{dim⋃R, ∣Wq ∣}, in the constraint index and relation
revealing model m × [`](q) oracle calls are sufficient, while in the constraint index revealing model
we obtain the bound m × dim⋃X −R.

4 Constraint-index and Variables Revealing Oracle

In this section, we present some applications of our transfer theorem when the index of the constraint
and the variables participating in that constraint are revealed. We consider the following CSPs. In
the descriptions below, unless explicitly specified, W is the full domain [w]`.

1. Deltas on Triplets (∆): Formally, w = 2, q = 3, and R = {Rabc ∶ {0,1}3 → {T,F} ∣ a, b, c ∈
{0,1}}, where Rabc(x, y, z) ∶= (x = a) ∧ (y = b) ∧ (z = c).

2. Hyperplane Non-Cover (HYP−NC): Let p be a prime, and Fp be the field of size p. Denote
V = FNp , and S = {all hyperplanes in FNp }. Informally, given a set of hyperplanes S′ ⊆ S, the

problem asks to decide if there exists v ∈ FNp not covered by these hyperplanes. Formally,

` = 1, q = 1, w = pN , W = V and RS = {RH ∣ H ∈ S} where RH(a) evaluates to T if and only
if a ∉H.

3. Arbitrary sets of binary relations on Boolean alphabet, (in particular, 2SAT): Formally for
2SAT, we have w = 2, q = 2, and R = {RT ,RF ,Ra,Rb,R¬a,R¬b,Ra∨b,Ra∨¬b,R¬a∨b,R¬a∨¬b},
where for (α,β) ∈ {T,F}q, RT (α,β) ∶= T, RF (α,β) ∶= F, Ra(α,β) ∶= α, Rb(α,β) ∶= β,
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R¬a(α,β) ∶= ¬α, R¬b(α,β) ∶= ¬β, Ra∨b(α,β) ∶= α ∨ β, Ra∨¬b(α,β) ∶= α ∨ ¬β,
R¬a∨b(α,β) ∶= ¬α ∨ β, R¬a∨¬b(α,β) ∶= ¬α ∨ β.

4. Exact-Unique Game Problem (UG[k]): Given an undirected graph, G = (V,E), and a permu-
tation πe ∶ JkK→ JkK for every edge e ∈ E, the goal is to decide if one can assign labels αv ∈ JkK
for every vertex v ∈ V s.t. for every edge e = {u, v} ∈ E with u < v we have πe(αu) = αv.
Formally: w = k, q = 2 and R = {π ∶ JkK→ JkK ∣ π is a permutation}.

5. k-Clique Isomorphism (kCLQ–ISO): Given an undirected graph G = (V,E), determine if there
exists a permutation π on [n] s.t.

(1) ∀(i, j) ∈ E, R≤k(π(i), π(j));

(2) ∀(i, j) ∉ E, ¬R≤k(π(i), π(j)).

Formally, w = n, q = 2, ` = n, W is the set of n-tuples of integers from [n] which define
permutations on [n], and R = {R≤k,¬R≤k}, where R≤k(α,β) ∶= T ⇐⇒ α ≤ k & β ≤ k.

6. Equality to some member in a fixed class of graphs (EQK): For a fixed class K of graphs on

n vertices variables, we denote by PK ∶ {0,1}(
n
2
) → {T,F} the property of being equal to a

graph from K. We assume that graphs are represented by tuples from {0,1}(
n
2
). Formally,

W = K, w = 2, q = 1, ` = (
n
2
), and R = {Id,Neg}. Here we assume that membership in K can

be tested in polynomial time. We will consider the following special cases:

• Equality to k-Clique (EQkCLQ): Given a graph, decide if it is equal to a k-clique.

• Equality to Hamiltonian Cycle (EQHAMC): Decide if G is a cycle on all n vertices.

• Equality to Spanning Tree (EQST): Given a graph, decide if it is a spanning tree.

We have seen in the Introduction that the hidden version of 1SAT in the constraint index
revealing model is NP-hard. Here we will show that if the variables are also revealed, even the
hidden version of 2SAT becomes solvable in polynomial time. Deltas on triplets will provide a
simple example of ternary Boolean constraints for which the “normal” satisfaction problem can
be solved in polynomial time but the hidden version becomes NP-hard. Hyperplane Non-Cover
over the two-element field is equivalent to a system of linear equations. Interestingly, its hidden
version will turn out to be NP-hard. The unique game problem is a prominent CSP problem, whose
approximate version has been studied intensively since [Kho02]. It is known that the exact version is
in P for any k, and we show that it is only easy in the trial and error model for k = 2. Isomorphisms
with cliques is a problem considered in [BCZ12]. We included it to demonstrate how easy to prove
hardness of its hidden version based on the transfer theorem. Also note that our hardness result is
somewhat stronger than that of [BCZ12] as the latter is proved for the constraint index revealing
model while here more information is revealed. A formally different, although logically equivalent
formulation of the same problem is equality with a k-clique. The hardness result can be extended
to equalities with other distinguished graphs, like Hamiltonian circles. However, equality with
spanning trees will remain easy.

Theorem 4.1. The following problems can be solved in polynomial time: (a) H–2SAT{V}, (b)
H–UG[2]{V}, (c) H–EQST{V}.
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Theorem 4.2. The following are NP-hard: (a) H–∆{V}, (b) H–HYP−NC{V}, (c) H–UG[k]{V}
for k ≥ 3, (d) H–kCLQ–ISO{V} for 0.1n ≤ k ≤ 0.9n, (e) H–EQkCLQ{V} for 0.1n ≤ k ≤ 0.9n, (f)
H–EQHAMC{V}.

Proof of Theorem 4.1. We show that the following problems in the hidden model with the con-
straint and variable index revealing oracle are solvable in polynomial time.

(a) Arbitrary binary Boolean relations (H–2SAT{V})
In the case of 2SAT, taking the union of any two relations in R2SAT is equivalent to the
disjunction of the two boolean expressions the relations signify. For example, Ra⋃Rb = Ra∨b
and the union remains in R2SAT. Hence, ⋃2SAT = 2SAT, which is in P. Therefore, from
Theorem 3.1(a), H–2SAT{V} is also in P.

The above statement can be extended to an arbitrary set R′ of binary relations as follows. Let
R′′ stand for the set of all binary relations in Boolean variables. We trivially have ⋃R′ ⊆R′′,
therefore an instance of H–2SAT{V} can actually be described by a conjunction of the form

⋀
m
k=1Rk(xik , xjk) where Rk is a binary relation. Expressing each Rk by a Boolean formula in

conjunctive normal form, we obtain an instance of 2SAT consisting of O(m) clauses, which
can be solved in polynomial time.

(b) Unique Games (H–UG[2]{V})
UG[2] is a CSP with w = 2, q = 2, and R = {π ∶ J2K → J2K ∣ π is a permutation}. The only
permutations in RUG[2] enforce that either αu = αv or αu = αv⊕1 for an edge e = (u, v). Both
of these relations can be represented as binary boolean relations. Hence, UG[2] is an instance
of 2SAT and from Theorem 4.1(a), H–UG[2]{V} is in P.

(c) Equality/Isomorphism to a member in a fixed class of graphs
We define the H–EQK{V} problem in more detail. Let K be a class of graphs on n vertices.

We define PK ∶ {0,1}(
n
2
) → {T,F} as the graph property of being equal to a graph from K.

Correspondingly, W = K.

Formally, for PK we consider the CSP EQK with w = 2, q = 1, W = {α ∈ {0,1}(
n
2
) ∣ α ∈

K}, ` = (
n
2
), and R = {Id,¬}. Given a graph instance G = (V,E) in this model, the (

n
2
)

constraints for G2 are such that Ce = Id(αe) for e ∈ E and Ce = ¬(αe) otherwise. This implies
that ⋃R = {Id,¬,T} and instances of ⋃EQK are parametrized with graphs (sets of edges)
E1 ⊆ E2. Here E2 is the the set of unordered pairs e for which the constraint is either Id
or T while E1 consists of pairs for which the constraint is Id. The ⋃EQK-problem becomes
then: given sets E1,E2 such that E1 ⊆ E2, does there exist a graph G′ = (V,E′) ∈ K such that
E1 ⊆ E

′ ⊆ E2?

From Theorem 3.1, the complexity of H–EQK, can be analyzed by considering the complexity
of ⋃EQK. Below, we analyze the complexity of ⋃EQK when K is the class of spanning trees
on n vertices.

Remark 4.3. For any K, if we take E1 = ∅, then solving EQK becomes equivalent to finding
out if there exists G ∈ K which is a subgraph of E2.

Remark 4.4. Note that if we assume that K is the set of all graphs isomorphic to some G0

and E1 = E2 as arbitrary graphs on n vertices, then solving EQK becomes equivalent to finding
out if E2 is isomorphic to G0.
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Proof for Equality to a Spanning Tree (H–EQST{V}): Here, K is the set of all possible spanning
trees on n vertices and E1 without loss of generality is a forest F . E2 is any arbitrary graph
on n vertices containing E1. In this case, the ⋃EQK problem becomes equivalent to finding
a spanning tree on E2 which also contains the forest F . This problem is in P which implies
that the H–EQST{V} problem is also in P .

This completes the proof for Theorem 4.1.

Proof of Theorem 4.2. We show that the following problems in the hidden model with the con-
straint and variable index revealing oracle are NP-hard. Using Theorem 3.1, the complexity of each
H–S{V} is analyzed by considering the complexity of ⋃S.

(a) Deltas on Triplets (H–∆{V})
By definition, each relation in R∆ identifies a boolean string on 3 variables. This implies that

⋃R∆ forms the set of all Boolean predicates on 3 variables. Thus, 3SAT can be expressed as
the ⋃∆ problem. Hence, from Theorem 3.1(b), H–∆{V} is NP-hard.

(b) Hyperplane Non-Cover (H–HYP−NC{V})
The Hyperplane Non-Cover problem (HYP−NC) is the solvability of homogeneous linear in-
equations in FNp . The HYP −NC problem over ZNp for p ≥ 3 includes the 3COL problem
and is already NP-hard. To see this, let E be a graph on vertex set [N] and consider the
in-equations xi ≠ xj for indices i, j ∈ [N] such that {i, j} ∈ E. If p = 3 that’s all we need.
Otherwise, add a variable y together with the in-equations y ≠ 0, xi ≠ ky for i ∈ [N] and
k ∈ [p − 3].

Hence, it remains to consider the H–HYP−NC{V} problem over FN2 , which we need to examine

⋃HYP−NC by Theorem 3.1. In this setting, let T be the set of all subspaces (not necessarily
hyperplanes) of FN2 . Then the set of constraints of ⋃HYP−NC consists of {RP ∣ P ∈ T}

where RP (a) evaluates to T if and only if a /∈ P . This problem is NP-hard, as it includes
non-covering by subspaces of codimension 2 which encompasses the 4COL problem. Hence,
the former will be NP-hard using Theorem 3.1.

(c) Unique games (H–UG[k]{V} for k ≥ 3)
UG[3] is a CSP with w = 3, q = 2, and R = {π ∶ J3K→ J3K ∣ π is a permutation}. Let

R○
∶= ⋃
π∶(∀i)(π(i)≠i)

π.

Note that R○ ∈ ⋃R. Choosing R○ as the constraint for every edge gives us the 3COL problem.
Hence, from Theorem 3.1(b), H–UG[3]{V} is NP-hard.

Remark 4.5. Our proof method also shows that H–UG[k]{V} is NP-hard for any k > 2.

(d) k-Clique Isomorphism (H–kCLQ–ISO{V}) for 0.1n ≤ k ≤ 0.9n
Obviously, replacing the constraints of type R≤k by R≤k∪¬R≤k in an instance of H–kCLQ–ISO
we obtain an instance of ⋃H–kCLQ–ISO. This however just means omitting Constraints (1),
and we obtain the kCLQ problem (deciding whether the graph contains a k-clique) which is
NP-hard. Hence from Theorem 3.1(b), the H–kCLQ–ISO{V} problem is NP-hard.
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(e) Equality to a k-Clique (H–EQkCLQ{V}) for 0.1n ≤ k ≤ 0.9n
We use the framework defined in the previous proof for the H–EQST{V} problem. As men-
tioned in Remark 4.3, given a graph E2, consider K to be the set of all possible k-cliques on
n vertices and E1 = ∅. In this setting, the ⋃EQK problem is equivalent to finding a k-clique
on E2 which is NP-hard.

Remark 4.6. The above proof could also serve as an alternate proof for Theorem 4.2(d).

(f) Equality to a Hamiltonian Cycle (H–EQHAMC{V})
We use the framework defined in the previous proof for the H–EQST{V} problem. Here, K is
the set of all possible Hamiltonian cycles on n vertices and E1 = ∅. For an arbitrary graph
E2. the ⋃EQK problem parametrized by E1 and E2 becomes equivalent to deciding if E2 has
a Hamiltonian cycle, which is NP-hard.

This completes the proof for Theorem 4.2.

5 Constraint-index and Relation Revealing Oracle

Theorem 5.1. Let S be a CSP with constant arity q and constant alphabet size w. Assume that
for every α ∈ JwK, there is a non-empty relation Rα ∈ R such that (α, . . . , α) /∈ Rα. Then, H–S{R}
is NP-hard.

Proof. We show that E–S is NP-hard. We will reduce to it the problem E–3SAT which consists
of those instances of 3SAT where in each clause either every variable is positive, or every variable
is negated. Restricting to these instances of 3SAT is known as MONSAT, whose NP-completeness
can be deduced, for example, from Schaefer’s characterization [Sch78].

We first extend the relations for S as follows. Let q′ = (w − 1)q + 1 and let R′ ⊆ JwKq
′

be the
set of q′-ary relations that can be obtained as an extension of an element of R ∖ {∅} from any
q coordinates. Since q and w are constant, the cardinality of R′ is also constant. We claim that

⋂R∈R′ R = ∅. Indeed, every a ∈ JwKq
′

has a sub-sequence (α, . . . , α) of length q for some α ∈ JwK,
therefore the extension of Rα from these q coordinates does not contain a. Let {R0,R1, . . . ,Rh}
be a minimal subset of R′ such that ⋂hi=0R

i = ∅. Since the empty relation is not in R′, we have
h ≥ 1. Let us set A0 = ⋂i≠1R

i and A1 = ⋂i≠0R
i. Then A0

⋂A1 = ∅, and because of the minimality
condition, A0 ≠ ∅ and A1 ≠ ∅.

For a boolean variable x, we will use the notation x1 = x and x0 = x̄. The main idea of the proof
is to encode a boolean variable x1 by the relation A1 and x0 by A0. We think about the elements
of A1 as satisfying x1, and about the elements of A0 as satisfying x0. Then x1 and x0 can be both
satisfied, but not simultaneously.

To implement the above idea, we extend the relations further, building on the above extension.
We suppose without loss of generality that ` is a multiple of q′, and we set `′ = `/q′. Since q′ is
constant, MONSAT on `′ variables is still NP-hard. We take `′ pairwise disjoint blocks of size q′ of
the index set [`] and on each block we consider relations R0, . . . ,Rh. We denote by Rik the `-ary
relation which is obtained by extending Ri from the kth block. Observe that the relations Rik are
just extensions of elements of R.

After these preparations, we are ready to present the construction. Let K = ⋀
u
t=1Kt be an

instance of E–3SAT in `′ variables, with each 3-clause of the form Kt = x
bt
it,1

∨ xbtit,2 ∨ x
bt
it,3
, where
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it,1, it,2, it,3 are indices from [`′] and bt is either 0 or 1. Then we map K to the instance C whose
constraints are

Rbtit,1 ∪R
bt
it,2

∪Rbtit,3 ,

for each t ∈ [u], and
Cjk = R

j
k,

for each k ∈ [`′] and j ∈ {2, . . . , h}. This is an instance of E–S since the three relations Rbtit,1 , Rbtit,2
and Rbtit,3 are the extensions of the same relation in R. It is quite easy to see that K is satisfiable
if and only if C is satisfiable. Indeed, a satisfying assignment a for the C can be translated to a
satisfying assignment for K by assigning 0 or 1 to xk according to whether the kth block of a was in
A0
k or A1

k (taking an arbitrary value if it was in none of the two). Similarly, a satisfying assignment

b for K can be translated to a satisfying assignment a for C by picking any element of Abkk for the
kth block of a.

An immediate consequence is that under the same conditions H–S∅ is NP-hard too. For an
application of this consequence, let LINEQ stand for the CSP in which that alphabet is identified
with a finite field F and the `-ary constraints are linear equations over F .

Claim 5.2. H–LINEQ∅ is NP-hard.

Proof. For each i ∈ `, we pick two equations: xi = 0 and xi = 1. Observe that xi = 0 is the same
as {0}i, the `-ary extension of the unary relation {0} on the ith position and we have the same if
we replace 0 by 1. By the above observation, the H–CSPs built from relations of these type are
NP-hard.

6 Monotone graph properties

In this section, we consider monotone graph properties in the context of constraint index and
relation revealing oracles.

Let us first formulate monotone graph properties as CSPs. Recall that a monotone graph
property of an n-vertex graph is a monotone Boolean function P on (

n
2
) variables indexed by

{(i, j),1 ≤ i < j ≤ n}, invariant under the induced action of Sn on [n]. The goal is to decide, given
a graph G = (V,E), whether E ∈ P.

For a monotone graph property P, we turn it into a CSP problem as follows. Given a graph
G, to decide whether G satisfies the property P, we are asked to propose a minimal graph H
satisfying P such that H is a subgraph of G. That is, G is thought of as an instance, and H is
an assignment. If H is a subgraph of G then H is considered as satisfying. If not, a violation is
given by an edge in H but not in G. That is, the set of constraints in the instance G consists of
negations of the variables corresponding to the edges not in G. Formally, the CSP SP associated
with P has parameters w = 2, q = 1, ` = (

n
2
), WP which consists of the (characteristic vectors of)

the graphs (sets of edges), minimal for inclusion satisfying P, and R = {Neg}, where Neg is the
negation function. The corresponding constraints are Neg(e) for every e ∉ E. A graph G = (V,E)

yields an instance consisting of Neg(e) for e /∈ G. Then the goal is the same as to decide, given
whether there exists an A ∈ WP such that A ⊆ E. Notice that the graph property specific part of
this model is fully left to the specification of the set WP of admissible assignments.
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Let us examine such CSPs in the trial and error setting. As there is only one relation R = {Neg},
the models revealing or not revealing the violated relation type are equivalent, so naturally the
interesting setting is to work with the constraint index and relation revealing oracle. In particular,
as already noted in the Introduction, the case when the variable is also revealed is polynomial time
equivalent to the “normal” problem. Also note that the union of arity extension and the restricted
union of arity extension are the same. Then the arity extension is X–R = {Nege ∣ e ∈ (

n
2
)}, where

Nege(α1, . . . , α(n
2
)) = ¬αe, and therefore ⋃X–SP= {∨e∈E′Nege ∣ E′ ⊆ (

n
2
)} where ∨ denotes the or

operator. That is, the relations in ⋃X–SP are parametrized by sets E′ of possible edges where the
relation corresponding to E′ is equivalent to that at least one edge of the proposed graph is not
there in E′.

As a consequence, the ⋃X–SP problem becomes the following: Given a graph G = (V,E), and

edge sets on n vertices E1, . . . ,Em ⊆ (
[n]
2
), does there exist an A ∈ WP such that A ⊆ E and A

excludes at least one edge from each Ei? While every subset of the edge set (
n
2
) is in our disposal,

in actual applications, the tricky part is to come up with appropriate subsets E1, . . . ,Em, which,
together with the minimal instances of the graph property in question, yield that the resulting

⋃X–SP problem is hard. This will be the main content in our proofs for the various parts of
Theorem 6.1.

This framework naturally extends to directed and bipartite graphs as well as to graphs with
one or more designated vertices. Monotone decreasing properties can be treated by replacing Neg
with Id, the identity function.

From Theorem 3.3, the complexity of H–SP∅ can be analyzed by considering the complexity of

⋃X–SP . We do this for the following graph properties (named after the minimal satisfying graphs):

1. Spanning Tree (ST): the property of containing a spanning tree, that is, being connected.

2. Directed Spanning Tree (DST): the property of containing a directed spanning tree rooted at
vertex (say) 1. such that all the edges of the spanning tree are directed towards the root.

3. Undirected Cycle Cover (UCC): the property of containing an undirected cycle cover (union
of vertex disjoint cycles such that every vertex belongs to some cycle).

4. Directed Cycle Cover (DCC): the property of containing a directed cycle cover (union of
vertex disjoint directed cycles such that every vertex belongs to some cycle).

5. Bipartite Perfect Matching (BPM): the property of having a perfect matching in a bipartite
graph.

6. Directed Path (DPATH): the property of containing a directed path between two specified
vertices s and t.

7. Undirected Path (UPATH): the property of containing an undirected path between two spec-
ified vertices s and t.

Connectedness of the given graph and connectivity of two designated vertices, as well as their
directed versions, belong to the simplest well-known monotone graph properties that are decidable
in polynomial time. Having perfect matchings is perhaps the most famous property in P for bipartite
graphs. We show that these problems become NP-hard in the hidden setting. We included the
cycle cover problems because we prove hardness of having perfect matchings through hardness of
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H–DCC∅. The hidden version of having a fixed subgraph, e.g., a clique of constant size is in P
because there are only polynomially minimal satisfying graphs and they can be efficiently listed.
Unfortunately we are not aware of any monotone property which remains efficiently decidable in
the hidden setting for a less trivial reason.

Theorem 6.1. The following problems are NP-hard: (1) H–ST∅, (2) H–DST∅, (3) H–UCC∅, (4)
H–DCC∅, (5) H–BPM∅, (6) H–DPATH∅, (7) H–UPATH∅.

Proof. We show that the following problems in the hidden model with the constraint index revealing
oracle are NP-hard. In each case, we construct an instance of the ⋃X–SP s.t. it becomes equivalent
to a known NP-hard problem and using Theorem 3.3(b) we can conclude that the hidden version,
H–SP , is NP-hard.

(1) Spanning Tree (H–ST∅)
When P is connectedness, WP is the set of Spanning Trees on n-vertices.

Given G = (V,E), for every vertex v ∈ V, we consider (
n−1

3
) edge sets Evijk where

Evijk ∶= {{v, i},{v, j},{v, k}} 1 ≤ i < j < k ≤ n.

With this choice of Evijks the ⋃X–ST problem asks if there exists a spanning tree in G which
avoids at least one edge from each Evijk. This is equivalent to that every vertex v is incident
to at most two edges of the spanning tree A. Spanning trees with this property are just
Hamiltonian paths in G.

Thus, the ⋃X–ST problem is equivalent to asking if G contains a Hamiltonian path i.e. the
HAM−PATH problem in G. Hence, the NP-hard HAM−PATH in G problem reduces to the
H–ST∅ problem in G.

(2) Directed Spanning Tree (H–DST∅)
Similar to the previous case, WP is the set of directed spanning trees rooted at vertex 1.

Let G = (V,E), be a directed planar graph such that the in-degree and the out-degree for
every vertex is at most 2. The DHAM−PATH problem in G, i.e. determining if there exists
directed Hamiltonian path ending at node 1 in G, is NP-hard [GJ79]. Our goal is to reduce
the DHAM−PATH problem in G to the H–DST∅ problem in G.

For every vertex v ∈ V, of in-degree 2 we consider the edge sets Ev where Ev ∶= {(i, v) ∣

(i, v) ∈ E} with ∣Ev ∣ ≤ 2 by our choice of G. In addition, for every vertex v ∈ V, of out-degree
2 we consider the edge sets Ev where Ev ∶= {(v, i) ∣ (v, i) ∈ E}. With these Evs and Ev,
the ⋃X–DST problem asks if there exists a directed spanning tree rooted at vertex 1 that
contains at most one edge coming in and at most one edge originated from every vertex. These
constraints restrict the directed spanning tree, A to be a DHAM−PATH in G, analogously to
the undirected case.

Hence, the NP-hard DHAM−PATH problem reduces to the H–DST∅ problem in G.

(3) Undirected Cycle Cover (H–UCC∅)
Here, WP is the set of undirected cycle covers on n-vertices.

From Hell et al. [HKKK88] we know that the problem of deciding whether a graph has a
UCC that does not use the cycles of length, (say) 5 is NP-hard. We construct an equivalent
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instance of ⋃X–UCC as follows. We choose the edge sets EC ∶= {e ∣ e ∈ C} ranging over
every length 5 cycle C in G. Then, a UCC satisfying the above conditions cannot contain any
5-cycles.

Hence, an NP-hard problem reduces to the H–UCC∅ problem in G.

(4) Directed Cycle Cover (H–DCC∅)
In this case, WP is the set of directed cycle covers on n-vertices.

The proof follows similar to the undirected case. The NP-hard problem we are interested in
is determining if a graph has a DCC that does not use cycles of length 1 and 2 [GJ79]. This
problem can be expressed as ⋃X–DCC by choosing the edge sets EC ∶= {e ∣ e ∈ C} for every
length 1 and length 2 cycle C in G.

(5) Bipartite Perfect Matching (H–BPM∅)
Here, WP is the set of perfect matchings in a complete bipartite graph with n-vertices on each
side.

There is a one-to-one correspondence between perfect matchings in a bipartite graph G =

(A∪B,E) with n vertices on each side and the directed cycle covers in a graph G′ = (V ′,E′)
on n vertices. Every edge (i, j) ∈ E′ corresponds to an undirected edge {iA, jB} ∈ E. With
this correspondence the H–BPM∅ problem in G is equivalent to the H–DCC∅ problem in G′.
Thus, from Theorem 6.1(4) the former becomes NP-hard.

(6) Directed Path (H–DPATH∅)
We consider WP as the set of directed paths from s to t.

It is known that given a layout of a directed graph on a plane possibly containing crossings,
the problem of deciding whether there is a crossing-free path from s to t is NP-hard [KLN91].
This condition can be expressed by picking the each edge set Ei as the set of pairs of edges
that cross.

(7) Undirected Path (H–UPATH∅)
In this case, WP is the set of undirected paths from s to t.

We can apply the same proof method as the one used for the H–DPATH∅ problem on an
undirected graph.

This completes the proof for Theorem 6.1.

7 Hidden CSPs with Promise on Instances

In this section we consider an extension of the H–CSP framework where the instances satisfy some
property. For the sake of simplicity, we develop this subject only for the constraint index revealing
model. Formally, let S be a CSP, and let PROM be a subset of all instances. Then S with promise
PROM is the CSP SPROM whose instances are only elements of PROM. One such property is
repetition freeness where the constraints of an instance are pairwise distinct. We denote by RF the
subset of instances satisfying this property. For example 1SATRF, (as well as H–1SATRF) consists
of pairwise distinct literals. Such a requirement is quite natural in the context of certain graph
problems where the constraints are inclusion (or non-inclusion) of possible edges. The promise
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H–CSPs framework could also be suitable for discussing certain graph problems on special classes
of graphs (e.g, connected graphs, planar graphs, etc.).

We would like to prove an analogue of the transfer theorem with promise. Let us be given a
promise PROM for the CSP S of type R = {R1, . . . ,Rs}. The corresponding promise ⋃PROM for

⋃S is defined quite naturally as follows. We say that an instance C = (C1, . . . ,Cm) of S, where
Cj = Rkj(xj1 , . . . , xjq), is included in an instance C′ = (C ′

1, . . . ,C
′
m) of ⋃S if for every j = 1, . . . ,m

C ′
j = Qj(xj1 , . . . , xjq) for Qj ∈ ⋃R such that Rkj ⊆ Qj . Then ⋃PROM is defined as the set of

instances in C′ ∈ ⋃S which include C ∈ PROM. In order for the transfer theorem to work, we relax
the notion of a solution. A solution under promise for C′ ∈ ⋃PROM has to satisfy two criteria: it
is a satisfying assignment when C′ includes a satisfiable instance C ∈ PROM, and it is exception
when C′ is unsatisfiable. However, when all the instances C ∈ PROM included in C′ are unsatisfiable
but C′ is still satisfiable, it can be either a satisfying assignment or exception. We say that an
algorithm solves ⋃S⋃PROM under promise if ∀C′ ∈ ⋃PROM, it outputs a solution under promise.

Using the above definition in the transfer theorem’s proof allows the algorithm for H–S{V} to
terminate, at any moment of time, with the conclusion no as soon as it gets enough information
about the instance to exclude satisfiability and without making further calls to the revealing oracle.
In some ambiguous cases, it can still call the oracle with an assignment which satisfies the ⋃S-
instance. Other cases when the satisfiability of a ⋃S-instance with promise implies the existence
of a satisfiable promise-included instance lack this ambiguity. With these notions the proof of
Theorem 3.1 goes through and we obtain the following.

Theorem 7.1. Let SPROM be a promise CSP. (a) If ⋃S⋃PROM is solvable under promise in time
T then H–SPROM

{V} is solvable in time O((T + s × comp(R)) ×m ×min{dim(⋃R), ∣Wq ∣}).

(b) If H–SPROM
{V} is solvable in time T then ⋃S⋃PROM is solvable under promise in time O(T ×m×

comp(⋃R)).

We apply Theorem 7.1 to the following problems: (1) H–1SATRF
∅ , repetition free H–1SAT; (2)

H–2SATRF
∅ , repetition free H–2SAT; (3) H–2COLRF∅ , repetition free H–2COL; (4) H–kWEIGHTRF

∅
the repetition free hidden version of the following problem. The problem kWEIGHT decides if a
0-1 string has Hamming weight at least k. Formally, we have w = 2, q = 1 and R = {{0}} and W
consists of words of length ` having Hamming weight k. An instance of kWEIGHT is a collection
(C1, . . . ,Cm) of constraints of the form xij = 0 (formally, Cj = {0}ij ). (The string behind these
constraints is b where bt = 0 if and only if t ∈ {i1, . . . , im}.) In a repetition free instance we have
∣{i1, . . . , im}∣ =m.

Our main motivation for introducing promises on instances is to study the effect of prohibiting
repetition of constraints. This requirement potentially makes the hidden problem easier as it will be
indeed the case of 1SAT (in the constraint index revealing model). However, it neither helps in the
case of 2SAT nor in the case of the graph property bipartiteness (2COL). (We remark that guessing
a 2-coloring could be interpreted as covering the complementer graph by two complete subgraphs
and hence could also have been discussed in the framework of the previous section. Here we show
hardness of the potentially easier, repetition-free version.) Finally, kWEIGHT is a simple question
where the impact of repetition-freeness depends on the parameter k. We have the following.

Theorem 7.2. (a) Repetition free H–1SAT with constraint index revealing oracle is easy, that is
H–1SATRF

∅ ∈ P. (b) H–kWEIGHT∅ is NP-hard for certain k, but H–kWEIGHTRF
∅ ∈ P for every k.

(c) Repetition free H–2SAT, with constraint index revealing oracle, that is, H–2SATRF
∅ is NP-hard.

(d)Repetition free H–2COL, that is H–2COLRF∅ is NP-hard.

21



Proof. We prove each part of the theorem separately:

(a) We consider every literal as its extended `-ary relation where n is the number of variables.
This transforms the ∅-oracle into a {V}-oracle. A repetition free instance of ⋃1SAT is C =

{C1, . . . ,Cm}, where each Cj is a disjunction of literals from {x1, x1, . . . , x`, x`} such that there
exist m distinct literals z1, . . . , zm with zj from Cj . A conjunction of literals is satisfiable, if for
every i ∈ [`], the literals xi and xi are not both among them. Hence an algorithm which solves
H–1SATRF

∅ under promise can proceed as follows. Using a maximum matching algorithm it
selects pairwise different variables xi1 , . . . , xim such that xij or xij is in Cj . If such a selection
is not possible it returns exception. Otherwise it can trivially find a satisfying assignment.

(b) Again, we extend the relations to their `-ary counterparts so that the ∅-oracle is transformed
into a {V}-oracle.

An instance of ⋃kWEIGHT is C′ = {C ′
1, . . . ,C

′
m}, where there exist subsets S1, . . . , Sm of [`]

such that the relation for Cj is the set {a ∈ JwK` ∶ ai = 0 for some i ∈ Sj}. Finding a satisfying
instance of ⋃R is therefore equivalent to finding a hitting set (a transversal) of size (at most)
` − k for the hypergraph {S1, . . . , Sm}. This problem is NP-hard for, say, 0.01` < k < 0.99`.

A kWEIGHTRF-instance included in an instance of ⋃kWEIGHT⋃RF corresponding to subsets
S1, . . . , Sm consists of constraints xij ≠ 0 for m different indices i1, . . . , im with ij ∈ Sj . Obvi-
ously, such a set of constraints is satisfiable by an element of W if and only if m ≤ `−k. These ob-
servations immediately give the following efficient solution under promise for ⋃kWEIGHT⋃RF.
If m > ` − k we return exception. Otherwise, using a maximum matching algorithm we find
m different places i1, . . . , im with ij ∈ Sj (which must exist by the promise) and return an
assignment from W which can be found in an obvious way.

(c) To work in the framework of a {V}-oracle rather than a ∅-oracle, we consider every clause as
its extended n-ary relation where n is the number of variables. This transforms the ∅-oracle
into a {V}-oracle. We reduce 3SAT to ⋃2SAT⋃RF as follows. Let φ = ⋀

m
j=1Cj be a 3−CNF

where
Cj = x

b1
j1
∨ xb2j2 ∨ x

b3
j3
.

(Here bi ∈ {0,1} and x1 denotes x, x0 stands for x.) For each j = 1, . . . ,m we introduce a new
variable yj . We will have 2m new clauses:

C ′
j = x

b1
j1
∨ xb2j2 ∨ x

b3
j3
∨ y0

j and C ′′
j = xb1j1 ∨ x

b2
j2
∨ xb3j3 ∨ y

1
j

for each j. Put φ′ = ⋀mj=1(C
′
j ∧C

′′
j ). Then φ is satisfiable if and only if φ′ is satisfiable. In fact,

there is a 1 to 2m correspondence between the assignments satisfying φ and those satisfying φ′:
only the values assigned to the first ` variables matter. Also, the included constraints (xb1j1 ∨y

1
j )

and (xb1j1 ∨ y
0
j ) for all j = 1, . . . ,m form a system of 2m different 2−CNFs. Furthermore, if φ′

is satisfied by an assignment then we can select a satisfiable system of 2m pairwise distinct
sub-constraints: for each j we pick s ∈ {1,2,3} such that xbsjs is evaluated to 1 and take (xbsjs ∨y

1
j )

and (xbsjs ∨ y
0
j ) for j = 1, . . . ,m.

(d) Here the alphabet is J2K = {0,1}, q = 2, R has one element “≠”, that is {(1,0), (0,1)}. An
instance of 2COLRF consists of a set of constraints of the form xu ≠ xv for m pairwise distinct
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unordered pairs {u, v} from {1, . . . , `} (corresponding to the edges of a graph). (Here we again
work in the context of the extensions of the relation “≠” to arity ` = n.)

An instance of ⋃2COL is a collection {C1, . . . ,Cm}, where each Cj is a disjunction of constraints
of the form xu ≠ xv. In an equivalent view, an instance of ⋃2COL can be described by the
collection of edge sets (graphs) E1, . . . ,Em on vertex set [n] and a satisfying assignment can be
described by a coloring c ∶ {1, . . . , n}→ {0,1} such that for every j there exists an edge ej ∈ Ej
with endpoints having different colors. It is clear that if the edge sets E1, . . . ,Em are disjoint
then the instance is repetition free and the solutions under promise coincide with the solutions
in the normal sense.

Let E1, . . . ,Em be edge sets describing an instance of ⋃2COL. Put sj = ∣Ej ∣. For each j
we introduce 2sj new vertices: uvj1, uvj2 for each {u, v} ∈ Ej , 2sj new one-element edge sets
Euvj1 = {{u,uvj1}} and Euvj2 = {{v, uvj2}}; while Ej is replaced with an edge E′

j set consisting
of sj edges: {uvj1, uvj2} for each {u, v} ∈ Ej . It turns out that the ⋃2COL problem on the
n + 2∑mj=1 sj vertices with the new m + 2∑mj=1 sj edge sets is equivalent to the original one and
solutions of the two problems can be easily (and efficiently) mapped to each other. The new
edge sets are pairwise disjoint and hence the repetition free version of the new ⋃2COL problem
is the same as the the non-promise version.

Theorem 5.1 shows that non-promise ⋃2COL is NP-hard. By the reduction above, so is its
repetition free version.

On group isomorphism. Isomorphism of a hidden multiplication table with a given group, a
problem discussed in [BCZ13], can also be cast in the framework of promise H–CSPs. We consider
the following problem GROUPEQ (equality with a group from a class). Let G be a family of groups
on the set [k], that is, a set of multiplication tables on [k] such that each multiplication table
defines a group. The task is to decide whether a hidden group structure b( , ) is equal to some a( , )
from G and if yes, find such an a( , ). (Note that a solution of the latter task will give the whole
table for b( , ).)

We define GROUPEQ(G) as a promise CSP as follows. First we consider the CSP ENTRIES(G)
with the following parameters and type. We have w = k, W = G, R = {{w} ∶ w ∈ [k]}, ` = k2. It
will be convenient to consider assignments as k × k tables with entries from [k], that is, functions
[k]2 → [k]. (Implicitly, we use a bijection between the index set {1, . . . , `} and [k]2.) The number
of constraints is m = k2 and an instance is a collection x(uh,vh) = bh, where h = 1, . . . ,m, and
uh, vh, bh ∈ [k]. Thus the assignment satisfying ENTRIES(G) are k × k multiplication tables from G
which have prescribed values at k2 (not necessarily distinct) places.

We say that an instance for ENTRIES(G) belongs to the promise GROUP if two conditions
are satisfied. Firstly, there is one constraint for the value taken by each place. Formally, the
map τ ∶ h ↦ (uh, vh) is a bijection between {1, . . . ,m} and [k]2. As a consequence, by setting
b(u, v) ∶= bτ−1(u,v), we have a constraint xu,v = b(u, v) for pair (u, v) ∈ [k]2. The second – essential
– condition is that the multiplication given by b( , ) defines a group structure on [k]. The promise
problem GROUPEQ(G) is the problem ENTRIES(G)GROUP.

We consider the promise problem H–ENTRIES(G)GROUP
{V } (which we denote by H–GROUPEQ(G)

for short) and the corresponding problem⋃ENTRIES(G)⋃GROUP
{V } (short notation: ⋃GROUPEQ(G)).

In this H–CSP, if a( , ) is different from b( , ), the oracle reveals a pair (u, v) such that a(u, v) ≠
b(u, v).
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We note here that the case of H–GROUPEQ(G) where G consists of all isomorphic copies of a
group G in fact covers the problem of finding an isomorphism with G discussed in [BCZ13]. For
that problem, the input to the verification oracle is a bijection φ ∶ [k]→ G. Recall that b( , ) encodes
the hidden group structure, and we assume G is specified by the binary relation g( , ). Then, in
the case when φ is not an isomorphism, the oracle has to reveal u, v ∈ [k] such that, the product
g(φ(u), φ(v)) does not equal φ(b(u, v)) in G. Indeed, given φ we can define (and even compute)
the multiplication aφ( , ) on [k] – by taking aφ(x, y) = φ

−1(g(φ(x), φ(y)) – such that φ becomes
an isomorphism from the group given by aφ( , ) to G. Then φ is an isomorphism from the group
given by b( , ) if and only if aφ( , ) = b( , ). Furthermore, if it is not the case then the oracle given in
[BCZ13] reveals a pair (u, v) such that aφ(u, v) = b(u, v), exactly what is expected from a revealing
oracle for H–GROUPEQ(G).

An instance of ⋃ENTRIES(G) consists of k2 constraints expressing that a(uh, vh) ∈ Sh where
Sh ∈ 2[k] ∖ ∅ for h ∈ [m] = [k2]. An instance of the promise version ⋃GROUPEQ(G) (which is
equal to ⋃ENTRIES(G)⋃GROUP

{V } ) should satisfy that {(uh, vh) ∶ h = 1, . . . ,m} = [k]2, that is, our

constraints are actually x(u,v) ∈ S(u, v) for a map S( , ) ∶ [k]2 → 2[k]. Furthermore, there is a map
b( , ) ∶ [k]2 → [k] with b(u, v) ∈ S(u, v) for every (u, v) ∈ [k]2 such that b( , ) gives a group structure.

Now we are ready to reprove Theorem 11 in [BCZ13]. Note that our proof is considerably
shorter than the original proof.

Theorem 7.3. The problem H–GROUPEQ(G) is NP-hard.

Proof. Let p be a prime. We show that finding Hamiltonian cycles in Hamiltonian digraphs of size
p is reducible in polynomial time to H–GROUPEQ(G). The former problem is NP-hard, since an
algorithm that in polynomial time finds a Hamiltonian cycle in a Hamiltonian digraph obviously
can decide if an arbitrary digraph G has a Hamiltonian cycle: it just runs on G and then tests if
the outcome is indeed a Hamiltonian cycle.

Choose G as the set of all group structures on [p]. As every group having p elements is isomorphic
to Zp, G coincides with the group structures on [p] isomorphic to Zp. We essentially translate the
arguments given in [BCZ13] to the setting of ⋃GROUPEQ as follows. This suffices to prove the
statement due to the transfer theorem stated in Theorem 7.1.

Let ([p],E) be a Hamiltonian directed graph (without loops) on [p]. Fix z ∈ [p]. For u ∈ [p], let
S(u, z) = {v ∶ (u, v) ∈ E}, and S(u, v) = [p] for v ≠ z. Let φ ∶ [p]→ {0, . . . , p − 1} = Zp be a bijection
that defines a Hamiltonian cycle in ([p],E). Then b(x, y) = aφ(x, y) ∶= φ

−1(φ(x) + φ(y)) gives a
group structure on [p] (isomorphic to Zp via φ) consistent with the constraints given by S( , ).
Conversely, if b( , ) gives a group structure (necessarily isomorphic to Zp) consistent with S( , )

then the pairs (u, b(u, z)) (u ∈ [p]) form a Hamiltonian cycle in ([p],E). Thus finding Hamiltonian
cycles in Hamiltonian digraphs on p points can be reduced to ⋃GROUPEQ on p elements.

As an example, suppose we have p = 3, and the edges are 2 → 1,1 → 3,3 → 2. Then set z = 2,
so φ(2) = 1, φ(1) = 2, φ(3) = 0. (That is, i is the φ(i)th vertex to be visited in this Hamiltonian
cycle, where φ(i) should be understood as modulo p.) It can be verified that b(x,2) ∈ S(x,2) = {y ∶
(x, y) ∈ E}. On the other hand, if we set b(x, y) to be isomorphic to Zp by the correspondence just
given by φ, then the path (u, b(u,2)) forms a Hamiltonian cycle.
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