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Abstract

This paper addresses automated mapping of the remaining wall thickness of metallic pipelines in
the field by means of an inspection robot equipped with Non-Destructive Testing (NDT) sensing.
Set in the context of condition assessment of critical infrastructure, the integrity of arbitrary sections
in the conduit is derived with a bespoke robot kinematic configuration that allows dense pipe wall
thickness discrimination in circumferential and longitudinal direction via NDT sensing with guar-
anteed sensing lift-off (offset of the sensor from pipe wall) to the pipe wall, an essential barrier to
overcome in cement-lined water pipelines. A tailored covariance function for pipeline cylindrical
structures within the context of a Gaussian Processes has also been developed to regress missing
sensor data incurred by a sampling strategy folllowed in the field to speed up the inspection times -
given the slow response of the PEC electromagnetic sensor proposed. The data gathered represents
not only a visual understanding of the condition of the pipe for asset managers, but also constitutes
a quantative input to a remaining-life calculation that defines the likelihood of the pipeline for fu-
ture renewal or repair. Results are presented from deployment of the robotic device on a series of
pipeline inspections which demonstrate the feasibility of the device and sensing configuration to
provide meaningful 2.5D geometric maps.

1 Motivation - A Taxonomy of NDT Inspection Techniques

Non-Destructive Testing (NDT) or Evaluation (NDE) is extensively employed by the energy and water industry to
assess the integrity of their network assets, particularly their larger and most critical conduits (generally refered to
as those larger than 350 mm in diameter), in their decision-making process leading their renewal/repair/rehabilitation
programs. The key advantage of NDT/NDE is that the structure of the asset is not compromised in estimating its
condition.

The sensing modality to use is strongly influenced by the material of the asset. Grey Cast Iron (CI) pipelines remain
the bulk of the buried critical water infrastructure in the developed world as that was the material of choice for mass
production with the advent of the Industrial Revolution in the middle of the 18th century (alongside its less brittle rel-
ative of Ductile Iron since the nineteen fifties), until carbon steel, asbestos cement or plastic pipelines (PVC) amongst
other materials made them redundant over the years. The non-homogeneity of the CI produce means that sensing
techniques widely employed in the (mild) Carbon Steel networks in the energy pipeline sector, such as ultrasonics
or electromagnetic acoustic transducers (EMAT), are inadequate for CI, and the underlying techniques of most com-
mercial propositions for CI are instead based on either magnetics (e.g. Magnetic Flux Leakage (MFL), Pulsed Eddy
Currents (PEC) and Remote Field Eddy Currents (RFEC)), or the study of the propagation of pressure waves in the
pipeline and/or fluid.
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(a) Externa locall inspection tool. (b) ILI tool.

(c) An external averaging tool.

Figure 1: Example of various configurations of NDT tools.

NDT techniques produce results that tend to be a trade-off between deployment costs and information gain. Local
inspection techniques (i.e. 1 to 3 meters) can provide dense measurements but are time-consuming and generally costly
per unit-length as significant preparatory civil works are required (excavations, network re-routing for guaranteed
supply, traffic control, etc). Moreover inspections can only be undertaken at locations which are accesible from the
surface. An example of these tools can be seen in Fig. 1a.

On the other hand, the taxonomy of long-coverage tools can be broadly split into techniques that provide average
pipe wall measurements over longer distances (generally from a few to 100s of meters, even kilometers), and in-line
intrusive (ILI) devices (”smart pigs”) deployed inside the pipeline to inspect in higher detail over longer distances
(generally 100’s of meters to kilometers to make it more cost-effective), while propelled by the operating pressure of
the fluid.

The former are generally deployed by accessing the external pipe wall or water column at a few access points spread
over the length of the pipeline, either through small key-hole excavations or through external access points such as
valves or hydrants. As such they tend to have low or no impact in the continuing operation of the pipeline and are more
affordable alternatives for condition assessment. An example can be seen in Fig. 1c. However given the averaging
nature of their results, these tools are aimed at providing an initial screening of the condition of an asset, and lack the
ability to provide the type of detailed geometry information needed to ascertain likelihood of pipe failure.

Flow-driven ILI tools, on the other hand, are inserted into the charged water column either through standard large
appurtenances present in critical mains, or more often than not via dedicated launch and retrieval mechanisms, as
depicted in Fig. 1b. While these tools are able to provide direct measurements related to the pipe wall condition over
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long distances, they do so at the expense of higher disruption to the utilities and combined costs from the substantial
civil engineering support from the utility prior, during and post inspection. Moreover, the effectiveness of these
techniques has not been fully established within the industry given the consequential validation investment required to
do so in a statistical meaningful way.

ILI tools present additional shortcomings in the pursuit of attaining an accurate depictions of the condition of a pipe
wall:

• they are at the mercy of the pressure of the fluid driving them (both in the tethered and free-flowing case).

• should the tools be operated in de-watered conditions, they necessitate complicated winch mechanisms be-
tween entry and exit points.

• operating parameters need to be closely controlled (e.g. tool velocity), meaning that discriminating flow
controls need to be in place, not necessarily an easy feat to achieve in a complex interconnected network.

• they lack the ability to do fine control and adjustments for mapping (e.g. ensuring tight tolerances in sensor
lift-off, repeatability, rectify missed measurements).

Driven by the needs of the water industry the work hereby presented describes the development and field testing of a
novel internal NDT inspection robotic vehicle able to:

1. undertake localised, controlled inspections.

2. generate dense NDT mapping suitable for condition assessment and failure prediction.

3. tightly control inherent lift-off during sensing (as induced by the presence of non-magnetic cement lining and
pipeline wall irregularities)

4. access arbitrary (within tether range) pipeline spools from a single point of entry, hence reducing costs to util-
ities and allowing inspection of inaccessible sections from the surface (e.g. under a rail pass) and minimising
disruption to customer (e.g. a pipeline under a driveway).

While the proposed solution requires pipes to be de-watered for deployment, this serves a clear mandate from the
utility sector that necessitates a robotic NDT inspection vehicle that can be deployed in an opportunistic manner to
ascertain the condition of a particular pipeline, specifically when a mains break occurs, or on the back of a valve
inspection or repair program when pipelines are inevitably taken off-line. Moreover, while time is always at essence
in any maintenance and inspection routines, this is particularly the case for critical assets that need to be put back
on-line as soon as feasibly possible. To that end, an efficient robotic inspection solution with the ability to produce
detailed dense maps fitting for pipe failure analysis from limited sets of inspection data is highly desirable as that would
minimise both collection time and information losses against the original wall thickness maps. The use of Gaussian
Processes is thus proposed in this work to model the spatial dependencies present in the interspersed thickness data
collected, and to recover form these the required detailed pipe wall geometries.

The remainder of this paper describes such an NDT robot for the inspection of buried network infrastructure and the
novelties behind its inception. The manuscript is organized in two main parts. The first part covers the hardware
design which includes Section 2, where the sensing capabilities used to measure the pipeline wall thickness are first
established, and Section 3 where the locomotion choices and controls for the proposed robotic platform given the
specifics of a pipeline environment are then described. The second part describes the Gaussian Process model used
to generate maps of wall thickness based on the measurements taken by the robotic platform, described in Section 4,
linked to the actual detailed inspection results from deployment in the network of a water utility given in Section 5.
Learnings from the development of the robot and the field deployment have been discussed in Section 6 in the hope
that those insights may aid interested readers pursuing related ouctomes, whilst concluding remarks and further work
are then collected in Section 7.
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(a) Axis of 2.5D thickness map. (b) Rolled pipe thickness map. (c) Axial x and circumferential y coordinates
aligned on a pipe.

Figure 2: Axial and circumferential coordinates of a 2.5D pipe thickness map.

2 NDT Pipeline Wall Inspection

Recent research in the space of stress analysis and failure prediction of critical CI water mains has revealed that
over and above pit depths, as traditionally provided during condition assessment of a critical asset, there is a need
to ascertain the presence and geometries of large corrosion patches in the pipe walls (Ji et al., 2017; Kodikara et al.,
2016), such as those depicted in Fig 16d. There exist a wide range of NDT technologies developed for the purpose of
material characterisation for CI (Liu and Kleiner, 2013), yet the provision to build dense 2.5D maps of remaining wall
geometries for lined water mains has driven the need to design an internal inspection tool around Pulsed Eddy Current
(PEC) sensing technology, as a proven technique typically used in the NDT sector for ferromagnetic material thickness
estimation (Huang et al., 2010; Xu et al., 2012; Huang et al., 2011), resilient to sensor lift-off. It is noteworthy to
emphasise that while there are a myriad of commercial NDT tools available, they are mostly aimed at visual inspection
of an asset, or target carbon steel with the ultimate aim to poinpoint single pitting deficiencies reliably. To date, the
authors are not aware of any NDT tools able to densely map arbitrary spools of thick CI material, as it is the intention
in this work.

Fig. 2 enables interpreting a typical 2.5D maps of remaining wall thickness as depicted throughout this article, and the
conventions shown hold for all thickness maps presented herein. The axial location indicates the distance along the
pipe’s longitudinal axis, while the circumferential location represents rotational degrees around the pipeline. 0◦ and
360◦ coincide on the top (crown) of the pipe, denoting the direction pointing vertically upwards perpendicular to the
pipe’s cylinder axis. As shown in Fig. 2c, the direction of Y-axis increment is counter-clockwise when looking towards
the positing x direction, or the direction of robot’s travel. It should be noted that despite the visual representation of the
circumferential dimensions in degress throughout the paper to aid the reader’s intuitive understanding of cilyndrical
measurements around a pipeline, in mapping terms they are treated as 2D length measurements in mm in the Euclidean
space, for which a single thickness measurement is obtained via the PEC sensor (hence 2.5D maps). The colour bar to
the right of the thickness maps is a legend representing thickness in mm, between black (0mm, or a through-hole) and
light grey (30mm). In the field inspection results presented in Section 5, longitudinal locations are in reference to the
origin set at the robot’s entry point to the pipe.

2.1 Developed PEC Sensing System

A typical PEC sensing system developed for ferromagnetic materials consist of an exciter coil, a detector coil, a
voltage pulse generator for excitation and an amplifier for the detected signal. A block diagram of the PEC sensing
set up developed for this work is shown in Fig. 3a. Given the size of the pipes of interest the footprint of the sensor
used was 50 mm, indicating that it measures the average thickness of a 50 mm×50 mm area under the sensor. An
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(a) PEC sensing operating diagram. (b) Typical PEC signals on CI thicknesses.

Figure 3: PEC sensing setup embedded in the inspection robot (left), and typical PEC signals.

(a) Cross section of a typical coil based circular PEC sensor
(adapted from (Fu and Bowler, 2006)).

(b) PEC sensor for cast iron pipe assessment (Ulapane et al., 2017).

Figure 4: Typical coil based circular PEC sensor architecture.

example of a typical PEC sensorcoil arrangement is illustrated in Fig. 4. Signals captured from the system on different
CI thicknesses are shown in Fig. 3b and as reported in the literature features can be extracted from such signals which
can be directly linked to material thickness (Huang and Wu, 2015; Ulapane et al., 2014; Ulapane et al., 2017).

2.2 Validation of PEC Robot Sensor Setup

The validity of the sensor arrangement was first assessed by comparing results on the exhumed CI pipe in Fig. 5 with
intact cement lining. The objective was to evaluate how well the measurements agree if a section of the pipe is scanned
externally and internally via cement lining. External measurements were performed on known locations with the aid
of the grid pattern marked in Fig. 5a. The same locations were scanned internally as shown in Fig. 5b with the aid of
the robot localized with reference to the pipe’s edge. Measurements were recorded by placing the sensor centred on
the grid squares at 50 mm distance increments along rings in the circumferential direction, whilst distance between
consecutive rings was set to 100 mm to speed-up the inspection process, since thus generated thickness maps can
be then upsampled with minimal information loss as will be shown in Fig. 16d. The rationale and methodology for
this will be further elaborated on in the following two Sections. Strong agreement between both measurements was
notable as depicted in Fig. 6; the error histogram in Fig. 6e, calculated by subtracting internal thickness estimates from
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(a) Exhumed pipe on which internal and external measurements were performed. (b) Pipe assessment robot performing internal measure-
ments.

Figure 5: Laboratory setup with exhumed pipe for internal and external PEC validation.

(a) External. (b) Internal. (c) Repeatability of straight line test.

(d) One-on-one comparison 6a vs. 6b. (e) Error histogram 6a vs. 6b.

Figure 6: Thickness maps obtained from internal (in blue) and external (in red) PEC sensor measurements to contrast
the validity of an internal sensor deployment mounted on the robotic device when operating through the internal layer
of cement lining. Two examples are provided, a rectangular section (500mm longitudinally, and 1800 circumferen-
tially) - collected in 6a, 6b, 6d and 6e, and an internal versus external repeatability straight line test shown in 6c.

external ones hints at a small positive bias in the error, with a mean and standard deviation of 0.323 mm and 0.417 mm
respectively. This is an expected result since marginally better sensitivity can be expected when scanning externally
(particularly for higher thickness), as the sensor touching the pipe wall can achieving stronger penetration than from the
inside given the lift-off effect induced form the cement lining layer. The errors are indicative of acceptable agreement
between internal and external measurements confirming the sensor’s suitability for internal assessment of pipes via
cement lining. In another sensor verification experiment, Fig. 6c shows results of a repeatability test carried by
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(a) Pipe section and high resolution GT map. (b) Estimates against laser GT.

Figure 7: External PEC thickness estimates against laser groud truth (GT).

(a) Solid model design. (b) Robot inspecting a pipeline.

Figure 8: NDT inspection robot design, and during field deployment in a pipeline.

measuring a straight line along the pipe six times (three times internally and three times externally, with each line
having 18 measurements); the average variation on a location was less than 1 mm, indicating appreciable measurement
repeatability.

Further to the comparison of internal versus external deployment, the PEC sensor arrangement was also validated
on a pipe whose actual wall thickness ground truth (GT) had been previously obtained, with the results collected in
Fig. 7. Attaining the GT is a destructive process, whereby the pipes are first exhumed, then both internal and external
pipe surfaces are grit-blasted to remove rust and graphitization, the by-products of the corrosion process inflicted on
a buried pipeline, leaving only the bare metal - the target of the PEC sensor measurement. Both surfaces are then
reconstructed with a high-resolution 3D laser scanner and ray-tracing performed on the collocated upsampled internal
and external pipe surface point clouds to derive the GT thickness maps at a resolution of 0.6 mm (Skinner et al.,
2014). This high resolution GT can then be downsampled to the sensor’s 50 mm footprint by means of averaging so
as to match the PEC sensor measurements in order to provide meaningful comparisons. A Root Mean Square Error
(RMSE) of 1.29 mm was observed between external PEC measurements and GT, indicating reasonable agreement
even when challenged by significant defects as evident from the testing pipe depicted in Fig. 7a, selected to better
capture variability in the remaining wall thickness.

Page 7 of 52 Journal of Field Robotics

John Wiley & Sons



(a) Top view. (b) Front view.

Figure 9: Adopted self-alignment mecanum wheel layout. Longitudinal wheel spacing along the x-axis prevents
angular motion about the z-axis, therefore maintaining a heading along the longitudinal pipeline direction. The pipe
wall stops the robot translating horizontally along the y-axis - instead resulting in the full circumferential rotation
desired for the pipe inspection task given the additional support of the deployed vertical stability arm as shown in 9b,
which also allows for consistent surface contact of all the mecanum rollers (at the expense of increased friction with
the pipe walls).

3 NDT Robot Kinematics, Locomotion and Control

The robotic NDT mapping unit was designed to allow accurate positioning of sensors internally on the pipe surface,
in a robust and repeatable manner. To achieve this, a mechanism designed to self-align inside the pipe while provid-
ing circumferential and longitudinal control with a single actuation to place sensors against the pipe inner wall was
developed. The CAD model and a deployment in the field after construction is depicted in Fig. 8.

3.1 Mechanical Design

Mecanum wheels were selected for the robot locomotion. In planar applications they enable holonomic robot motion
as they allow control in all three degrees-of-freedom (DoF) available to the robot (Xie et al., 2015). For this application
it is only necessary to control two degrees-of-freedom, longitudinal and circumferential motion. By applying a non-
standard wheel configuration it is possible to exploit the unique geometry of the operating environment to passively
align with the central pipe axis, automatically tracking the pipe should minor changes in direction occur. Fig. 9a and
Fig. 9b demonstrate the layout designed to achieve these requirements. In this configuration, the axis of rotation of the
pipe contacting rollers all pass through a single point allowing the robot to rotate freely about this point in response to
an external force. When resting on a cylindrical surface, such as a pipe wall, an external restoring force is generated
in response to angular disturbances which acts to return the robot to the aligned position.

Control in the longitudinal direction and rotation about the circumferential direction are achieved by controlling wheel
velocities using the kinematic relations derived in Eq. 1, which follow standard forwards kinematic equations in
simplified form (Taheri et al., 2015), where vx(t) reflects the longitudinal velocity (m/s), vy(t) is the circumferential
velocity (m/s), ωi (i = 1...4) is the wheel rotation speed (rad/s), ωz(t) denotes angular velocity on the x/y plane, r is
the wheel radius (m) and lx, ly indicate the wheel separation and body length respectively.
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(a) Arm design. (b) Rotated stabilising arm.

Figure 10: Stabilising arm.

vx(t) = (ω1 +ω2 +ω3 +ω4)×
r
4

vy(t) = (−ω1 +ω2 +ω3−ω4)×
r
4

ωz(t) = (−ω1 +ω2−ω3 +ω4)×
r

4× (lx + ly)

(1)

It is evident from Eq. (1) that maintaining zero angular velocity (and therefore a constant heading) is a wheel speed
control task. As demonstrated in Fig. 9b, wheel spacing prevents angular motion about the z axis, therefore maintain-
ing a heading along the longitudinal direction. The pipe wall stops the robot translating horizontally - instead resulting
in the circumferential rotation that is desired for this task. It is however essential that the angular velocities of diag-
onally opposite wheels are matched to prevent excessive motor loads precisley given the robot is constrained in the z
axis. Driving each pair of diagonally opposite wheels with a single motor would achieve this requirement, however,
the required drivetrain is complex and in the proposed designed control of each separate motors is implemented in
software, as discussed below as part of the system overview.

To maintain stability during circumferential rotations, a set of free-wheeling omni-wheels are mounted on a parallel
four bar linkage shown in Fig. 10a. This is linked to a pair of gas struts to provide a consistent opposing force to the
mecanum wheels surface contact point. The applied force cancels out the gravity vector as the robot rotates, allowing
consistent continuous surface contact for each of the wheels rollers. To achieve this the assembly is pressed against
the pipe wall with a preload of approximately twice the robot weight, maintaining control authority regardless of
orientation while simultaneously compensating for variation in pipe diameter. A linear actuator is included to retract
the omni-wheels from the pipe surface during insertion. This actuator features a spline so that it does not affect the self
correcting behaviour of the parallel linkage during normal operation. Fig. 10b demonstrates the applied force during
the robots rotation along the vector F act.

The PEC sensors are coupled to actuated lever arms using a stiff rubber joint. This joint allows the sensor to conform
to the pipe surface in the presence of minor irregularities while maintaining a precise placement. The actuators drive
until a stall condition is detected, allowing the sensor to be reliably placed on the pipe surface regardless of pipe
variations or actuator drift.

Fig. 11 depicts the final robot in more detail in a pipeline in the laboratory (left), and in an open-cut pipeline for easier
viewing in the field.
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(a) NDT inspection robot front view. (b) NDT inspection robot in an open-cut pipe.

Figure 11: The NDT inspection robot (right figure depitcs the configuration with only one sensing arm mounted on).

Figure 12: System block diagram depicting the four on-board major components on the robotic system (power, sensors,
computing and actuators), and the off-board components linking the robot to a user-driven computer via a 70m power-
over-ethernet tether.

3.2 System Overview

The system uses two computers, one on-board the robot for data acquisition and actuator control, and one outside the
pipe for the user interface. The entire system runs from a generator on the surface with power delivered to the robot
with a power over ethernet (PoE) connection. The user interface can receive data and issue control commands back to
the operator in real-time over the local area network (LAN) connection provided by the same ethernet tether. Fig. 12
demonstrates the overall hardware system layout whilst Table 1 list details about each component.

The long deployment duration precludes battery operation hence the choice of tethered PoE to provides for signifi-
cantly longer operation times. The POE injector provides 60W of power, the maximum supplied by readily available
off-the-shelf equipment, so an ultracapacitor bank and bespoke charger was developed to supply bursts of high power
while ensuring that the PoE equipment maintains an optimal power delivery rate. While deploying the sensors and
taking a reading the average system power is 40W. This increases dramatically to 100W when the motors are driven to
reposition the robot. Since the time spent driving the motors is relatively low in comparison to sensing acquisition the
overall average power requirement is less than the 60w supplied by the PoE system. Thus, the chosen setup provides a
steady power supply for the overall system on the condition that high power maneuvers are not sustained for extended
periods, as is the case for the inspection of critical water mains which lay flat and straight in the ground.
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Table 1: Core Component specifications.

COMPUTING Odroid XU4 - Arm based single board computer
SENSORS Xsens Mti-10 IMU w/ Gyro 450◦/s, acc 50m/s2

Odroid USB-Cam 30FPS, FOV: 68◦

3D Structure Sensor w/ HFOV: 58◦, VFOV: 45◦

CONTROL Maxon Motor DCX26L, gear ratio 231:1, sensor 500 counts/turn
Sensor Actuator - linear actuator, max force: 1000N
Stability Actuator - linear actuator, max force: 2500N

POWER PoE injector/splitter, 60W, 70m cable reel

(a) Circumferential repeatability. (b) Circumferential error histogram.

(c) Longitudinal error. (d) Longitudinal error histogram.

Figure 13: Circumferential and longitudinal consistency. Circumferential deviations (top graphs) represent orientation
errors of repeated commanded 10◦increment motions, as measured by an on-board IMU, whilst longitudinal errors
shows the axial drift during these motions as measured by an external LIDAR (see Fig. 8b)

.

The on-board Odroid, running Linux and the Robotic Operating System (ROS), receives data from the sensor suite
through a powered USB hub and controls on-board actuators via digital input/outputs pins. Each sensor has it’s own
monitoring node to manage incoming data and publish to the communication layer. Custom task allocation/behaviour
nodes then subscribe to the data streams, processing and publishing control commands as required to the motor and
actuator nodes. System control is accomplished using a state machine, which allows both user and autonomous
control modes for consistent data retrieval and safe user override. When switched into automatic scanning mode, the
circumferential angle and longitudinal position are managed using independent set-point control loops. This simplifies
both the kinematics and the algorithms required for control. Controlling circumferential angle is achieved using the
on-board IMU and a standard PID control algorithm. The IMU publishes attitude data to ROS at a fixed rate of 100Hz.
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As each data packet is received, the attitude data is transformed into the local coordinate frame to maintain consistency
even when the pipe is not levelled. Similarly, longitudinal control is achieved using odometry calculated using encoder
readings published at a 100Hz and filtered to detect wheel stalls. In addition, an overriding human in the loop (HITL)
input allows direct control of the longitudinal position. This is used to recover when odometry fails due to motor stalls
or excessive wheel slip during the ring-to-ring transitions. A laser distance sensor is utilised to confirm longitudinal
position when conditionas are safe to deploy in the excavation pits.

3.3 Motion Validation

The circumferential and longitudinal consistency during automated scanning was verified at onsite trials, with angular
repeatability and translational slip during rotation being the key metrics providing confidence in the sensor placement
accuracy. Data was collected from an IMU to validate robot orientation, and a laser distance sensor was used to
confirm longitudinal positions. Fig. 13a shows the measured rotation angle error during repeated scanning cycles of
180◦ using 10◦ increments. The average offset error of 0.53◦ in relation to the set-point was found to be originated
by the pressing action of the sensor against the pipe wall. Fig 13c shows longitudinal drift during these scans. An
average error of 0.55mm was produced with the maximum recorded error being 5.4mm. Since the PEC sensing method
produces a result averaged over a 50x50mm area and the scan rings are spaced at increments of 100mm, a 5mm drift
in the longitudinal direction is deemed an acceptable inaccuracy well within the safety margins generally assumed for
failure prediction analysis in civil infrastructures.

Given the overall sensing and mechanical constraints the system operates at slow speeds: runtime metrics measured
during these tests showed an average spool completion time of around 166 minutes, or 1.3m/h. This includes 216
seconds of automated scanning for each ring, with 30 to 60 seconds dedicated to motion from one ring to the next.

4 Gaussian Processes for Spatial Regression Mapping from Sampled NDT
Inspection Data

As mentioned in Section 1 the salient novelty of the proposed robotic integrity assessment is the ability to carry out
internal detailed inspections that enable dense mapping where identification of the geometry of wall loss patches can
be confirmed. To achive this outcome various inspection patterns were studied to mitigate the slow robot examination
speed reported in Section 3. A number of sampling strategies were experimented on and were extensively evaluated
through cross validation using twelve thickness maps collected from exhumed pipelines during field trials and ground-
truthed as decribed earlier in Section 2.2. This was carried out to determine the best inspection strategy that would
minimise information losses against the original 2.5D wall thickness maps, given the nature of the thickness map data
collected (Shi and Valls Miro, 2017). In this Section the proposed strategy undertaken to regress the missing data with
the aid of a tailored Gaussian Process is presented.

Modeling spatial dependencies for 2.5D data has been largely studied in the past. Mathematically the problem can
be described as a random field which is a collection of random variables of the form

{
yx,x ∈ Rd

}
, where yx is the

quantity measured at the position x (Lord et al., 2014). Random fields are also known as spatial processes, for
instance, univariate (Kroese and Botev, 2013) or multivariate (Schlather et al., 2015) processes, that are defined for
modeling spatially arranged measurements and patterns. Random fields can be statistically specified by mean and
covariance (Lord et al., 2014; Kroese and Botev, 2013). When the mean is a constant, depending on the covariances
there are stationary random fields whose covariances are invariant under translations, isotropic stationary random
fields whose covariances are invariant under both translations and rotations, and anisotropic stationary random fields
whose covariances are directionally dependent (Lord et al., 2014; Kroese and Botev, 2013). A more specific type of
random field being studied extensively is Gaussian Random Fields (Davies and Bryant, 2013), which is also known
as Gaussian Spatial Processes (Kroese and Botev, 2013) or Gaussian Processs (GPs) (Bishop, 2006; Rasmussen and
Williams, 2006).

In robotics, GPs have been employed in terrain and surface modeling (O’Callaghan and Ramos, 2012; Smith et al.,
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2010; Vasudevan et al., 2009). In all these works, the utilization varies with the properties of the applications, the
structure of the model and the usage of the correlation information. The use of these probabilistic tools for thickness
mapping and fusion has recently been tackled by the authors for an application on pipeline condition assessment (Sun
et al., 2015; Vidal-Calleja et al., 2014).

4.1 Gaussian Processes

GPs define the probability distribution over functions, any finite number of which have consistent joint Gaussian
distribution. Consider n thickness-location pairs D defined as:

D = {(y1,x1) ,(y2,x2) , ...,(yn,xn)} , (2)

where xi ∈ X is the position in Rd (d = 2 in the case of 2.5D data) where the thickness measurements yi ∈Y was taken.
The data set D is assumed to be drawn from a noisy process

yi = f (xi)+ εi, where εi ∼N (0,σ2
n ), (3)

where noise εi follows independent, identically distributed zero-mean Gaussian with variance σ2
n . GPs are used to

learn the distribution p( f |X ,D) from D and have the capability of inferring p( f |X∗,D) for arbitrary location X∗.

Having specified the mean and covariance functions 1 and identified the hyper-parameter set θ , parameter estimation
can be conducted through optimization by maximizing the likelihood function as described in equation 4.

logp(y|X) =−1
2
(y−m(X))>K−1

y (y−m(X))

−1
2

log|Ky|−
n
2

log2π,

(4)

where m and K are the mean and covariance functions respectively, and Ky = K(X ,X)+σ2
n I denotes the joint prior

distribution covariance of the function at positions X . The variance of the noise σ2
n constitutes another parameter to

be learned together with θ .

Inference at a finite set of query locations X∗ can be performed by calculating the predicted mean µP and covariance
ΣP:

µP = m(X∗)+K(X∗,X)K−1
y (y−m(X)) (5)

ΣP = K(X∗,X∗)−K(X∗,X)K−1
y K(X∗,X)> (6)

The covariance matrix K(X∗,X), obtained from a given covariance function K, is indicative of the cross-correlation
between the function at X∗ and the training inputs X .

4.2 Covariance Function Design

GPs are thus completely specified by the choice of mean and covariance functions. The mean function can be usually
set to be a constant value, whilst the covariance function controls the smoothness of the process, and its parameters
govern the effective range of correlation and the variability observed in the data. There is no single covariance func-
tion that fits all modeling tasks. Depending on the purpose at hand and any insights that might be available from
the underlying physical phenomenon described by the data, modified or composite covariance functions may allow
more flexibility in the model. Indeed, the usage of prior knowledge in choosing appropriate covariance functions is
encouraged in the literature (Tesch et al., 2011), e.g. using periodic covariance functions in the analysis of seasonal
variation and physical phenomena (Rasmussen and Williams, 2006) (Tartakovsky and Xiu, 2006).

1The terms covariance and kernel function are used indistinctively.
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In effectively modelling the wall thickness of buried pipelines a number of covariance functions were considered
which included characteristics related to the physical properties of the target to be modelled. Three commonly used
stationary kernel functions (detailed in the next Section) with additional characteristics revealed by the data in terms
of directionality and periodicity were tested. These were incorporated in the form of a 2D anisotropic composite
covariance function with a periodical wrapping construction. The period in the circumferential direction was clamped
to guarantee the 2π periodic property of a pipe wall thickness map. An example with a 2D Matern kernel (v = 3/2) is
shown in equation 7

K(X ,X∗) = K(r) =
(

1+
√

3r
)

exp
(
−
√

3r
)

(7)

where the input distance r is defined by

r =
1
l

√
(X−X∗)T (X−X∗) (8)

for an isotropic kernel, with l being the length-scale, and by

r =
√
(X−X∗)T ∧−2 (X−X∗) (9)

for an anisotropic kernel, where ∧ is a diagonal matrix with characteristic length-scales l1 and l2 on the main diagonal.

In the case of modelling periodical data, an established approach is warping. This is generally done by mapping each
one-dimensional input variable x to two-dimensional input variable

u(x) = [sin(xp),cos(xp)] (10)

where xp = 2πxp, and p is the period parameter, hence constructing a covariance matrix K(u(X),u(X∗)) to turn an
anisotropic kernel periodic (Rasmussen and Williams, 2006).

4.3 Model Selection

Model selection was carried out by using the ground-truth dataset refered to in Section 4, composed of twelve 3D laser
thickness maps attained from exhumed pipeline spools from the same pipeline, so that the original 2.5D wall thickness
maps could be recovered via the proposed GP regressor from the in-field sample data collected by the NDT robot.

The proposed covariance function was selected by considering the physical properties of the target to be modelled
described in the preceding Section, and by means of comparing the Akaike information criterion (AIC) of each model.
AIC is a relative metric between potential models defined as

AIC = 2k−2ln(L) (11)

where k is the number of model parameters, and L is the maximum value of the likelihood function for the model
in parameter estimation (?). While the Log Marginal Likelihood (LML) is also often used in the literature for this
purpose, for models with relatively low complexity - as those proposed in this work - the values of both LML and AIC
are comparable, so AIC was selected as arguably it provide a slight advantage over LML in also penalising models
with additional complexity for similar fitting, thus discouraging overfitting

Three commonly used kernel functions with different setups were tested to establish the guidance on selecting the
most appropriate model. The basic characteristics of the three candidate kernel functions in a simplified isotropic
1D scenario are illustrated in Fig. 14a, given the difficulty in visualising a 2D anisotropic kernel. Table 14b shows
that under the same setup, both anisotropic and periodic composite covariance model setups produce lower AIC
given the characteristics of the pipeline data. The combination of these two add-ons gives the best performance for
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(a) Characteristics of the 3 candidate covariance functions
tested, graphically depicting the statistical relationship be-
tween any two points ‘’r” distance appart in 1D.

Kernel
Anisotropic

Add-on
Periodic
Add-on #Params.

AIC
(mean)

AIC
(std)

Matern (v = 3/2) N N 4 2448 1475
Matern (v = 5/2) N N 4 2718 1434
Sq. Exp. N N 4 3531 1390
Matern (v = 3/2) Y N 4 2001 1411
Matern (v = 5/2) Y N 4 2283 1377
Sq. Exp. Y N 4 3034 1415
Matern (v = 3/2) Y Y 7 1922 1423
Matern (v = 5/2) Y Y 7 2147 1388
Sq. Exp. Y Y 7 3051 1473

(b) Combined kernel models studied with anisotropic and periodic add-ons to a given
standalone covariance function, and AIC model selection metric.

Figure 14: Gaussian Process kernel model selection. The combined anisotropic and periodic covariance functions were
tested on ground truth data thickness maps from a large number of exhumed pipeline spools, and their performance in
terms of AIC metric used to select the kernel to regress the data colllected with the NDT inspection robot (low AIC
values are indicative of a better fitting).

cylindrical structures such as buried pipes, which corresponds to the observation that pipe wall thickness correlations
in the extracted data appear differently in circumferential and axial directions, and the correlation in circumferential
direction is 2π periodic. Among these kernel functions, Matern v3/2 always produced the lowest AIC under the same
setup. Higher order Matern are generally indistinctive from the Square Exponential case, whilst given the apparent
trend that less smooth kernels perform better, it would be reasonable to also consider the lowest order Matern v1/2.
However, these models become quite ‘’rough” and while functions are continuous they loose the differentiablily, a
characteristic that was not readily apparent in the data so was not perceived as a fitting alternative. Therefore, Matern
v3/2 with anisotropic and periodic setup was selected as the most appropriate kernel for modeling pipe wall thickness
maps.

It is worth noting that reconstruction error was also experimented upon as a model selection metric, and statistical
tests (ANOVA) computed on sample mean and variances. It was found that Matern kernels (tested with different
hyper-parameters) behaved statistically the same in terms of the reconstruction error. On the other hand, given the
dense training data around missing data, Squared Exponential produced statistically significantly worse results than
any Matern kernel.

Table 2: Test-bed specifications, adapted from (Valls Miro et al., 2014).

Year Installed 1922
Nominal Pipe Diameter 600 mm
Internal Pipe Diameter 579 mm to 590 mm (with cement lining)
External Pipe Diameter 662 mm to 666 mm
Nominal Wall Thickness 27 mm
Material Pit Cast Iron
Internal Liner Cement (installed in 1964)
Cement Lining Thickness 9.5 mm to 16.5 mm
Jointing Lead run joints (with tar soaked hemp

sealants)
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Figure 15: A typical inspection plan supplied to the utility parner for the deployment of the NDT inspection robot.

4.4 Stability of the Model Selection

The stability of the AIC model section metric was estimated through bootstrapping (Efron and Tibshirani, 1994)
training samples from the twelve GT thickness maps. The theoretical foundation of bootstrap resampling allows
estimating the distribution of a statistic using random sampling methods. Specifically in this evaluation, training
map samples were randomly drawn with replacement for 100 iterations to feed in AIC parameter estimation and
characterize the candidate model. The last two columns in Table 14b collects the results, which indicate that all
candidate kernels have similar AIC variances yet the propose anisotropic periodic Matern (v = 3/2) kernel exibits the
lowest AIC mean.

5 Field Pipeline Inspection Results

The proposed robotic device has been extensively deployed in a buried 1 km live CI Cement Lined (CICL) pipeline
provided by a utility in Sydney, Australia, in what effectively constitutes a unique worldwide opportunity for the
advancement of NDT sensing and automation research in the field (Valls Miro et al., 2014). The pipeline has been
decommissioned and is therefore no longer part of the utility’s live network. However a connection point to an adjacent
600 mm water main and various scour valves and hydrants allow for the pipeline to be pressurised and discharged as
needed. Details of the pipeline are collected in Table 2. Pipe sections between 3 and 4 m in length were targetted for
scanning by inserting the inspection robot through a removed pipe section, be that a previously replaced section, as
shown in Fig. 1b, or a new cut-out. An example of an inspection plan is shown in Fig 15.

Robot localisation with respect to an entry point while travelling towards a section targetted for inspection was done
by means of robot odometry, measurement of tether release and accounting for spool joints traversed as seen by the
robot camera. Validation from an external laser scanner mounted at the entry point as seen inFig. 8b was also used
when it was deemed safe to be deployed in the field excavation pit, and there was line of sight within the laser range.
Moreover, discontinuity on spool joints also reveals a characteristic PEC signal comparable to a crack that was also
exploited in case of ambiguity about spool length.

After reaching the target spool, circumferential and longitudinal ring inspections were undertaken as described in
Section 3 to generate maps such as those depicted in Fig. 16. Following the inspection pattern ascertained in (Shi and
Valls Miro, 2017), circumferential rings 100 mm appart in axial distance were evaluated with the robotic platform,
which given the 50mm sensor footprint effetively meant skipping every other ring with considerable time savings.
Examples of these are shown in Fig 16a, 16b and 16c. Adopting the GP model selection described in Section 4, a
model could be learned for each inspected spool and full inference on the missing rings undertaken. An example of
the final outcome achieved is shown in Fig. 16d, where measurements indicative of the lead run joints are also shown.
Where wall loss is present the spread of the reduction is clearly evident and can be identified and measured. Such
patches are modelled as ellipsoids (also depicted in Fig. 16d overlaid over the reconstructed map), and their defining
parameters can then be incorporated for stress calculation and remaining life prediction of the asset (Ji et al., 2017).

The final thickness maps gathered by the NDT robot during an extensive period of deployment between 2016 and 2018
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(a) Target 1680 in Fig. 15(plan) and 17b. (b) Target 1670 in Fig. 15(plan) and 17b.

(c) Target 1060 in Fig. 17a. (d) GP-inferred map depicting joints and identified corrosion patches.

Figure 16: Various examples of remaining pipe wall thickness maps as measured by the robotic wall inspection during
field deployment on the buried critical water main. Distances shown are with respect to the edge of closest access
point.

are depicted in Fig. 17, referenced on an aerial picture showing the location where the pipeline is buried. The layout
of the pipeline spool structure is also shown in yellow, where white lines are illustrative of the pipeilne diameter, and
red segments identify spool joints, with the spool number inspected with the robot labelled accordingly. The date of
inspection has also been added. Further details about the full program of inspections and various other tests undertaken
with the NDT robot during the field deployment can be found in a comprehensive supplementary document associated
to this manuscript that has been deposited in the journal webpage for the interested reader.

Prior to using the robotic tool for extensive measurements, repeatability tests were also carried out on pipe sections
at the test-bed to ascertain the performance of the robotic inspection unit in-situ. Results from one of the tests are
shown in Fig. 18. The error histogram in Fig. 18c suggests a close to zero-mean Gaussian (0.112 mm mean, 0.869 mm
standard deviation). Information such as minimum, maximum and average thickness of the inspected pipe section are
key parameters of interest to water utilities for stress analysis and asset management in general. Table 18d collects the
most typical quantitative information being currently reported with the robotic device on the two inspections shown -
Map A (Fig. 18a) and Map B (Fig. 18b), corresponding to target 1100 in Fig. 17a.

5.1 Pipe Inner Surface Profiling

In addition to PEC measurements, perceptual information from video streaming and point clouds of the pipe inner
surface (cement lining) can also be recorded with the RBG camera and the 3D structure sensor mounted at the front
of the robot. The latter in particular allows mapping the geometry of the pipe inner surface in order to evaluate the
surface unevenness, variation in the nominal pipe diameter and mapping the structure of in-pipe features (chainage,
off-takes, valves). Moreover, reconstructing the inner surface profile has the advantage that it enables identifying and
locating unchartered coarse anomalies present on the cement lining surface which may impede motion of ILI tools.
An example of the latter was apparent during one of the inspections where the robot encountered an abnormality in
the form of pipe narrowing during the experiment is shown in Fig. 19b. The mean diameter of the narrow region was
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(a) Pits inspected from entry point “Pit B”.

(b) Pits inspected from entry point “T2P3 Replacement”.

(c) Pits inspected from entry point “Pit C”..

Figure 17: Final 2.5D spool thickness maps attained from the field deployment of the NDT robotic inspection robot
on a buried critical water main in Sydney during 2016-17-18. Three sections closer to the deployment entry points are
shown. In the middle figure, two access points (T2P3 and T2P4) were required given the unexpected narrowing found
in the pipeline (see Section 5.1).

observed to be 579 mm while the expected nominal diameter of the cement lined inner surface is expected to be close
to 600 mm. A posterior excavation by the utility found an unknown outer clamp as shown in Fig 19c, whose origin
was investigated but not found on any records.

6 Key Lessons Learned from the Field Deployment

The operational aspects of interfering with a critical asset that affects large populations in their daily lives, such
as the supply of drinking water, can not be understimated. The deployment of the unit on a critical pipeline was
indeed a carefully orchestrated exercise. Likewise, the extraction and replacement of sections for careful examination
and ground truthing was a significant undertaking in terms of logistics and resources (both personnel and monetary,
including flow control, excavation, transportation, grit-blasting and pipe preservation). It was revealing the extent of
consultations required with the many water utility teams that had to get involved during all phases of the project.

The actual field deployment of the robotic unit brought about some pivotal aspects to contend with, which in summary
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(a) Map A (Target 1100). (b) Map B (Target 1100).

(c) Errors between maps.

Map A Map B

Minimum thickness 17.4 16.2
Maximum thickness 28.1 28.8
Average thickness 21.8 21.9

(d) Inspection measurements (mm).

Figure 18: Robotic inspection repeatability tests on a single pipe section, target 1100 in Fig. 17a .

(a) Picture of anomalous narrowing (white
ring at pointer).

(b) 3D reconstruction of anomaly captured by
RGBD robot sensor.

(c) Outer clamp found after excavation.

Figure 19: Unchartered pipe anomaly found during inspection; verification excavation.

could be identified as: (1) Unexpected anomalies in the pipe in the form of surface unevenness (e.g. in the rendering of
the cement lining), or pipe narrowings due to unknown features (e.g. an unchartered replaced pipe); (2) Boundaries in
the robustness of the hardware, given the harsh deployment conditions; (3) Impact of the limited speed on the logistics
surrounding the customer support and civil delivery team efforts to be able to deploy the robot (∼14 hours to cover
50% of a 3.5 m long, 600 mm diameter pipe section); and the (4) Need to introduce a level of compliance in the sensor
mountings to absorb the undocumented asymmetries and pipe manufacturing tolerances, so as to maintaining close
contact with the pipe walls for NDT sensing. Specific details of various of the issues encountered in regards to the
above are provided in the supplementary material document associated to this manuscript that has been deposited in
the journal webpage for the interested reader.

Following the learnings drawn from entertaining these issues in the field, authors have begun investigating faster
sensing architectures (multiple PEC sensors operating simultaneously) that can assess over 10 m of pipe length with
100% coverage (600 mm diameter) within an hour. Authors are also investigating new robot architectures which
enable significant size adjustments on encountering anomalies such as reduction/enlargement in the pipe diameter
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during the inspection, or the presence (sometimes unexpectedly) of other pipe fittings and appurtenances.

Lastly, an interesting observation made during field deployment related to the actual choice of robot kinematic design,
with one of the rear wheels of the robot experiencing signs of undue stress (both the left rear wheel assembly, as well
as its driving motor, failed on two occasions). This was attributed to unforeseen misalignment or asymmetry in the
implemented robot hardware, forcing the left rear side to experience accentuated tension. This was primarily a result
of the mechanical robot design with an arm linkage to allow rotational mobility, as well as assured grip of the wheels
againts the pipe walls during longitudinal motion. The lack of suspension meant that the applied forces when pressing
the wheels against the wall were substantial, often inducing significant stress on the driving wheel actuators. Measures
can be taken to minimize or diverge from the requirement of the whole robotic unit having to rotate by facilitating a
sensing unit mechanism able to rotate while the rest of the robotic device does not, and such architectures are currently
being investigated.

7 Concluding Remarks

An in-line robotic solution for the inspection of buried critical water mains and its evaluation during field deployments
has been presented in this paper. A singular kinematic locomotion design that optimises mobility in such tubular
environment has been coupled with an embedded NDT sensing solution based on PEC for measurements unsusceptible
to sensor lift-off, as typically found in cement lined water pipelines. A tailored covariance function suitable for pipeline
geometries has also been studied in a Gaussian Processes framework to regress missing sensor data.

The data gathered represents not only a visual understanding of the condition of the pipe for asset managers, but
also constitutes a quantative input to a remaining-life calculation that defines the likelihood of the pipeline for future
renewal or repair. The device addresses a utility sector need for an automatic NDT inspection vehicle that can report
dense pipe wall thickness discrimination as prescribed by failure prediction analysis, and that can be deployed in an
opportunistic manner - e.g. when a mains break occurs, or during valve inspection or repair programs when pipelines
are discharged and access made available. Extensive results have proven the validity of the solution on laboratory tests
and field pipeline inspections which demonstrate the feasibility of the device and sensing configuration to provide
meaningful 2.5D geometric maps. Future work is set on further characterisation and inclussion of sensor measurement
uncertainties in the analysis of the pipeline remaining-life calculations.

As highlighted in Section 6, following the learnings presented in this paper a new version of the robot is currently
under development with alternative mobility and sensor arrangement to facilitate faster robotic deployment, as well as
faster signal processing and acquisition. As part of that development, consideration is also being given to the unsolved
problem of relating complex pipe wall geometry to a PEC signal, a somewhat unorthodox sensor in the space of
probabilistic mapping. For practical purposes the NDT sensor measurements used in this work have been approximated
to the average thickness under the footprint of the sensor (a 50 mm x 50 mm region) with reassuring results, although in
reality the sensor’s measurement generalises to a domain. Due to the unsolved problem of accurately relating complex
geometry to the signal, it is not trivial to assume or define a precise sensor model, and a compatible kernel to capture
such behaviours for regression, a task that requires further investigation.
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fom those. Moreover, an in-depth description of a novel kernel covariance function and the GP-based algorithm
employed to generate 2.5D thickness maps from the field data have also been added.
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Abstract

This paper addresses automated mapping of the remaining wall thickness of metallic pipelines in

the field by means of an inspection robot equipped with Non-Destructive Testing (NDT) sensing.

Set in the context of condition assessment of critical infrastructure, the integrity of arbitrary sections

in the conduit is derived with a bespoke robot kinematic configuration that allows dense pipe wall

thickness discrimination in circumferential and longitudinal direction via NDT sensing with guar-

anteed sensing lift-off (offset of the sensor from pipe wall) to the pipe wall, an essential barrier to

overcome in cement-lined water pipelines. A tailored covariance function for pipeline cylindrical

structures within the context of a Gaussian Processes has also been developed to regress missing

sensor data incurred by a sampling strategy folllowed in the field to speed up the inspection times -

given the slow response of the PEC electromagnetic sensor proposed. The data gathered represents

not only a visual understanding of the condition of the pipe for asset managers, but also constitutes

a quantative input to a remaining-life calculation that defines the likelihood of the pipeline for fu-

ture renewal or repair. Results are presented from deployment of the robotic device on a series of

pipeline inspections which demonstrate the feasibility of the device and sensing configuration to

provide meaningful 2.5D geometric maps.

1 Motivation - A Taxonomy of NDT Inspection Techniques

Non-Destructive Testing (NDT) or Evaluation (NDE) is extensively employed by the energy and water industry to

assess the integrity of their network assets, particularly their larger and most critical conduits (generally refered to

Page 23 of 52 Journal of Field Robotics

John Wiley & Sons



(a) Externa locall inspection tool. (b) ILI tool.

(c) An external averaging tool.

Figure 1: Example of various configurations of NDT tools.

as those larger than 350 mm in diameter), in their decision-making process leading their renewal/repair/rehabilitation

programs. The key advantage of NDT/NDE is that the structure of the asset is not compromised in estimating its

condition.

The sensing modality to use is strongly influenced by the material of the asset. Grey Cast Iron (CI) pipelines remain

the bulk of the buried critical water infrastructure in the developed world as that was the material of choice for mass

production with the advent of the Industrial Revolution in the middle of the 18th century (alongside its less brittle rel-

ative of Ductile Iron since the nineteen fifties), until carbon steel, asbestos cement or plastic pipelines (PVC) amongst

other materials made them redundant over the years. The non-homogeneity of the CI produce means that sensing

techniques widely employed in the (mild) Carbon Steel networks in the energy pipeline sector, such as ultrasonics

or electromagnetic acoustic transducers (EMAT), are inadequate for CI, and the underlying techniques of most com-

mercial propositions for CI are instead based on either magnetics (e.g. Magnetic Flux Leakage (MFL), Pulsed Eddy

Currents (PEC) and Remote Field Eddy Currents (RFEC)), or the study of the propagation of pressure waves in the
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pipeline and/or fluid.

NDT techniques produce results that tend to be a trade-off between deployment costs and information gain. Local

inspection techniques (i.e. 1 to 3 meters) can provide dense measurements but are time-consuming and generally costly

per unit-length as significant preparatory civil works are required (excavations, network re-routing for guaranteed

supply, traffic control, etc). Moreover inspections can only be undertaken at locations which are accesible from the

surface. An example of these tools can be seen in Fig. 1a.

On the other hand, the taxonomy of long-coverage tools can be broadly split into techniques that provide average

pipe wall measurements over longer distances (generally from a few to 100s of meters, even kilometers), and in-line

intrusive (ILI) devices (”smart pigs”) deployed inside the pipeline to inspect in higher detail over longer distances

(generally 100’s of meters to kilometers to make it more cost-effective), while propelled by the operating pressure of

the fluid.

The former are generally deployed by accessing the external pipe wall or water column at a few access points spread

over the length of the pipeline, either through small key-hole excavations or through external access points such as

valves or hydrants. As such they tend to have low or no impact in the continuing operation of the pipeline and are more

affordable alternatives for condition assessment. An example can be seen in Fig. 1c. However given the averaging

nature of their results, these tools are aimed at providing an initial screening of the condition of an asset, and lack the

ability to provide the type of detailed geometry information needed to ascertain likelihood of pipe failure.

Flow-driven ILI tools, on the other hand, are inserted into the charged water column either through standard large

appurtenances present in critical mains, or more often than not via dedicated launch and retrieval mechanisms, as

depicted in Fig. 1b. While these tools are able to provide direct measurements related to the pipe wall condition over

long distances, they do so at the expense of higher disruption to the utilities and combined costs from the substantial

civil engineering support from the utility prior, during and post inspection. Moreover, the effectiveness of these

techniques has not been fully established within the industry given the consequential validation investment required to

do so in a statistical meaningful way.

ILI tools present additional shortcomings in the pursuit of attaining an accurate depictions of the condition of a pipe

wall:

• they are at the mercy of the pressure of the fluid driving them (both in the tethered and free-flowing case).

• should the tools be operated in de-watered conditions, they necessitate complicated winch mechanisms be-
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tween entry and exit points.

• operating parameters need to be closely controlled (e.g. tool velocity), meaning that discriminating flow

controls need to be in place, not necessarily an easy feat to achieve in a complex interconnected network.

• they lack the ability to do fine control and adjustments for mapping (e.g. ensuring tight tolerances in sensor

lift-off, repeatability, rectify missed measurements).

Driven by the needs of the water industry the work hereby presented describes the development and field testing of a

novel internal NDT inspection robotic vehicle able to:

1. undertake localised, controlled inspections.

2. generate dense NDT mapping suitable for condition assessment and failure prediction.

3. tightly control inherent lift-off during sensing (as induced by the presence of non-magnetic cement lining and

pipeline wall irregularities)

4. access arbitrary (within tether range) pipeline spools from a single point of entry, hence reducing costs to util-

ities and allowing inspection of inaccessible sections from the surface (e.g. under a rail pass) and minimising

disruption to customer (e.g. a pipeline under a driveway).

While the proposed solution requires pipes to be de-watered for deployment, this serves a clear mandate from the

utility sector that necessitates a robotic NDT inspection vehicle that can be deployed in an opportunistic manner to

ascertain the condition of a particular pipeline, specifically when a mains break occurs, or on the back of a valve

inspection or repair program when pipelines are inevitably taken off-line. Moreover, while time is always at essence

in any maintenance and inspection routines, this is particularly the case for critical assets that need to be put back

on-line as soon as feasibly possible. To that end, an efficient robotic inspection solution with the ability to produce

detailed dense maps fitting for pipe failure analysis from limited sets of inspection data is highly desirable as that would

minimise both collection time and information losses against the original wall thickness maps. The use of Gaussian

Processes is thus proposed in this work to model the spatial dependencies present in the interspersed thickness data

collected, and to recover form these the required detailed pipe wall geometries.

The remainder of this paper describes such an NDT robot for the inspection of buried network infrastructure and the

novelties behind its inception. The manuscript is organized in two main parts. The first part covers the hardware

design which includes Section 2, where the sensing capabilities used to measure the pipeline wall thickness are first
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(a) Axis of 2.5D thickness map. (b) Rolled pipe thickness map. (c) Axial x and circumferential y coordinates
aligned on a pipe.

Figure 2: Axial and circumferential coordinates of a 2.5D pipe thickness map.

established, and Section 3 where the locomotion choices and controls for the proposed robotic platform given the

specifics of a pipeline environment are then described. The second part describes the Gaussian Process model used

to generate maps of wall thickness based on the measurements taken by the robotic platform, described in Section 4,

linked to the actual detailed inspection results from deployment in the network of a water utility given in Section 5.

Learnings from the development of the robot and the field deployment have been discussed in Section 6 in the hope

that those insights may aid interested readers pursuing related ouctomes, whilst concluding remarks and further work

are then collected in Section 7.

2 NDT Pipeline Wall Inspection

Recent research in the space of stress analysis and failure prediction of critical CI water mains has revealed that

over and above pit depths, as traditionally provided during condition assessment of a critical asset, there is a need

to ascertain the presence and geometries of large corrosion patches in the pipe walls (Ji et al., 2017; Kodikara et al.,

2016), such as those depicted in Fig 16d. There exist a wide range of NDT technologies developed for the purpose of

material characterisation for CI (Liu and Kleiner, 2013), yet the provision to build dense 2.5D maps of remaining wall

geometries for lined water mains has driven the need to design an internal inspection tool around Pulsed Eddy Current

(PEC) sensing technology, as a proven technique typically used in the NDT sector for ferromagnetic material thickness

estimation (Huang et al., 2010; Xu et al., 2012; Huang et al., 2011), resilient to sensor lift-off. It is noteworthy to

emphasise that while there are a myriad of commercial NDT tools available, they are mostly aimed at visual inspection

of an asset, or target carbon steel with the ultimate aim to poinpoint single pitting deficiencies reliably. To date, the
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(a) PEC sensing operating diagram. (b) Typical PEC signals on CI thicknesses.

Figure 3: PEC sensing setup embedded in the inspection robot (left), and typical PEC signals.

authors are not aware of any NDT tools able to densely map arbitrary spools of thick CI material, as it is the intention

in this work.

Fig. 2 enables interpreting a typical 2.5D maps of remaining wall thickness as depicted throughout this article, and the

conventions shown hold for all thickness maps presented herein. The axial location indicates the distance along the

pipe’s longitudinal axis, while the circumferential location represents rotational degrees around the pipeline. 0◦ and

360◦ coincide on the top (crown) of the pipe, denoting the direction pointing vertically upwards perpendicular to the

pipe’s cylinder axis. As shown in Fig. 2c, the direction of Y-axis increment is counter-clockwise when looking towards

the positing x direction, or the direction of robot’s travel. It should be noted that despite the visual representation of the

circumferential dimensions in degress throughout the paper to aid the reader’s intuitive understanding of cilyndrical

measurements around a pipeline, in mapping terms they are treated as 2D length measurements in mm in the Euclidean

space, for which a single thickness measurement is obtained via the PEC sensor (hence 2.5D maps). The colour bar to

the right of the thickness maps is a legend representing thickness in mm, between black (0mm, or a through-hole) and

light grey (30mm). In the field inspection results presented in Section 5, longitudinal locations are in reference to the

origin set at the robot’s entry point to the pipe.

2.1 Developed PEC Sensing System

A typical PEC sensing system developed for ferromagnetic materials consist of an exciter coil, a detector coil, a

voltage pulse generator for excitation and an amplifier for the detected signal. A block diagram of the PEC sensing

set up developed for this work is shown in Fig. 3a. Given the size of the pipes of interest the footprint of the sensor

used was 50 mm, indicating that it measures the average thickness of a 50 mm×50 mm area under the sensor. An
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(a) Cross section of a typical coil based circular PEC sensor (adapted
from (Fu and Bowler, 2006)).

(b) PEC sensor for cast iron pipe assessment (Ulapane et al., 2017).

Figure 4: Typical coil based circular PEC sensor architecture.

(a) Exhumed pipe on which internal and external measurements were performed. (b) Pipe assessment robot performing internal measurements.

Figure 5: Laboratory setup with exhumed pipe for internal and external PEC validation.

example of a typical PEC sensorcoil arrangement is illustrated in Fig. 4. Signals captured from the system on different

CI thicknesses are shown in Fig. 3b and as reported in the literature features can be extracted from such signals which

can be directly linked to material thickness (Huang and Wu, 2015; Ulapane et al., 2014; Ulapane et al., 2017).

2.2 Validation of PEC Robot Sensor Setup

The validity of the sensor arrangement was first assessed by comparing results on the exhumed CI pipe in Fig. 5 with

intact cement lining. The objective was to evaluate how well the measurements agree if a section of the pipe is scanned

externally and internally via cement lining. External measurements were performed on known locations with the aid

of the grid pattern marked in Fig. 5a. The same locations were scanned internally as shown in Fig. 5b with the aid of

the robot localized with reference to the pipe’s edge. Measurements were recorded by placing the sensor centred on

the grid squares at 50 mm distance increments along rings in the circumferential direction, whilst distance between
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(a) External. (b) Internal. (c) Repeatability of straight line test.

(d) One-on-one comparison 6a vs. 6b. (e) Error histogram 6a vs. 6b.

Figure 6: Thickness maps obtained from internal (in blue) and external (in red) PEC sensor measurements to contrast
the validity of an internal sensor deployment mounted on the robotic device when operating through the internal layer
of cement lining. Two examples are provided, a rectangular section (500mm longitudinally, and 1800 circumferen-
tially) - collected in 6a, 6b, 6d and 6e, and an internal versus external repeatability straight line test shown in 6c.

consecutive rings was set to 100 mm to speed-up the inspection process, since thus generated thickness maps can

be then upsampled with minimal information loss as will be shown in Fig. 16d. The rationale and methodology for

this will be further elaborated on in the following two Sections. Strong agreement between both measurements was

notable as depicted in Fig. 6; the error histogram in Fig. 6e, calculated by subtracting internal thickness estimates from

external ones hints at a small positive bias in the error, with a mean and standard deviation of 0.323 mm and 0.417 mm

respectively. This is an expected result since marginally better sensitivity can be expected when scanning externally

(particularly for higher thickness), as the sensor touching the pipe wall can achieving stronger penetration than from the

inside given the lift-off effect induced form the cement lining layer. The errors are indicative of acceptable agreement

between internal and external measurements confirming the sensor’s suitability for internal assessment of pipes via

cement lining. In another sensor verification experiment, Fig. 6c shows results of a repeatability test carried by

measuring a straight line along the pipe six times (three times internally and three times externally, with each line

having 18 measurements); the average variation on a location was less than 1 mm, indicating appreciable measurement

repeatability.
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(a) Pipe section and high resolution GT map. (b) Estimates against laser GT.

Figure 7: External PEC thickness estimates against laser groud truth (GT).

Further to the comparison of internal versus external deployment, the PEC sensor arrangement was also validated

on a pipe whose actual wall thickness ground truth (GT) had been previously obtained, with the results collected in

Fig. 7. Attaining the GT is a destructive process, whereby the pipes are first exhumed, then both internal and external

pipe surfaces are grit-blasted to remove rust and graphitization, the by-products of the corrosion process inflicted on

a buried pipeline, leaving only the bare metal - the target of the PEC sensor measurement. Both surfaces are then

reconstructed with a high-resolution 3D laser scanner and ray-tracing performed on the collocated upsampled internal

and external pipe surface point clouds to derive the GT thickness maps at a resolution of 0.6 mm (Skinner et al.,

2014). This high resolution GT can then be downsampled to the sensor’s 50 mm footprint by means of averaging so

as to match the PEC sensor measurements in order to provide meaningful comparisons. A Root Mean Square Error

(RMSE) of 1.29 mm was observed between external PEC measurements and GT, indicating reasonable agreement

even when challenged by significant defects as evident from the testing pipe depicted in Fig. 7a, selected to better

capture variability in the remaining wall thickness.

3 NDT Robot Kinematics, Locomotion and Control

The robotic NDT mapping unit was designed to allow accurate positioning of sensors internally on the pipe surface,

in a robust and repeatable manner. To achieve this, a mechanism designed to self-align inside the pipe while provid-

ing circumferential and longitudinal control with a single actuation to place sensors against the pipe inner wall was

developed. The CAD model and a deployment in the field after construction is depicted in Fig. 8.
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(a) Solid model design. (b) Robot inspecting a pipeline.

Figure 8: NDT inspection robot design, and during field deployment in a pipeline.

3.1 Mechanical Design

Mecanum wheels were selected for the robot locomotion. In planar applications they enable holonomic robot motion

as they allow control in all three degrees-of-freedom (DoF) available to the robot (Xie et al., 2015). For this application

it is only necessary to control two degrees-of-freedom, longitudinal and circumferential motion. By applying a non-

standard wheel configuration it is possible to exploit the unique geometry of the operating environment to passively

align with the central pipe axis, automatically tracking the pipe should minor changes in direction occur. Fig. 9a and

Fig. 9b demonstrate the layout designed to achieve these requirements. In this configuration, the axis of rotation of the

pipe contacting rollers all pass through a single point allowing the robot to rotate freely about this point in response to

an external force. When resting on a cylindrical surface, such as a pipe wall, an external restoring force is generated

in response to angular disturbances which acts to return the robot to the aligned position.

Control in the longitudinal direction and rotation about the circumferential direction are achieved by controlling wheel

velocities using the kinematic relations derived in Eq. 1, which follow standard forwards kinematic equations in

simplified form (Taheri et al., 2015), where vx(t) reflects the longitudinal velocity (m/s), vy(t) is the circumferential

velocity (m/s), ωi (i = 1...4) is the wheel rotation speed (rad/s), ωz(t) denotes angular velocity on the x/y plane, r is

the wheel radius (m) and lx, ly indicate the wheel separation and body length respectively.

vx(t) = (ω1 +ω2 +ω3 +ω4)×
r
4

vy(t) = (−ω1 +ω2 +ω3−ω4)×
r
4

ωz(t) = (−ω1 +ω2−ω3 +ω4)×
r

4× (lx + ly)

(1)
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(a) Top view. (b) Front view.

Figure 9: Adopted self-alignment mecanum wheel layout. Longitudinal wheel spacing along the x-axis prevents
angular motion about the z-axis, therefore maintaining a heading along the longitudinal pipeline direction. The pipe
wall stops the robot translating horizontally along the y-axis - instead resulting in the full circumferential rotation
desired for the pipe inspection task given the additional support of the deployed vertical stability arm as shown in 9b,
which also allows for consistent surface contact of all the mecanum rollers (at the expense of increased friction with
the pipe walls).

(a) Arm design. (b) Rotated stabilising arm.

Figure 10: Stabilising arm.

It is evident from Eq. (1) that maintaining zero angular velocity (and therefore a constant heading) is a wheel speed

control task. As demonstrated in Fig. 9b, wheel spacing prevents angular motion about the z axis, therefore maintain-

ing a heading along the longitudinal direction. The pipe wall stops the robot translating horizontally - instead resulting

in the circumferential rotation that is desired for this task. It is however essential that the angular velocities of diag-

onally opposite wheels are matched to prevent excessive motor loads precisley given the robot is constrained in the z
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(a) NDT inspection robot front view. (b) NDT inspection robot in an open-cut pipe.

Figure 11: The NDT inspection robot (right figure depitcs the configuration with only one sensing arm mounted on).

axis. Driving each pair of diagonally opposite wheels with a single motor would achieve this requirement, however,

the required drivetrain is complex and in the proposed designed control of each separate motors is implemented in

software, as discussed below as part of the system overview.

To maintain stability during circumferential rotations, a set of free-wheeling omni-wheels are mounted on a parallel

four bar linkage shown in Fig. 10a. This is linked to a pair of gas struts to provide a consistent opposing force to the

mecanum wheels surface contact point. The applied force cancels out the gravity vector as the robot rotates, allowing

consistent continuous surface contact for each of the wheels rollers. To achieve this the assembly is pressed against

the pipe wall with a preload of approximately twice the robot weight, maintaining control authority regardless of

orientation while simultaneously compensating for variation in pipe diameter. A linear actuator is included to retract

the omni-wheels from the pipe surface during insertion. This actuator features a spline so that it does not affect the self

correcting behaviour of the parallel linkage during normal operation. Fig. 10b demonstrates the applied force during

the robots rotation along the vector F act.

The PEC sensors are coupled to actuated lever arms using a stiff rubber joint. This joint allows the sensor to conform

to the pipe surface in the presence of minor irregularities while maintaining a precise placement. The actuators drive

until a stall condition is detected, allowing the sensor to be reliably placed on the pipe surface regardless of pipe

variations or actuator drift.

Fig. 11 depicts the final robot in more detail in a pipeline in the laboratory (left), and in an open-cut pipeline for easier

viewing in the field.
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Figure 12: System block diagram depicting the four on-board major components on the robotic system (power, sensors,
computing and actuators), and the off-board components linking the robot to a user-driven computer via a 70m power-
over-ethernet tether.

Table 1: Core Component specifications.

COMPUTING Odroid XU4 - Arm based single board computer
SENSORS Xsens Mti-10 IMU w/ Gyro 450◦/s, acc 50m/s2

Odroid USB-Cam 30FPS, FOV: 68◦

3D Structure Sensor w/ HFOV: 58◦, VFOV: 45◦

CONTROL Maxon Motor DCX26L, gear ratio 231:1, sensor 500 counts/turn
Sensor Actuator - linear actuator, max force: 1000N
Stability Actuator - linear actuator, max force: 2500N

POWER PoE injector/splitter, 60W, 70m cable reel

3.2 System Overview

The system uses two computers, one on-board the robot for data acquisition and actuator control, and one outside the

pipe for the user interface. The entire system runs from a generator on the surface with power delivered to the robot

with a power over ethernet (PoE) connection. The user interface can receive data and issue control commands back to

the operator in real-time over the local area network (LAN) connection provided by the same ethernet tether. Fig. 12

demonstrates the overall hardware system layout whilst Table 1 list details about each component.

The long deployment duration precludes battery operation hence the choice of tethered PoE to provides for signifi-

cantly longer operation times. The POE injector provides 60W of power, the maximum supplied by readily available

off-the-shelf equipment, so an ultracapacitor bank and bespoke charger was developed to supply bursts of high power

while ensuring that the PoE equipment maintains an optimal power delivery rate. While deploying the sensors and

taking a reading the average system power is 40W. This increases dramatically to 100W when the motors are driven to

reposition the robot. Since the time spent driving the motors is relatively low in comparison to sensing acquisition the

Page 35 of 52 Journal of Field Robotics

John Wiley & Sons



(a) Circumferential repeatability. (b) Circumferential error histogram.

(c) Longitudinal error. (d) Longitudinal error histogram.

Figure 13: Circumferential and longitudinal consistency. Circumferential deviations (top graphs) represent orientation
errors of repeated commanded 10◦increment motions, as measured by an on-board IMU, whilst longitudinal errors
shows the axial drift during these motions as measured by an external LIDAR (see Fig. 8b)

.

overall average power requirement is less than the 60w supplied by the PoE system. Thus, the chosen setup provides a

steady power supply for the overall system on the condition that high power maneuvers are not sustained for extended

periods, as is the case for the inspection of critical water mains which lay flat and straight in the ground.

The on-board Odroid, running Linux and the Robotic Operating System (ROS), receives data from the sensor suite

through a powered USB hub and controls on-board actuators via digital input/outputs pins. Each sensor has it’s own

monitoring node to manage incoming data and publish to the communication layer. Custom task allocation/behaviour

nodes then subscribe to the data streams, processing and publishing control commands as required to the motor and

actuator nodes. System control is accomplished using a state machine, which allows both user and autonomous

control modes for consistent data retrieval and safe user override. When switched into automatic scanning mode, the

circumferential angle and longitudinal position are managed using independent set-point control loops. This simplifies

both the kinematics and the algorithms required for control. Controlling circumferential angle is achieved using the

on-board IMU and a standard PID control algorithm. The IMU publishes attitude data to ROS at a fixed rate of 100Hz.
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As each data packet is received, the attitude data is transformed into the local coordinate frame to maintain consistency

even when the pipe is not levelled. Similarly, longitudinal control is achieved using odometry calculated using encoder

readings published at a 100Hz and filtered to detect wheel stalls. In addition, an overriding human in the loop (HITL)

input allows direct control of the longitudinal position. This is used to recover when odometry fails due to motor stalls

or excessive wheel slip during the ring-to-ring transitions. A laser distance sensor is utilised to confirm longitudinal

position when conditionas are safe to deploy in the excavation pits.

3.3 Motion Validation

The circumferential and longitudinal consistency during automated scanning was verified at onsite trials, with angular

repeatability and translational slip during rotation being the key metrics providing confidence in the sensor placement

accuracy. Data was collected from an IMU to validate robot orientation, and a laser distance sensor was used to

confirm longitudinal positions. Fig. 13a shows the measured rotation angle error during repeated scanning cycles of

180◦ using 10◦ increments. The average offset error of 0.53◦ in relation to the set-point was found to be originated

by the pressing action of the sensor against the pipe wall. Fig 13c shows longitudinal drift during these scans. An

average error of 0.55mm was produced with the maximum recorded error being 5.4mm. Since the PEC sensing method

produces a result averaged over a 50x50mm area and the scan rings are spaced at increments of 100mm, a 5mm drift

in the longitudinal direction is deemed an acceptable inaccuracy well within the safety margins generally assumed for

failure prediction analysis in civil infrastructures.

Given the overall sensing and mechanical constraints the system operates at slow speeds: runtime metrics measured

during these tests showed an average spool completion time of around 166 minutes, or 1.3m/h. This includes 216

seconds of automated scanning for each ring, with 30 to 60 seconds dedicated to motion from one ring to the next.

4 Gaussian Processes for Spatial Regression Mapping from Sampled NDT

Inspection Data

As mentioned in Section 1 the salient novelty of the proposed robotic integrity assessment is the ability to carry out

internal detailed inspections that enable dense mapping where identification of the geometry of wall loss patches can

be confirmed. To achive this outcome various inspection patterns were studied to mitigate the slow robot examination

speed reported in Section 3. A number of sampling strategies were experimented on and were extensively evaluated

through cross validation using twelve thickness maps collected from exhumed pipelines during field trials and ground-
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truthed as decribed earlier in Section 2.2. This was carried out to determine the best inspection strategy that would

minimise information losses against the original 2.5D wall thickness maps, given the nature of the thickness map data

collected (Shi and Valls Miro, 2017). In this Section the proposed strategy undertaken to regress the missing data with

the aid of a tailored Gaussian Process is presented.

Modeling spatial dependencies for 2.5D data has been largely studied in the past. Mathematically the problem can

be described as a random field which is a collection of random variables of the form
{

yx,x ∈ Rd
}

, where yx is the

quantity measured at the position x (Lord et al., 2014). Random fields are also known as spatial processes, for

instance, univariate (Kroese and Botev, 2015) or multivariate (Schlather et al., 2015) processes, that are defined for

modeling spatially arranged measurements and patterns. Random fields can be statistically specified by mean and

covariance (Lord et al., 2014; Kroese and Botev, 2015). When the mean is a constant, depending on the covariances

there are stationary random fields whose covariances are invariant under translations, isotropic stationary random

fields whose covariances are invariant under both translations and rotations, and anisotropic stationary random fields

whose covariances are directionally dependent (Lord et al., 2014; Kroese and Botev, 2015). A more specific type of

random field being studied extensively is Gaussian Random Fields (Davies and Bryant, 2013), which is also known

as Gaussian Spatial Processes (Kroese and Botev, 2015) or Gaussian Processs (GPs) (Rasmussen and Williams, 2006;

Bishop, 2006).

In robotics, GPs have been employed in terrain and surface modeling (O’Callaghan and Ramos, 2012; Smith et al.,

2010; Vasudevan et al., 2009). In all these works, the utilization varies with the properties of the applications, the

structure of the model and the usage of the correlation information. The use of these probabilistic tools for thickness

mapping and fusion has recently been tackled by the authors for an application on pipeline condition assessment (Sun

et al., 2015; Vidal-Calleja et al., 2014).

4.1 Gaussian Processes

GPs define the probability distribution over functions, any finite number of which have consistent joint Gaussian

distribution. Consider n thickness-location pairs D defined as:

D = {(y1,x1) ,(y2,x2) , ...,(yn,xn)} , (2)
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where xi ∈ X is the position in Rd (d = 2 in the case of 2.5D data) where the thickness measurements yi ∈Y was taken.

The data set D is assumed to be drawn from a noisy process

yi = f (xi)+ εi, where εi ∼N (0,σ2
n ), (3)

where noise εi follows independent, identically distributed zero-mean Gaussian with variance σ2
n . GPs are used to

learn the distribution p( f |X ,D) from D and have the capability of inferring p( f |X∗,D) for arbitrary location X∗.

Having specified the mean and covariance functions 1 and identified the hyper-parameter set θ , parameter estimation

can be conducted through optimization by maximizing the likelihood function as described in equation 4.

logp(y|X) =−1
2
(y−m(X))>K−1

y (y−m(X))

−1
2

log|Ky|−
n
2

log2π,

(4)

where m and K are the mean and covariance functions respectively, and Ky = K(X ,X)+σ2
n I denotes the joint prior

distribution covariance of the function at positions X . The variance of the noise σ2
n constitutes another parameter to

be learned together with θ .

Inference at a finite set of query locations X∗ can be performed by calculating the predicted mean µP and covariance

ΣP:

µP = m(X∗)+K(X∗,X)K−1
y (y−m(X)) (5)

ΣP = K(X∗,X∗)−K(X∗,X)K−1
y K(X∗,X)> (6)

The covariance matrix K(X∗,X), obtained from a given covariance function K, is indicative of the cross-correlation

between the function at X∗ and the training inputs X .

4.2 Covariance Function Design

GPs are thus completely specified by the choice of mean and covariance functions. The mean function can be usually

set to be a constant value, whilst the covariance function controls the smoothness of the process, and its parameters

govern the effective range of correlation and the variability observed in the data. There is no single covariance func-

tion that fits all modeling tasks. Depending on the purpose at hand and any insights that might be available from

1The terms covariance and kernel function are used indistinctively.
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the underlying physical phenomenon described by the data, modified or composite covariance functions may allow

more flexibility in the model. Indeed, the usage of prior knowledge in choosing appropriate covariance functions is

encouraged in the literature (Tesch et al., 2011), e.g. using periodic covariance functions in the analysis of seasonal

variation and physical phenomena (Rasmussen and Williams, 2006) (Tartakovsky and Xiu, 2006).

In effectively modelling the wall thickness of buried pipelines a number of covariance functions were considered

which included characteristics related to the physical properties of the target to be modelled. Three commonly used

stationary kernel functions (detailed in the next Section) with additional characteristics revealed by the data in terms

of directionality and periodicity were tested. These were incorporated in the form of a 2D anisotropic composite

covariance function with a periodical wrapping construction. The period in the circumferential direction was clamped

to guarantee the 2π periodic property of a pipe wall thickness map. An example with a 2D Matern kernel (v = 3/2) is

shown in equation 7

K(X ,X∗) = K(r) =
(

1+
√

3r
)

exp
(
−
√

3r
)

(7)

where the input distance r is defined by

r =
1
l

√
(X−X∗)T (X−X∗) (8)

for an isotropic kernel, with l being the length-scale, and by

r =
√
(X−X∗)T ∧−2 (X−X∗) (9)

for an anisotropic kernel, where ∧ is a diagonal matrix with characteristic length-scales l1 and l2 on the main diagonal.

In the case of modelling periodical data, an established approach is warping. This is generally done by mapping each

one-dimensional input variable x to two-dimensional input variable

u(x) = [sin(xp),cos(xp)] (10)

where xp = 2πxp, and p is the period parameter, hence constructing a covariance matrix K(u(X),u(X∗)) to turn an

anisotropic kernel periodic (Rasmussen and Williams, 2006).
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4.3 Model Selection

Model selection was carried out by using the ground-truth dataset refered to in Section 4, composed of twelve 3D laser

thickness maps attained from exhumed pipeline spools from the same pipeline, so that the original 2.5D wall thickness

maps could be recovered via the proposed GP regressor from the in-field sample data collected by the NDT robot.

The proposed covariance function was selected by considering the physical properties of the target to be modelled

described in the preceding Section, and by means of comparing the Akaike information criterion (AIC) of each model.

AIC is a relative metric between potential models defined as

AIC = 2k−2ln(L) (11)

where k is the number of model parameters, and L is the maximum value of the likelihood function for the model in

parameter estimation (Burnham and Anderson, 2002). While the Log Marginal Likelihood (LML) is also often used in

the literature for this purpose, for models with relatively low complexity - as those proposed in this work - the values

of both LML and AIC are comparable, so AIC was selected as arguably it provide a slight advantage over LML in also

penalising models with additional complexity for similar fitting, thus discouraging overfitting

Three commonly used kernel functions with different setups were tested to establish the guidance on selecting the

most appropriate model. The basic characteristics of the three candidate kernel functions in a simplified isotropic

1D scenario are illustrated in Fig. 14a, given the difficulty in visualising a 2D anisotropic kernel. Table 14b shows

that under the same setup, both anisotropic and periodic composite covariance model setups produce lower AIC

given the characteristics of the pipeline data. The combination of these two add-ons gives the best performance for

cylindrical structures such as buried pipes, which corresponds to the observation that pipe wall thickness correlations

in the extracted data appear differently in circumferential and axial directions, and the correlation in circumferential

direction is 2π periodic. Among these kernel functions, Matern v3/2 always produced the lowest AIC under the same

setup. Higher order Matern are generally indistinctive from the Square Exponential case, whilst given the apparent

trend that less smooth kernels perform better, it would be reasonable to also consider the lowest order Matern v1/2.

However, these models become quite ‘’rough” and while functions are continuous they loose the differentiablily, a

characteristic that was not readily apparent in the data so was not perceived as a fitting alternative. Therefore, Matern

v3/2 with anisotropic and periodic setup was selected as the most appropriate kernel for modeling pipe wall thickness

maps.

It is worth noting that reconstruction error was also experimented upon as a model selection metric, and statistical
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(a) Characteristics of the 3 candidate covariance functions
tested, graphically depicting the statistical relationship be-
tween any two points ‘’r” distance appart in 1D.

Kernel
Anisotropic

Add-on
Periodic
Add-on #Params.

AIC
(mean)

AIC
(std)

Matern (v = 3/2) N N 4 2448 1475
Matern (v = 5/2) N N 4 2718 1434
Sq. Exp. N N 4 3531 1390
Matern (v = 3/2) Y N 4 2001 1411
Matern (v = 5/2) Y N 4 2283 1377
Sq. Exp. Y N 4 3034 1415
Matern (v = 3/2) Y Y 7 1922 1423
Matern (v = 5/2) Y Y 7 2147 1388
Sq. Exp. Y Y 7 3051 1473

(b) Combined kernel models studied with anisotropic and periodic add-ons to a given
standalone covariance function, and AIC model selection metric.

Figure 14: Gaussian Process kernel model selection. The combined anisotropic and periodic covariance functions were
tested on ground truth data thickness maps from a large number of exhumed pipeline spools, and their performance in
terms of AIC metric used to select the kernel to regress the data colllected with the NDT inspection robot (low AIC
values are indicative of a better fitting).

tests (ANOVA) computed on sample mean and variances. It was found that Matern kernels (tested with different

hyper-parameters) behaved statistically the same in terms of the reconstruction error. On the other hand, given the

dense training data around missing data, Squared Exponential produced statistically significantly worse results than

any Matern kernel.

4.4 Stability of the Model Selection

The stability of the AIC model section metric was estimated through bootstrapping (Efron and Tibshirani, 1994)

training samples from the twelve GT thickness maps. The theoretical foundation of bootstrap resampling allows

Table 2: Test-bed specifications, adapted from (Valls Miro et al., 2014).

Location Sydney, NSW, Australia
Year Installed 1922
Nominal Pipe Diameter 600 mm
Internal Pipe Diameter 579 mm to 590 mm (with cement lining)
External Pipe Diameter 662 mm to 666 mm
Nominal Wall Thickness Approx. 27 mm
Material Pit Cast Iron
Internal Liner Cement (installed in-situ in 1964)
Cement Lining Thickness 9.5 mm to 16.5 mm
Generic Spool Length Approx. 3.6 m
Jointing Lead run joints (tar soaked hemp sealants)
Total length used for research Approx. 1 km
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Figure 15: A typical inspection plan supplied to the utility parner for the deployment of the NDT inspection robot.

estimating the distribution of a statistic using random sampling methods. Specifically in this evaluation, training

map samples were randomly drawn with replacement for 100 iterations to feed in AIC parameter estimation and

characterize the candidate model. The last two columns in Table 14b collects the results, which indicate that all

candidate kernels have similar AIC variances yet the propose anisotropic periodic Matern (v = 3/2) kernel exibits the

lowest AIC mean.

5 Field Pipeline Inspection Results

The proposed robotic device has been extensively deployed in a buried 1 km live CI Cement Lined (CICL) pipeline

provided by a utility in Sydney, Australia, in what effectively constitutes a unique worldwide opportunity for the

advancement of NDT sensing and automation research in the field (Valls Miro et al., 2014). The pipeline has been

decommissioned and is therefore no longer part of the utility’s live network. However a connection point to an adjacent

600 mm water main and various scour valves and hydrants allow for the pipeline to be pressurised and discharged as

needed. Details of the pipeline are collected in Table 2. Pipe sections between 3 and 4 m in length were targetted for

scanning by inserting the inspection robot through a removed pipe section, be that a previously replaced section, as

shown in Fig. 1b, or a new cut-out. An example of an inspection plan is shown in Fig 15.

Robot localisation with respect to an entry point while travelling towards a section targetted for inspection was done

by means of robot odometry, measurement of tether release and accounting for spool joints traversed as seen by the

robot camera. Validation from an external laser scanner mounted at the entry point as seen inFig. 8b was also used

when it was deemed safe to be deployed in the field excavation pit, and there was line of sight within the laser range.

Moreover, discontinuity on spool joints also reveals a characteristic PEC signal comparable to a crack that was also

exploited in case of ambiguity about spool length.

After reaching the target spool, circumferential and longitudinal ring inspections were undertaken as described in

Section 3 to generate maps such as those depicted in Fig. 16. Following the inspection pattern ascertained in (Shi and
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(a) Target 1680 in Fig. 15(plan) and 17b. (b) Target 1670 in Fig. 15(plan) and 17b.

(c) Target 1060 in Fig. 17a. (d) GP-inferred map depicting joints and identified corrosion patches.

Figure 16: Various examples of remaining pipe wall thickness maps as measured by the robotic wall inspection during
field deployment on the buried critical water main. Distances shown are with respect to the edge of closest access
point.

Valls Miro, 2017), circumferential rings 100 mm appart in axial distance were evaluated with the robotic platform,

which given the 50mm sensor footprint effetively meant skipping every other ring with considerable time savings.

Examples of these are shown in Fig 16a, 16b and 16c. Adopting the GP model selection described in Section 4, a

model could be learned for each inspected spool and full inference on the missing rings undertaken. An example of

the final outcome achieved is shown in Fig. 16d, where measurements indicative of the lead run joints are also shown.

Where wall loss is present the spread of the reduction is clearly evident and can be identified and measured. Such

patches are modelled as ellipsoids (also depicted in Fig. 16d overlaid over the reconstructed map), and their defining

parameters can then be incorporated for stress calculation and remaining life prediction of the asset (Ji et al., 2017).

The final thickness maps gathered by the NDT robot during an extensive period of deployment between 2016 and 2018

are depicted in Fig. 17, referenced on an aerial picture showing the location where the pipeline is buried. The layout

of the pipeline spool structure is also shown in yellow, where white lines are illustrative of the pipeilne diameter, and

red segments identify spool joints, with the spool number inspected with the robot labelled accordingly. The date of

inspection has also been added. Further details about the full program of inspections and various other tests undertaken

with the NDT robot during the field deployment can be found in a comprehensive supplementary document associated

to this manuscript that has been deposited in the journal webpage for the interested reader.
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(a) Pits inspected from entry point “Pit B”.

(b) Pits inspected from entry point “T2P3 Replacement”.

(c) Pits inspected from entry point “Pit C”..

Figure 17: Final 2.5D spool thickness maps attained from the field deployment of the NDT robotic inspection robot
on a buried critical water main in Sydney during 2016-17-18. Three sections closer to the deployment entry points are
shown. In the middle figure, two access points (T2P3 and T2P4) were required given the unexpected narrowing found
in the pipeline (see Section 5.1).

Prior to using the robotic tool for extensive measurements, repeatability tests were also carried out on pipe sections

at the test-bed to ascertain the performance of the robotic inspection unit in-situ. Results from one of the tests are

shown in Fig. 18. The error histogram in Fig. 18c suggests a close to zero-mean Gaussian (0.112 mm mean, 0.869 mm

standard deviation). Information such as minimum, maximum and average thickness of the inspected pipe section are

key parameters of interest to water utilities for stress analysis and asset management in general. Table 18d collects the

most typical quantitative information being currently reported with the robotic device on the two inspections shown -

Map A (Fig. 18a) and Map B (Fig. 18b), corresponding to target 1100 in Fig. 17a.
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(a) Map A (Target 1100). (b) Map B (Target 1100).

(c) Errors between maps.

Map A Map B

Minimum thickness 17.4 16.2
Maximum thickness 28.1 28.8
Average thickness 21.8 21.9

(d) Inspection measurements (mm).

Figure 18: Robotic inspection repeatability tests on a single pipe section, target 1100 in Fig. 17a .

(a) Picture of anomalous narrowing (white
ring at pointer).

(b) 3D reconstruction of anomaly captured by RGBD
robot sensor.

(c) Outer clamp found after excavation.

Figure 19: Unchartered pipe anomaly found during inspection; verification excavation.

5.1 Pipe Inner Surface Profiling

In addition to PEC measurements, perceptual information from video streaming and point clouds of the pipe inner

surface (cement lining) can also be recorded with the RBG camera and the 3D structure sensor mounted at the front

of the robot. The latter in particular allows mapping the geometry of the pipe inner surface in order to evaluate the

surface unevenness, variation in the nominal pipe diameter and mapping the structure of in-pipe features (chainage,

off-takes, valves). Moreover, reconstructing the inner surface profile has the advantage that it enables identifying and

locating unchartered coarse anomalies present on the cement lining surface which may impede motion of ILI tools.
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An example of the latter was apparent during one of the inspections where the robot encountered an abnormality in

the form of pipe narrowing during the experiment is shown in Fig. 19b. The mean diameter of the narrow region was

observed to be 579 mm while the expected nominal diameter of the cement lined inner surface is expected to be close

to 600 mm. A posterior excavation by the utility found an unknown outer clamp as shown in Fig 19c, whose origin

was investigated but not found on any records.

6 Key Lessons Learned from the Field Deployment

The operational aspects of interfering with a critical asset that affects large populations in their daily lives, such

as the supply of drinking water, can not be understimated. The deployment of the unit on a critical pipeline was

indeed a carefully orchestrated exercise. Likewise, the extraction and replacement of sections for careful examination

and ground truthing was a significant undertaking in terms of logistics and resources (both personnel and monetary,

including flow control, excavation, transportation, grit-blasting and pipe preservation). It was revealing the extent of

consultations required with the many water utility teams that had to get involved during all phases of the project.

The actual field deployment of the robotic unit brought about some pivotal aspects to contend with, which in summary

could be identified as: (1) Unexpected anomalies in the pipe in the form of surface unevenness (e.g. in the rendering of

the cement lining), or pipe narrowings due to unknown features (e.g. an unchartered replaced pipe); (2) Boundaries in

the robustness of the hardware, given the harsh deployment conditions; (3) Impact of the limited speed on the logistics

surrounding the customer support and civil delivery team efforts to be able to deploy the robot (∼14 hours to cover

50% of a 3.5 m long, 600 mm diameter pipe section); and the (4) Need to introduce a level of compliance in the sensor

mountings to absorb the undocumented asymmetries and pipe manufacturing tolerances, so as to maintaining close

contact with the pipe walls for NDT sensing. Specific details of various of the issues encountered in regards to the

above are provided in the supplementary material document associated to this manuscript that has been deposited in

the journal webpage for the interested reader.

Following the learnings drawn from entertaining these issues in the field, authors have begun investigating faster

sensing architectures (multiple PEC sensors operating simultaneously) that can assess over 10 m of pipe length with

100% coverage (600 mm diameter) within an hour. Authors are also investigating new robot architectures which

enable significant size adjustments on encountering anomalies such as reduction/enlargement in the pipe diameter

during the inspection, or the presence (sometimes unexpectedly) of other pipe fittings and appurtenances.

Lastly, an interesting observation made during field deployment related to the actual choice of robot kinematic design,
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with one of the rear wheels of the robot experiencing signs of undue stress (both the left rear wheel assembly, as well

as its driving motor, failed on two occasions). This was attributed to unforeseen misalignment or asymmetry in the

implemented robot hardware, forcing the left rear side to experience accentuated tension. This was primarily a result

of the mechanical robot design with an arm linkage to allow rotational mobility, as well as assured grip of the wheels

againts the pipe walls during longitudinal motion. The lack of suspension meant that the applied forces when pressing

the wheels against the wall were substantial, often inducing significant stress on the driving wheel actuators. Measures

can be taken to minimize or diverge from the requirement of the whole robotic unit having to rotate by facilitating a

sensing unit mechanism able to rotate while the rest of the robotic device does not, and such architectures are currently

being investigated.

7 Concluding Remarks

An in-line robotic solution for the inspection of buried critical water mains and its evaluation during field deployments

has been presented in this paper. A singular kinematic locomotion design that optimises mobility in such tubular

environment has been coupled with an embedded NDT sensing solution based on PEC for measurements unsusceptible

to sensor lift-off, as typically found in cement lined water pipelines. A tailored covariance function suitable for pipeline

geometries has also been studied in a Gaussian Processes framework to regress missing sensor data.

The data gathered represents not only a visual understanding of the condition of the pipe for asset managers, but

also constitutes a quantative input to a remaining-life calculation that defines the likelihood of the pipeline for future

renewal or repair. The device addresses a utility sector need for an automatic NDT inspection vehicle that can report

dense pipe wall thickness discrimination as prescribed by failure prediction analysis, and that can be deployed in an

opportunistic manner - e.g. when a mains break occurs, or during valve inspection or repair programs when pipelines

are discharged and access made available. Extensive results have proven the validity of the solution on laboratory tests

and field pipeline inspections which demonstrate the feasibility of the device and sensing configuration to provide

meaningful 2.5D geometric maps. Future work is set on further characterisation and inclussion of sensor measurement

uncertainties in the analysis of the pipeline remaining-life calculations.

As highlighted in Section 6, following the learnings presented in this paper a new version of the robot is currently

under development with alternative mobility and sensor arrangement to facilitate faster robotic deployment, as well as

faster signal processing and acquisition. As part of that development, consideration is also being given to the unsolved

problem of relating complex pipe wall geometry to a PEC signal, a somewhat unorthodox sensor in the space of

probabilistic mapping. For practical purposes the NDT sensor measurements used in this work have been approximated
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to the average thickness under the footprint of the sensor (a 50 mm x 50 mm region) with reassuring results, although in

reality the sensor’s measurement generalises to a domain. Due to the unsolved problem of accurately relating complex

geometry to the signal, it is not trivial to assume or define a precise sensor model, and a compatible kernel to capture

such behaviours for regression, a task that requires further investigation.
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