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Abstract

Research on integrated systems that uses simulations to develop demand-side management algorithms for energy

use in the building sector requires scalable and detailed energy consumption data. However, due to privacy issues,

it is often difficult to obtain sufficiently large data sets. This paper proposes two different methods for synthesizing

fine-grained energy consumption data for residential households, namely a regression-based method and a probability-

based method. They each use a supervised machine learning method, which trains the models with a real-world data

set and then generates large-scale time series based on the models. This paper describes the data generation process,

the optimization techniques, and the parallel data generation for a building cluster. This paper evaluates the two time-

series generators and compares the resulting consumption profiles with real-world data in detail, including patterns,

statistical information, and data generation performance in the cluster. The results demonstrate the effectiveness of

the proposed methods and their efficiency in generating large-scale data sets.

Keywords: Energy Consumption, Time series, Synthesise, Simulation, Data generation

1. Introduction1

Today, smart meters are being widely installed to collect energy consumption data in the building sector. At2

the same time, utilities are showing an increasing interest in building energy data management systems in order3

to improve their services and decision-making processes [42]. The ability to handle big data sets has become a4

mandatory requirement for todays energy data management systems. On the one hand, when building such systems,5

large data sets are needed for investigating suitable technologies and algorithms. On the other hand, scalable data sets6

are required for benchmarking the systems before deployment to production, such as evaluating system performance,7

robustness, and scalability. Big real-world energy consumption data sets, such as smart meter data, can meet these8

goals, but the challenge is that it is often difficult to obtain scalable real-world data sets, mainly due to privacy9

issues. This is because energy consumption data usually contains sensitive information. For example, the living10
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Figure 1: Weekly consumption pattern of a typical household

habits of a household can be revealed through consumption pattern analysis. To date, there are only a few open11

energy consumption data sets available. These data sets are anonymized but they are limited in size, such as [23, 33,12

43, 7, 49]. Many countries have restricted the dissemination and use of personally relevant data by law, including the13

Scandinavian countries, Denmark and Sweden. The recent enforcement of the EU General Data Protection Regulation14

(GDPR) [18] mandates strong privacy protection for personal data. This makes it more difficult to publish any data15

with a bearing on personal privacy, such as energy consumption data. A data generator is therefore required to generate16

data sets that simulate realistic energy consumption.17

Scalable smart meter data sets have been used in benchmarking studies of time-series management systems and18

the design of analytic algorithms [30, 31]. Many simulations in the fields of energy, climate, and buildings require19

residential electricity consumption profiles. A typical example is research on building occupancy based on fine-20

grained energy consumption data. Load profiles vary between households, due, for example, to family size, age, and21

living habits. Using an average load profile may lead to inaccurate results, even to errors. Synthetic data is usually the22

only choice due to the lack of measured load profiles.23

Synthetic data generation is an effective way of developing electricity consumption time-series data. However,24

it is often a non-trivial task to simulate real-world consumption data, due to the difficulty of reproducing time series25

characteristics, including trend, seasonality, and pattern. Figure 1 shows an example of a fragment of an electricity26

consumption time series for one week. It has a regular daily pattern, with a peak in the morning and another in the27

evening. The morning peak appears earlier on a weekday than at the weekend, as the household gets up earlier for28

work. The second peak of the weekend lasts longer than on a weekday, which may be because the family spends29

more time at home during the weekend, and uses more energy. A synthetic time series should be able to reflect this30

information.31

In this paper, we present two distinct approaches for generating scalable realistic energy consumption data sets,32

one using a regression-based method and the other using a probability-based method. These approaches are both33

supervised machine-learning methods, including a training process and a data generation process. The regression-34
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based method allows different auxiliary data for the input, in addition to the seeded time series, and these include35

indoor activities, outdoor temperature time series, appliance parameters, building data and other related data. In36

the absence of these data, we used the simplest auto-regressive method to synthesise new consumption values by37

prediction. In addition, we took a number of steps to optimize the data generator in order to reproduce real-world38

consumption time series characteristics as well as possible, including de- and re-seasonalisation, clustering, adding39

base load and white noise. In contrast, the probability-based method requires only the seeded data as input. This40

approach first identifies representative consumption patterns by clustering, then establishes a probability model, and41

generates new time series by a random walk on a Markov chain. In order to optimize large-scale data generation, we42

implemented the proposed methods using a memory-based distributed computing framework, Spark. This paper is43

based on a conference paper [22], but with a significant extension: we have added the probability-based generation44

method, comprehensively compared the proposed two methods, and discussed several related issues regarding their45

differences and their selection for different cases.46

The main contributions of this paper are as follows:47

− We propose two distinctly different and novel approaches for fine-grained smart-meter data generation.48

− We investigate how to simulate real-world energy consumption time series more effectively, including the49

preservation of patterns, seasonality, and segmentation groups.50

− We propose and implement two data generators that can generate large-scale data sets in parallel in a cluster.51

− We comprehensively evaluate these data generation methods, evaluate their effectiveness in simulating real-52

world data, the scalability of generating large data sets, and their comparison.53

The paper is organized as follows. Section 2 reviews related work. Section 3 describes the two data generation54

methods. Section 4 describes the parallel data generation implemented on Spark. Section 5 evaluates the two types of55

generators. Section 6 presents conclusions and suggestions for future work.56

2. Related Work57

The synthesis of energy consumption time series data sets has been a topic of increasing interest in recent decades.58

The first approach [3] was to build a load profile based on a simple probability model of appliance use, for example, by59

assuming a 90% probability that TV sets would be on during the time 19:00–21:00. This approach can approximate the60

energy consumption of individual appliances, but the combined effects for many appliances, used to obtain the overall61

consumption profile, are distorted. A recent study [41] was based on a further development of this idea, and generated62

more accurate realistic load profiles. The approach was to match appliance use to indoor activities, using them to63

generate consumption profiles based on a statistical model. This approach can achieve better accuracy but requires64

additional data on household activities, which are often not easy to obtain. Other approaches have used a bottom-up65
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approach to simulate the electricity consumption of a household from the use of home appliances [34, 40, 44, 2, 15].66

The drawback is that this approach requires detailed consumption data for each type of home appliance, which is also67

difficult to obtain. For this reason, most research has used the statistical average of electrical consumption instead,68

as in [16, 1]. In contrast, the two approaches proposed in the present paper both exploit machine learning methods69

that use a small set of real-world consumption data as the seed to generate a consumption data set, although one is70

regression-based and the other is probability-based. These new approaches make direct use of the seeded data to71

simulate its time-series characteristics, including pattern, seasonality, and variability, and are thus more efficient and72

realistic.73

The research that is relevant to the data generation models used in the present paper are as follows. The proposed74

regression-based method uses an autoregressive centred moving average model, which is an improved version of an75

autoregressive moving average (ARMA) [21]. There are many other time series forecast models, including autore-76

gressive integrated moving average (ARIMA) and neural networks, as proposed in [47]. Ref [4] generated time series77

using the periodic autoregressive moving average model (PARMA) that takes into account the seasonality (or period)78

of a time series. Additionally, ref [32] used periodic autoregressive model with exogenous variables (PARX) for short-79

term energy consumption prediction. This model combines exogenous variables, such as building area, ages, types,80

outdoor temperatures, and resident characteristics for further improving prediction accuracy. Ref [11] conducted a81

survey of time series forecasting, and concluded that stochastic, neural networks, ARIMA and its variants now play a82

major role in time series forecasting. However, it is worth noting that other machine learning methods, Support Vector83

Machines (SVMs) and Artificial Neural Networks (ANNs), are also widely used for energy consumption prediction,84

e.g., [14, 27, 13]. In recent years, as Deep Learning (DL) methods [8] have been developed, they are also being used85

for energy prediction, as in [35, 17], which predict new values through the characterisation of demand profiles based86

on measured data. DL uses multiple layer computational models to learn representations of data, resulting in a more87

powerful prediction capability than is obtained by artificial neural networks [26].88

The research that is the most closely related to the proposed probability-based approach is [5], which used a89

Markov chain model to generate an Internet-of-Things (IoT) time series. However, their approach creates a transition90

probability matrix (TPM) for each step on the time axis, which results in a large TMP matrix and greatly increases the91

computational cost. In contrast, we build the TPMs based on the representative daily patterns of energy consumption92

series, which can achieve a smaller TMP and more computing efficiency.93

As an emerging technology, smart metering has received much attention recently, leading to developments in the94

field of smart energy. However, to the best of our knowledge, very little research on smart meter data simulation or95

generation has been carried out. Ref [39] generated residential load profiles based on pre-defined household templates,96

while [30] used a PARX model to generate time series for system benchmarking purpose. In contrast to these works,97

our regression-based approach has further optimized a simulation that uses clustering technique to preserve customer98

segmentation information and implemented parallel consumption time series generation for a cluster.99
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Figure 2: Overview of the regression-based data generation method

3. Methods100

This section describes the regression-based and the probability-based data generation methods.101

3.1. The regression-based method102

The regression-based method uses prediction to generate new time series values. It is a supervised machine103

learning method consisting of a training process and a data generation process. A residential energy consumption104

time series has a number of characteristics, including trend, cyclicity and seasonality/periodicity, so to improve the105

simulation of real-world data, some pre- and post-processing of the data is required. Figure 2 shows an overview of106

the regression-based method. In the preprocessing, we first flatten the periodic variation for the training data, which107

is called de-seasonalisation. The reason is that a model trained on a de-seasonalised time series can achieve better108

prediction accuracy [48]. We then use this model to generate new predicted consumption values. In post-processing,109

the periodic variations re-applied to the new time series, with a base load representing a fixed consumption for the110

day. This process is called re-seasonalisation, which is the last step in the data generation.111

In the following, we provide more details on the regression-based data generation method, including algorithms112

and optimisation techniques.113
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3.1.1. Model training process114

For a time series, X =< x1, x2, ..., xn >, the training process consists of three sequential steps, including fluctuation115

flattening of the time series, de-seasonalisation and training the autoregressive model. The training output is used by116

the generation process to synthesise a consumption time series data set. The three steps are as follows:117

Fluctuation flattening. The Centred Moving Average (CMA) method [45] is used to flatten the periodic fluctua-118

tions of a time series. CMA is the sliding-window approach that uses the mean value of the time series values within119

the window to replace the original value for each interval. In the present paper, we used a daily load profile with a120

window size of 24 hours and a sliding interval of 1 hour. The i-th value of a CMA flattened time series, C(i), can be121

defined by Equation 1. Note that as the period of 24 hours is an even number, we use the mean of two adjacent values122

as the CMA value, i.e.:123

C(i) = 1
2

( xi−12 + .. + xi + .. + xi+11

24

)
+

1
2

( xi−11 + .. + xi + .. + xi+12

24

) (1)

where xi represents the i-th observation of a time series.124

De-seasonalisation. De-seasonalisation is used to reduce the periodic aspect of a time series, as follows. First,125

the so-called Ratio-to-Moving-Average or Raw-index is defined as follows:126

R(i) =
xi

C(i)
(2)

Then, we compute the periodic index for each hour of the day based on the raw index values (see Equation 3). The127

periodic index for each hour of the day is the mean value of the raw indices at the same hour in all days. For instance,128

I(0) is the mean of the values of R at 0 o’clock in all days. There is therefore a total of 24 periodic indices, each of129

which corresponds to one hour of the day.130

I (h) =
1
n

n−1∑
i=0

R(h + 24i) (3)

where n is the number of days in a time series, and h is the hour of the day, i.e., 0 – 23. Due to the floating point [25],131

there exists a precision problem for the value of I. It is therefore necessary to normalise I to ensure that the sum of132

the periodic is equal to 1.0. Equation 4 performs the normalisation, and derives the normalised periodic indices, I′:133

I′(h) =
24 ∗ I(h)∑23

h=0 I(h)
(4)

Finally, the time series is de-seasonalised by using a normalised periodic index, yielding a flattened time series,134

X′ =< x′1, ..., x
′
i , ..., x

′
n >, in which135

x′i =
xi

I′(h)
(5)
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where xi ∈ X and h = i mod 24.136

Training an autoregressive model. The de-seasonalised time series X′ is then used to train the autoregressive137

(AR) model. As mentioned earlier, models trained on a flattened time series obtain better prediction accuracy. The138

predicted values will be used to construct the final consumption time series. According to [19], the time series values139

of residential energy consumption are serially co-related, i.e., current consumption is related to past consumption, as140

verified by the experiment reported in Section 5.3.2. According to [19, 32, 6], it is appropriate to choose the order of141

three for the autoregression, i.e., p = 3.142

In summary, the above training process will result in the following outputs, including periodic indices, flattened143

time series, and AR models. The results will be passed to the data generation process for synthesising a time series.144

In the present application, we employed a distributed computing system, Apache Spark, for parallel generation. In our145

implementation, we therefore wrote the output directly to the Hadoop distributed file system (HDFS), and organised146

the output into two separate text files: one for storing periodic indices and the other for storing the AR models and the147

flattened time series. The records in the two files are linked by unique IDs. The purpose of this implementation was148

to generate a large number of realistic time series by combining the records of the two files, as discussed in the next149

section.150

3.1.2. Time-series generation process151

We now describe the time series generation process using Algorithm 1. The time-series generation process uses the152

periodic indices, the autoregressive data and the flattened time series as the input for generating data. As mentioned153

earlier, we generated scalable time series on the distributed computing platform, Apache Spark. These parameters154

were saved in a Hadoop distributed file system, and read into Spark as two Resilient Distributed Datasets (RDDs), PI155

andAR in Spark. Theta join [37] was then applied to the two RDDs to generate new time-series values (see line 1–6).156

Theta join is able to generate a time series by combining the parameters from two tables, which makes it possible to157

generate large-scale data sets with a relatively small seed.158

The data generation process was follows: (1) Generate new consumption values: A new consumption value is159

generated based on the following autoregressive function:160

x′′i = c +
p∑

λ=1

αλx′i−λ (6)

where c is a constant intercept, αλ are coefficients, and x′i are the flattened time series values (using p values before i);161

(2) Re-seasonalize the time series, and (3) add base load and white noise, as expressed by Equation 7.162

x′′′i = x′′i ∗ P
′(h) + baseLoad + εi (7)

where h = i mod 24, i = 1, ..., n and ε is white noise. The re-seasonalisation is achieved by simply multiplying the163

flattened time-series value by the corresponding adjusted periodic index. A base load is added to simulate the energy164

consumption that is independent of the activities of a household, for example, the consumption used by the appliances165
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Algorithm 1: Energy consumption time series generation
Input : The periodic indices PI(id, peridoc-indices), autoregressive models and flattened time seriesAR(id,

AR-coefs, flattened-time-series)

Output: A set of synthetic time series

1 R ← PI 1PI.id,AR.id AR ; /* Theta join */

2 O ← {} ;

3 for r ∈ R do

4 x′′ ← Generate new values using r(AR-coefs, flattened-time-series x′) by prediction;

5 x′′′ ← Re-seasonalize x′′ using r(periodic indices), and add baseload and white noise ;

6 O ← O ⊕ x′′′ ;

7 end

8 return O

that are always on, e.g., refrigerators. The base load value can be obtained by averaging the consumption in the middle166

of the night or the consumption when people are away from home. A more common approach is to use 10% of the167

average hourly consumption value to represent the base load of a household [9], and in this paper we employ this168

approach. Finally, we add white noise to simulate a slight variation of each hourly consumption value. The white169

noise conformed to a standard normal distribution: ε ∼ N(0, 1.0).170

3.1.3. Optimising data generation171

The optimisation techniques that we applied to this time series data generator will now be described. As discussed172

in Section 1, residential energy consumption time series have regular time patterns, such as daily, weekly or monthly.173

In fact, the appearance of these regular patterns is a complex issue, which is related to many factors, such as changes in174

the weather, building characteristics and living habits. These patterns may also show spatial and temporal characteris-175

tics. For example, the behavioural patterns of the residents in the same neighbourhood may be similar, as are patterns176

within a certain time period. Utilities often use a clustering technique to identify customers with similar patterns in177

order to provide better energy services or personalised energy-saving recommendations. However, in the generation178

process, due to the use of theta join, the models and the flattened time series are shuffled to synthesise a time series.179

This operation will lead to the loss of customer segmentation information from the original time series. In order to180

preserve segmentation information, we optimise the training process by adding a preprocessing step of clustering (see181

Figure 3). The remaining training and generating process is then conducted using the clustered seeds separately.182

More specifically, we first cluster the seed based on representative daily consumption patterns of all time series.183

A representative consumption pattern is the mean pattern of a time series calculated by averaging the consumption184

values at the same hour for all days. For example, for a time series of i, its representative daily pattern can be defined185
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Figure 3: Preprocess the seed by clustering

as186

X̄i =
{
x̄i,0, x̄i,1, .., x̄i,23

}
(8)

where x̄ is the mean of the consumption values at that hour of the day, i.e., 0 – 23.187

We then apply k-means clustering algorithm [46] to cluster all the representative daily patterns. Usually, k-means188

clustering uses the Euclidean distance as the metric to quantify the similarity between two vectors, e.g., [38, 28]. In189

our case, the distance of two representative daily load profiles, X̄i and X̄ j, can be computed by the following equation:190

euclDist
(
X̄i, X̄ j

)
=

√√√ 23∑
h=0

(
x̄i,h − x̄ j,h

)2
(9)

However, in the present study we chose the Pearson correlation distance [10] for the optimisation of clustering.191

The correlation metric is defined as follows:192

corrDist
(
X̄i, X̄ j

)
= 1 − corr

(
X̄i, X̄ j

)
(10)

where:193

corr
(
X̄i, X̄ j

)
=

∑23
h=0

(
x̄i,h − µi

) (
x̄ j,h − µ j

)
√∑23

h=0
(
x̄i,h − µi

)2
√∑23

h=0

(
x̄ j,h − µ j

)2
(11)

where µ is the mean of the representative daily patterns.194

The reason is that the correlation distance is better for measuring the shape or trend of two patterns, while the195

Euclidean distance is for measuring the difference of attributes in values [20]. For example, the Euclidean distance of196

Figure 4 (a) and (b) are both
√

3, but we can see that the two patterns in Figure 4 (b) are completely different.

Figure 4: Two identical or opposite patterns
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197

As the correlation value ranges between -1 and 1, the correlation distance will be between 0 and 2. Usually, a198

distance of less than 0.5 represents a good similarity between two vectors. If the distance of two vectors is 0, they199

have identical patterns, as in Figure 4 (a). If the distance is 2, they have opposite patterns, as in Figure 4 (b).200

3.2. The probability-based method201

The alternative approach using a probability-based method to simulate an energy consumption time series will202

now be described. It is a two-step method, which includes representative pattern extraction by clustering and new203

time series generation using a probability model. The probability model is constructed using representative daily204

patterns (see Figure 5). The procedure is described in the following.205

3.2.1. Extracting representative patterns206

We use the adaptive clustering method [24] to extract representative patterns for each customer. We first normalise207

the daily load profiles for each household. The normalisation process is defined as follows. For a household, i, the208

load profile of the d-th day can be represented by Xi(d), where X represents an hourly consumption vector with 24209

dimensions, X ∈ R24 and d = 1, ...,N. The normalised daily load profile is defined as follows:210

X∗i (d) =
Xi(d)
S i(d)

(12)

where X∗ is the normalised daily load profile and S i(d) is the total energy consumption of day d. Then, the adaptive211

clustering is conducted based on all normalised load profiles, and the centroids of the clusters will be used as the212

representative load profiles of a household. As the clustering is based on the normalised data, the representative213

patterns derived indicate only the shapes of the consumption pattern, without indicating consumption intensity. The214

shapes can often reflect the consumption habits or activities of a household. Finally, the representative patterns are215

encoded using ASCII alphabets.216

3.2.2. Time series generation217

The time series generation includes the following procedures. First, based on the derived representative patterns,218

each time series is converted into a sequences of ASCII alphabets. Then, the sequences are used to train a Markov219

chain model, which is then used to generate new sequences by random walks. The new sequence represents the220

normalised consumption patterns within a series of continuous days. The sequence is then “amplified” to create a221

consumption time series by multiplying a random number sampled from the daily consumption distribution generated222

by the training data set.223

Markov chains are often used for sequence generation, e.g. [5, 36, 29]. A discrete-time Markov chain can be224

defined as a finite set of states, S = 1, ..., n, representing the events that occur at every discrete time step. The next225

state in a Markov chain is conditionally independent of the past states, i.e.:226

P(S t+1 = j|S t = i, S t−1 = it−1, ..., S 0 = t0) = P(S t+1 = j|S t = i) (13)
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Figure 5: Overview of the probability-based simulation method

where P(S t+1 = j|S t = i) is the probability of the transition between two states i, j. A transition probability matrix227

(TPM) of the size n×n is created for each concrete time step. TPM contains all the probabilities of the state transitions.228

We compute the transition probability Pi j by the following equation:229

Pi j =
ni j∑

k∈S nik
(14)

where the numerator represents the number of daily pattern changes from i to j between two continuous days, and230

the denominator represents the number of pattern changes from i to all states (including state i),
∑

k∈S Pik = 1. When231

constructing the T PM, it should be noted that the training data sets may not include the transitions between all states.232

This will generate a sparse TPM. To address this issue, Laplace smoothing is used to increase the transitions by adding233

the number 1 such that there will be no zero probability in the resulting TPM.234

When the TPM for each time step has been derived, we generate new sequences by random walks on the Markov235

chain. We start from a randomly selected state, then pick each subsequent state according to the TPM corresponding236

to that particular time step. The resulting alphabet sequence represents a series of synthetic normalised consumption237

patterns. When a new alphabet sequence has been generated by a random walk, the load profiles of all days are238

determined, each of which is generated by the normalised daily pattern multiplied by a random number sampled239

from the corresponding daily consumption distribution. To capture the seasonality of the consumption behaviours,240

we create a distribution for each day using the daily consumption values of all households in order that the sampled241

random number can reflect the consumption change over time. For example, in countries with widespread use of242

electric heating, the daily consumption in winter is typically higher than it is in summer, as in Ireland and Canada.243
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4. Parallel data generation244

We used Apache Spark for parallel data generation. Apache Spark is an open source memory based distributed245

computing framework, which has implemented the distributed computing primitives, including map and reduce. Spark246

is optimised for iterative algorithms and interactive data analysis, which can perform iterative computations on the247

same data set. A Spark cluster has the architecture of one master node and multiple slave nodes. The master node248

assigns jobs to the slave nodes and coordinates the jobs run in a cluster. A job reads the data from a Hadoop distributed249

file system (HDFS) or in a local machine and performs computations on a resilient distributed data set (RDD), an in-250

memory data structure partitioned across the nodes that operate in parallel. The output is written to HDFS or a local251

machine. A job can be composed of several steps that are either maps or reduces. All the data is split into multiple252

partitions and the computations are performed on each partition by a separate task. A task is executed by an executor253

on each slave node.254

Using the computation mechanism of Spark, we implemented parallel data generation for the proposed two meth-255

ods, for both the training and the generation programs. It is worth noting that the training program does not have to be256

implemented using Spark as it is run only once, and the resulting models can be re-used many times to generate data.257

In the following we therefore describe only how to parallelise data generation on Spark. For both of the methods,258

a map-only data generation program was implemented, i.e., no reducer was needed. The models generated by the259

training process were broadcast to the mappers which generated time series separately without inter-communication.260

This greatly improves performance when generating large-scale data sets (this will be evaluated by the experiments).261

For the regression-based method, the broadcast data are periodic indices, auto-regression coefficients, and base loads.262

In a mapper, a theta join is first run to generate a new time series using the PI and AR parameters, then the time series263

is re-seasonalised to simulate the change of consumption over time. Base load and white noise were then added. For264

the Probability-based method, the broadcast data included the transition probability metrics and distribution models265

of daily readings. Time series generation was conducted by random walks within a mapper. In both methods, the266

generated time series were then written directly as the map output to HDFS.267

5. Evaluation268

This section reports an evaluation of the two proposed time series generation methods. An Irish electricity con-269

sumption data set [23] was used for training the models. This data set was released by the Commission for Energy270

Regulation in Ireland and was recorded from July 14, 2009 to December 31, 2010 with over 5,000 residential house-271

holds and businesses. The original data set has a 30-minute resolution. We merged them into an hourly resolution272

for the experiments and in the present paper we consider only residential consumption. Both of the data generation273

methods used clustering analysis in the training process. There is no rule-of-thumb about the least sample size for274

clustering analysis [12]. As we intend to maintain a relatively small size of the seed for generating data, we randomly275

sampled 30% of the time series as the seed (the training data).276
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We evaluated the simulation data by descriptive and exploratory analysis and compared them with the real-world277

data. The two proposed data generation methods were compared to different settings.278

All the experiments were conducted in a cluster of four nodes. All of them used slave nodes, and one of them279

was used as master node. All the nodes had an identical configuration: Intel CPU E5-2650 (3.40GHz, 4 Cores) with280

hyper-threading enabled (2 hyper-threads per core), 8 GB RAM, Hard driver (1TB, 6 GB/s, 32 MB Cache and 7200281

RPM), and 64bit-Ubuntu 12.04.282

5.1. Regression-based results283

As described in Section 3.1.3, we preprocessed the seed by clustering before using it to train the models. Also, we284

used the Pearson correlation distance metrics in the clustering. In the following, we would like to further explain this285

process by an example before evaluating the time series thus generated.286

This example is shown in Figure 6, which includes typical daily load profiles from four households, denoted by287

TS 1−4. According to the energy consumption intensity, TS 3 is the highest, TS 1 is medium, TS 2 and TS 4 are the288

lowest. According to the pattern, TS 1, TS 2 and TS 3 are similar, as they have a morning peak and an evening peak289

within an almost identical time window. In contrast, TS 4 has a different pattern, as it has no morning peak and a low290

consumption at roughly 5 o’clock in the afternoon. Based on pattern similarity, TS 1, TS 2 and TS 3 should therefore291

be in the same group, while TS 4 should be in another group.292

We now compare the Euclidean distance and the correlation distance for clustering time series according to pattern293

similarity. Table 1 shows the pair-wise comparison of the distances for the daily load patterns in Figure 6. According294

to the correlation distances, the distances of the pairs, (TS 1,TS 2) and (TS 1,TS 3), both are smaller than (TS 1,TS 4).295

In contrast, the Euclidean distance of the pair, (TS 2,TS 4) is the smallest, so if the Euclidean distance metric were296

used, the load profiles of TS 2 and TS 4 would be assigned to the same group. This demonstrates that it is more297

preferable to use the correlation distance metric for clustering consumption patterns or load shapes.298

We will now demonstrate the necessity of preserving customer segmentation information by using the clustering299

technique. We generated time series by using the models that were trained by the seed with and without preprocessing,300

respectively. We performed adaptive clustering on the corresponding daily load profiles, and generated 20 clusters.301

The top three clusters are shown in Figure 7. According to the figure, the load profiles in Figure 7 (a) (using a302

reprocessed seed) are more cohesive than in Figure 7 (b) (using an un-reprocessed seed). This demonstrates the303

effectiveness of the proposed clustering technique for achieving pattern preservation.304

We compared the synthetic time series with the real-world time series (see Figure 8). The blue line in Figure 8 (a)305

is the daily load profile of a typical household, while the other two are the synthetic load profiles, which resulted from306

the preprocessed seed that used the correlation distance (corrDist) and the Euclidean distance (euclDist) metrics for307

clustering, respectively. In Figure 8 (a), it may be seen that the daily load pattern of synthetic data (corrDist) matches308

well with the real-world load pattern: they both have peaks at the hour of 68 and 1618 (with a slight drift to the left).309

In contrast, the pattern of the synthetic data (euclDist) does not match well with the real-world pattern as the latter310
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Figure 6: Four typical daily load profiles

Table 1: Pair-wise comparison of the distance metrics

(TS 1,TS 2) (TS 1,TS 3) (TS 1,TS 4) (TS 2,TS 3) (TS 2,TS 4) (TS 3,TS 4)

euclDist 6.13 9.12 9.64 11.5 4.73 12.4

corrDist 0.12 0.13 1.06 0.12 0.76 1.10

Figure 7: Pattern preservation comparison when the seed was preprocessed and not preprocessed

has no peak at 1–2 o’clock. Figure 8 (b) are the averaging weekly patterns. Here it may also be seen that the pattern311

of synthetic (corrDist) matches better than the synthetic (euclDist).312
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Figure 8: Comparison of consumption patterns

Figure 9: The identified 20 representative patterns
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5.2. Probability-based results313

For the probability-based method, the representative daily consumption patterns from the training data set must314

first be identified. We used the seed for training, then used the seed again to validate the results. Adaptive clustering315

was implemented on the normalised daily load profiles of the seed, which resulted in 20 clusters. Figure 9 shows316

the clustering results ordered by the number of patterns in the clusters. The 20 representative patterns were labelled317

with the alphabetic characters from A to T . Each time series was then transformed into a sequence of alphabetic318

characters according to its daily patterns. Based on the sequences, the TPMs of the Markov chain were calculated for319

all days, for each of which the probabilities were computed based on Equation 14. A resulting alphabet sequence was320

converted into a synthetic time series by multiplying the random numbers that were sampled from the corresponding321

consumption distributions for the days.322

We then evaluated the data generator by comparing the real-world and the synthetic data by examining their323

statistical properties. We took the daily consumption of June as an example and computed the average consumption324

of each hour of the day (see Figure 10). As may be seen, the shapes of the real and synthetic consumption curves are325

relatively similar, with low consumption in the early morning, becoming higher during the day and the evening. The326

consumption profiles of the whole month (June) are shown in Figure 11, which reveals the day-to-day patterns and the327

discrepancies between the real-world and synthetic consumption time series. The result indicates that the synthetic328

consumption time series share a very similar pattern with the real-world time series.329

Based on the above results, we believe that the probability-based method can generate reasonably realistic con-330

sumption data and can therefore be used to evaluate building performance or the consumption behaviour of residents331

in terms of energy consumption patterns.332

5.3. Comparison333

In the previous subsection, we compared the visual patterns or shapes of the synthetic time series with the real-334

world data. In the following, we will study the statistical parameters of the data and the possibility of generating335

large-scale data sets using the proposed methods.336
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5.3.1. Statistical performance337

Figure 12 shows the probability distributions of the real-world and synthetic hourly consumption during one month338

(June). The results indicate that the distribution of the data generated by the regression-based method is more similar339

to real-world data than data generated by the probability-based method. This is because the latter was generated by340

the normalised hourly reading the data independently sampled from the consumption distribution of each day. For341

further investigation, we plotted the distribution of the daily consumption of the real-world data for one of the days in342

Figure 13. As shown in the figure, the data conformes closely to a standard distribution.343

Figure 14 shows a quantitative comparison of the real-world and synthetic data using box-plot method. The box-344

plot shows the summary statistics including minimum, first quartile, median, third quartile, and maximum, with the345

outliers shown outside the upper limit. The box-plot shows the statistical parameters for the twelve months of a346

year and indicates that the three data sets are quite similar. The biggest difference is in the length of the box. The347

synthetic data generated by the probability-based method is always slightly higher than the real-world data and the348

synthetic data generated by the regression-based method. This means that the synthetic consumption generated by the349

probability-based method is more distributed over the month. This may be because we used the Laplace method to350

smooth a zero probability of the transition between two states in the TPM. This diversifies the transition of patterns351

in a sequence. On the other hand, the difference may originate from the distribution of the daily consumption, from352

which we sampled the random number.353

Figure 15 shows the auto-correlation of the real-world and the two synthetic data sets, with a time lag of up to 50354

hours. Auto-correlation was computed based on the normalised patterns, which is a good way to study the appearance355

period of repeated patterns. According to the auto-correlation function (ACF) values, the regression-based method356

provides a better match with the real-world data. It should be remembered that in the regression-based approach, we357

optimised the model training by using the Pearson correlation distance to improve pattern matching accuracy, and358

this experiment verifies that this optimisation can yield better results (see also Figure 6 and Table 1). In contrast, the359

probability-based method generated the pattern sequence by relying on the TPM, and exhibits sub-optimal matching360

performance in terms of ACF.361

5.3.2. System performance362

System performance including the training and data generation processes will now be examined. It may be recalled363

that the training models can be re-used in the data generation process. For each method, the training process includes364

a number of steps, which are shown in Figure 16 (from bottom to top). This figure also shows the corresponding time365

used in each step when using the full set of the training data. In the regression-based method, the normalisation and366

K-means clustering are optional steps for the optimisation purpose, indicated by the dashed-line rectangle. As shown367

in this figure, clustering is the most time-consuming action in both methods as they use adaptive clustering. It is a368

two-stage method, which first performs adaptive K-means clustering to find the optimal number of clusters using an369

elbow method, then performs hierarchy-clustering to merge small clusters [24]. The adaptive clustering typically uses370
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more computer time than the normal K-means clustering (see Figure 14). The overall time used by the probability-371

based method is higher than the regression-based method as it consists of five mandatory steps in the whole training372

process.373
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In the following, we will evaluate the scalability of generating time series on Spark. It should be remembered that374

the models created by the training process are distributed to the workers by broadcasting in Spark. Map-only tasks375

are conducted to generate time series data in parallel. We performed the following two experiments to evaluate the376

scalability, size-up and speedup.377

In the size-up experiment, we used a total of four nodes (16 cores) to generate the data, but scaled the generated378

data set from 50 to 300 GB. Figure 17 shows the execution times that resulted. The results demonstrate that the time379

scaled well with the amount of data, almost linearly.380

In the speedup experiment, we scaled the cores from 4 to 16 to generate a fixed-size data set (100GB), and measure381

the execution times. The speedup is defined by the following equation:382

speedup =
T4

Tn
(15)

where Tn is the execution time forn cores (n = 4, 8, 12 and 16). Figure 18 shows the results. According to the result,383

both of the proposed methods can achieve good speedup, and the speedup is super linear when the cores increase384

to 16. In both experiments, the two methods are quite efficient in terms of running time and scalability as they run385

map-only jobs. The performance of the regression-based method is slightly better than that of the probability-based386

method, mainly due to the cost of constructing the alphabet sequence by random walk. As the size of the TPM is very387

large, n2 ∗ m = 202 ∗ 535 = 214, 000 (n = 20,m = 365 − 1) where n is the number of states (representative patterns)388

and m is the number of days in one year, the cost of lookups on TPM is substantial.389

5.4. Discussion390

In summary, the proposed data generators were able to generate realistic time series data with good performance,391

and the generated data have characteristics that are comparable to the real-world data in terms of patterns and statistical392

information. The two methods were supervised machine learning methods that require real-world data sets as the393

seed for generating realistic data sets. Our study indicates that clustering is a good way to preserve consumption394

patterns and customer segmentation information. The two methods differ in the following way: one uses prediction395
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for consumption data simulation, while the other uses statistics and probability. For the regression-based method, the396

accuracy of the simulation is highly dependent on the prediction model. In reality, it is often difficult to establish an397

accurate predictive model as it is affected by many variables, such as building type, household characteristics, weather398

conditions. In this paper, we simply used the autoregressive model for the prediction where only the time series data399

are considered. There are other prediction models that can be used for this simulation if the relevant socioeconomic400

data are available, for example, the periodic auto-regression with exogenous variables model (PARX) [32] which takes401

into account other factors that may affect energy consumption. In contrast, the probability-based method simulates402

the real-world consumption based on the statistical parameters of the data. In our experiment, this approach was still403

able to generate satisfactory results. As it is often difficult to obtain socioeconomic data, largely due to data privacy404

issues, the probability-based method can be a good alternative for simulating real-world consumption data.405

The implementation of these methods includes the training and generation programming. The training process406

in both methods requires multiple steps. Comparatively, the regression-based method would require less human and407

computer effort if the optional steps for optimisation, normalisation, and clustering were omitted. The most time-408

consuming step is clustering for the training, which is for determining household groups or representative pattern409

groups. Depending on the size of the seeded data, the training programming may not have to be implemented using a410

distributed computing programming framework, such as Spark, as in this work. The training process is run only once,411

but the resulting models will be re-used many times. The implementation of the data generation program is relatively412

easier, as it is a map-only program on Spark. The parameters or models for data generation are also distributed to413

mappers during the runtime through broadcasting and are kept in memory for generating data for better efficiency.414

Using a distributed computing framework makes it possible to generate data in parallel. There are other alternatives415

for parallel data generation such as multi-threading. However, a cluster-based program would be the best option for416

generating large-scale data sets of the order of tera/petabytes. Big data sets are often needed for benchmarking big417

data management systems, e.g., [31].418

6. Conclusions and Future Work419

Scalable realistic consumption time series data are often needed for system benchmarking in software engineering420

and for building performance evaluation in civil engineering. In this paper, we have presented two very different data421

generators that can accurately simulate real-world fine-grain energy consumption time series. The proposed methods422

are both supervised machine learning methods that include a training and a data generation process. However, they423

are based on different techniques: one is regression-based and the other is probability-based. We have detailed how424

to create data models, and how to use the models to generate synthetic data sets. We have proposed optimisation425

techniques for better simulating the real-world data, such as preserving cluster segmentation information, and have426

implemented the data generator on Spark so as to generate data in parallel. We have evaluated the proposed methods427

comprehensively and compared the two methods. The results have shown that the proposed methods have the abil-428
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ity to simulate realistic energy consumption data, and the implemented data generators have good performance for429

generating large-scale data sets.430

In future work, we will add more features to improve data generation models. For example, the regression-based431

method can use weather conditions (e.g., outdoor temperatures), and wider seasonality (e.g., the seasons of a year). In432

addition, we will refine the data generators to make them easy to use for generating different consumption data, such433

as water, gas, or heat.434
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