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ABSTRACT
Tiny face detection aims to find faces with high degrees

of variability in scale, resolution and occlusion in cluttered
scenes. Due to the very little information available on tiny
faces, it is not sufficient to detect them merely based on the
information presented inside the tiny bounding boxes or their
context. In this paper, we propose to exploit the semantic sim-
ilarity among all predicted targets in each image to boost cur-
rent face detectors. To this end, we present a novel framework
to model semantic similarity as pairwise constraints within
the metric learning scheme, and then refine our predictions
with the semantic similarity by utilizing the graph cut tech-
niques. Experiments conducted on three widely-used bench-
mark datasets have demonstrated the improvement over the-
state-of-the-arts gained by applying this idea.

Index Terms— Tiny face detection, semantic informa-
tion, metric learning, graph-cut

1. INTRODUCTION

Robust face detection is one of the ultimate components to
support various facial related problems, such as face align-
ment [1][2], face recognition [3][4][5], face verification [6],
and face tracking [7], etc. From the cornerstone by Viola-
Jones [8] to the recent work by Hu et al. [9], the performance
of face detection has been improved dramatically. The recent
introduction of the WIDER face dataset [10], which contains
a large number of small faces, exposes the performance gap
between humans and the current face detection techniques
due to a number of challenges in practice. Different from the
classical face detection, tiny face detection mainly focuses on
low-resolution, large scale variation and serious occlusion, as
shown in Fig. 1. All of these challenges suggest the informa-
tion on small objects is far too limited.

The existing methods for finding small objects in im-
ageries can be grouped into three categories. The first group
(e.g., [11]) aims to extract scale-invariant features using pre-
trained deep networks. However, their performance drops
dramatically as the target faces become too small. Another
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Fig. 1. Tiny faces detected with our proposed approach
(shown as yellow and green boxes) and the HR approach [9]
(shown as green boxes).

group tries to generate additional information inside the ob-
jects by interpolation. For example, the work in [9] demon-
strated that interpolating the lowest layer of image pyramid
was significantly beneficial for capturing small objects. The
last group (e.g., [12]) seeks to incorporate information sur-
rounding the objects (i.e., context) in order to improve the
performance of tiny face detection. It is clear that computer
vision needs additional contextual information to accurately
classify small faces. Is there another way to improve the
performance of small object detection?

Note that, the existing classification-based tiny face detec-
tors simply apply a threshold on a classification score to deter-
mine whether the corresponding candidate is face or non-face,
as shown in the first stage of Fig. 2. However, the optimal
threshold is often difficult to obtain. In this paper, we pro-
pose a novel idea to exploit the semantic information (consist-
ing of spatial locations, scales and textures) of a candidate’s
neighbors to classify a target to face or background. Specifi-
cally, based on such semantic information, we try to group all
of the faces into one cluster, while backgrounds are kept far
away from the cluster. For this purpose, we propose a Metric
Learning and Graph-Cut (MLGC) framework, which carries
out further classification on the candidates produced by other
object detectors. Fig. 2 illustrates the framework of this idea.



We first obtain a high-recall classifier which aims to re-
trieve all of the targets in an image, but may unavoidably in-
troduce lots of false positives. Our focus is to retrieve faces
with low classification scores but remove these false positives.
In order to do this, we design a metric learning method to
learn a similarity matrix to evaluate the similarity of each pair
of candidates. A graph model is built to represent the sim-
ilarity matrix of these candidates. The graph cut technique
is utilized to divide the graph into several groups where can-
didates in the same group are similar and those in different
groups are dissimilar to each other. Finally, the candidates in
each group are classified into faces or non-faces, correspond-
ingly, by voting.

The main contributions of this paper can be highlighted as
follows. First, aiming to boost the detection performance, we
propose a novel metric learning and graph-cut framework to
exploit the semantic information between targeting objects’
neighbors. Secondly, to depict local neighborhood relation-
ships, we introduce a pairwise constraint into the tiny face
detector to improve the detection accuracy. Thirdly, to realize
such a pairwise constraint, we convert the problem of regres-
sion that estimates the similarity between different candidates
into a classification problem that produces the scores of clas-
sification for each pair of candidates.

2. RELATED WORK

Face detection is a classic topic in computer vision. The pio-
neer work on the topic was published by Viola and Jones [8]
who designed a cascade of weak classifiers using Haar fea-
tures and AdaBoost for fast and robust face detection. Similar
in spirit, numerous approaches have been developed to im-
prove the performance with more sophisticated hand-crafted
features [13] and more powerful classifiers [14]. However,
these methods using non-robust hand-crafted features and
optimized each components independently, and hence led to
sub-optimal face detection results. Recently, face detectors
based on CNNs [15][16][17] have greatly bridged the gap
between human vision and artificial detectors.

Tiny face detection aims to detect a large number of small
faces in crowded and cluttered scenes. It is totally different
from detecting normal faces, because the cues for detecting
a 3-pixel tall face are fundamentally different from those for
detecting a 300-pixel tall face [9]. Bell [20] presented the
Inside-Outside Net (ION) to model the context outside a re-
gion of interest and showed improvements on small object
detection. Very recently, Hu and Ramanan [9] designed a
foveal descriptor that captured both coarse context and high-
resolution image features in order to effectively encode con-
text information, which has achieved state-of-the-art perfor-
mance on the WIDER FACE dataset. As we all know, it
is not sufficient to detect small objects merely by extracting
deep learning features from the texture inside an object re-
gion. One main drawback is that, these approaches have ne-

glected local semantic information. We have observed that
there exists local coherent relationships in terms of spatial lo-
cation, scale, and texture in high-density tiny face detection,
ignoring the influence of various viewpoints. For example,
as shown in Fig. 1, face bounding boxes close to each other
are similar in their scales and textures. Local semantic infor-
mation helps tiny face detectors better eliminate false alarms.
To introduce local coherent relationships, we learn a metric
to represent this coherence and use the graph-cut algorithm
to divide candidates into several groups, where candidates in
the same group are similar, and dissimilar when they are in
different groups.

3. THE PROPOSED METHOD

Our goal is to integrate local coherent relationships into
tiny face detection. In order to represent local coherent re-
lationships, we define pairwise constraints, which are an
equivalence constraint for pairs of data points belonging to
same classes, and an inequivalence constraint for pairs of data
points belonging to different classes.

As shown in Fig. 2, we present a metric learning and
graph-cut (MLGC) approach for high-density tiny face de-
tection. We first use a linear-SVM to estimate the similarity
matrix among all candidates (Sect. 3.1) and then we construct
a graph model and use the graph-cut algorithm to divide can-
didates into several groups (Sect. 3.2). Finally, we design a
voting method to classify groups (Sect. 3.2).

3.1. Metric learning based on linear-SVM

Let X = {x1, x2, ..., xN} denote the set of N candidates
(i.e., face or non-face bounding boxes). To introduce the
pairwise constraint, we first build a similarity matrix S =
s(xi, xj), xi, xj ∈ X, i, j = 1, 2, ...N , where s(xi, xj) repre-
sents the similarity between xi and xj . s(xi, xj) = 1 means
that xi has a strong resemblance of xj , and s(xi, xj) = 0
means that xi is completely different from xj .

In order to obtain the similarity score between two can-
didates xi and xj , we treat it as a classification problem and
propose an unsupervised way to obtain the similarity score
between two candidates. We use SVM to compute the simi-
larity score between two candidates xi and xj based on multi-
ple cues, i.e., the position, scale, classification score and deep
features of the candidates, which are concatenated together
into a feature vector φ(xi). Note that, classification scores
and deep features of a candidate xi are obtained from the tiny
face detector [9]. During the training stage, we sortX by their
scores in descending order. We suppose that XTop denotes
the top 10% of X which are face patches, while XBottom de-
notes the bottom 10% of the non-face patches inX . As shown
in Fig. 2, in Stage 2 of our MLGC, we build a training set
{(x′

11, y
′

11), (x
′

12, y
′

12), ...(x
′

nn, y
′

nn)}, x′

ij = φ(xi) − φ(xj),
y

′

ij = {0, 1}. If xi, xj ∈ XTop, y
′

ij = 1. If xi ∈ XTop, xj ∈



Fig. 2. The framework of our proposed MLGC for high-density tiny face detection.

XBottom, y
′

ij = 0. During the testing stage, we feed x
′

ij =
φ(xi) − φ(xj) to the SVM classifier, and then use the out-
put score as the similarity score s(xi, xj) between xi and xj .
Thus, we build the similarity matrix S.

3.2. Graph-cut based on spectral clustering

Given a set of candidates X = {x1, x2, ..., xN} and a simi-
larity matrix S, our goal is to cluster X into different groups.
Candidates are similar when they are in the same group, and
are dissimilar when they are in different groups. In this work,
we adopt the graph-cut algorithm for this purpose. First, we
build a graph model G = (V,E) to represent X , where each
vertex vi ∈ V represents a candidate xi, and eij ∈ E repre-
sents the similarity s(xi, xj) between the corresponding can-
didates xi and xj . Then, clustering X into groups can be
reformulated with the graph model represented in Eq. 1. We
want to find a partition of the graph so that the weights of
edges between different subgraphs are very low (indicating
that points in different clusters are dissimilar from each other)
and the weights of edges in the same group are very high
(meaning that points within the same cluster are similar to
each other). Formally,

cut(A1, A2, ..., Ak) =
1

2

k∑
i=1

W (Ai, Āi) (1)

where Ai ⊂ V,Ai ∩ Aj = ∅ and A1 ∪ A2 ∪ ... ∪ Ak = V ,
W (Ai, Āi) =

∑
m∈Ai,n∈Āi

wmn, wmn = exp(−Smn/2δ
2)

used to boost local neighborhood relationships.
However, the solution simply separates one individual

vertex from the rest of the graph. To avoid unbalanced
graph-cut situation that there is a large difference in sizes of
subgraphs, we introduce the size of subgraph |A| which is
the number of vertexes in A to ensure the set of subgraph
{A1, A2, ..., Ak} is reasonably large. So, we can transform
Eq. 1 as follows:

cut(A1, A2, ..., Ak) =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
(2)

According to [21],

arg min cut(A1, A2, ..., Ak) = arg min
H

Tr(HTLH) (3)

where L is the Laplacian matrix, HTH = I , and the indica-
tor

H = {h1, h2, ..., hk}

with

hi,j =

{
1√
Aj

if vi ∈ Aj

0 otherwise
(4)

for i = 1, 2, ..., N ; j = 1, 2, ..., k.
Eq. 3 is the standard form of a trace minimization prob-

lem. According to the Rayleigh-Ritz theorem [22], the so-
lution is given by choosing the matrix U which contains
the first k eigenvectors of L and then uses the k-means al-
gorithm on U . So, we manage to cluster X into k groups
{A1, A2, ..., Ak}. Finally, candidates in each group are clas-
sified to face or non-face class using voting.

4. EXPERIMENTS

In this section, we first demonstrate the effectiveness of our
proposesd semantic similarity metric and then evaluate the
whole model on three widely-used face detection bench-
marks, including WIDER FACE [10], Annotated Faces in the
Wild (AFW) [23] and Pascal Faces [24].

To demonstrate the effectiveness of our proposed seman-
tic metric (see Subsection 3.1) for similarity measurement,
we create positive samples, i.e., the ground truth face regions,
and negative samples which are patches randomly sampled
from background, and evaluate the discriminative ability of
the computed similarity matrix on the WIDER FACE valida-
tion set. The average precision in each image on the validation
set is 79.58% in the testing set composed of both positive and
negative samples, 72.25% in the set of positive samples only,
and 86.75% in the set of negative samples only.
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Fig. 3. The precision-recall (PR) curves obtained using our proposed MLGC approach and the-state-of-the-arts.
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Fig. 4. The PR curves obtained on WIDER FACE validation set using our proposed MLGC approach and the-state-of-the-arts.

4.1. The AFW and PASCAL FACE Dataset Results

The AFW dataset has 205 images containing in total 473
labelled faces. We evaluate our model against the HR [9],
DPM [25], Headhunter, SquaresChnFtrs [26], Structured
Models [24], Shen et al. [27], TSM [23] and commercial
detectors (e.g., Face.com, Face++ and Picasa). As illustrated
in Fig. 3(a), our MLGC outperforms all other detectors on
precision-recall (PR) curves.

The PASCAL FACE dataset contains 1,335 labeled faces
in 851 images, which are collected from PASCAL person lay-
out subset. Because this paper focuses on face detection, we
ignore images without persons from the original dataset, sim-
ilar like DPM [25]. We also evaluate our model against the
HR [9], DPM [25], Headhunter, SquaresChnFtrs [26], Struc-
tured Models [24], Shen et al. [27], TSM [23] and commercial
detectors (e.g., Face++ and Picasa). As shown in Fig. 3(b),
our MLGC outperforms all other detectors on PR curves.

4.2. Results Obtained on the WIDER FACE Dataset

The WIDER FACE Dataset is one of the most challenging
public face datasets due to the variety of face scales and oc-
clusion. It contains 32,203 images split into training (40%),
validation (10%) and testing (50%) set. The validation set
and testing set are divided into “easy”, “medium”, and “hard”

subsets according to the difficulties of the detection.
We compare our MLGC with the HR [9], MSCNN [28],

ScaleFace [29], CMS-RCNN [18] and Multitask Cascade
CNN [30]. The PR curves on the testing set is presented in
Fig. 3(c), and our method outperforms HR by 0.2% in “easy”
subset. The PR curves on the validation set is presented in
Fig. 4 and our method outperforms the HR by 0.5%, 0.2%,
0.3%, in “easy”, “medium” and “hard” subsets respectively.

5. CONCLUSION

In this paper, aiming to improve the performance of tiny face
detection, we have proposed a novel idea to exploit the se-
mantic similarity between targeting objects’ neighbors and
created a pairwise constraint to depict such semantic similar-
ity. Then, a framework which adopts the metric learning and
graph-cut techniques has been formulated to boost the accu-
racy of existing tiny object classifiers. Experiments conducted
on three widely-used benchmark datasets for face detection
have demonstrated the improvement over the state-of-the-arts
by applying this idea. For time efficiency, we take some time
to improve tiny face detector’s performance. The mecha-
nism of our proposed framework is generic indicating that the
framework has a great potential being applied on other small
and generic object detectors.
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