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Abstract—This article discusses the essential difficulties in
developing model-checking techniques for quantum systems
that are never present in model checking classical systems. It
further reviews some early researches on checking quantum
communication protocols as well as a new line of researches
pursued by the authors and their collaborators on checking
general quantum systems, applicable to both physical systems
and quantum programs.
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I. INTRODUCTION

We are currently in the midst of a second quantum revo-
lution: transition from quantum theory to quantum engineer-
ing (e.g. quantum computing, communication, sensing). The
main purpose of quantum theory is to find fundamental rules
governing the existing physical systems. In contrast, quantum
engineering aims at designing and implementing new systems
(machines, devices, etc) to achieve some desirable tasks, based
on quantum theory.

From experience in today’s engineering, it is not always
easy for a human designer to completely understand the
behaviours of the system she/he is designing, and an error in
her/his design may cause serious problems and even disasters.
Consequently, theories and methodologies for verification of
correctness, safety and reliability of complex engineering
systems have been systematically studied in various engineer-
ing fields. In particular, computer scientists have developed
techniques to verify the correctness of both hardware and
software as well as the security of communication protocols.

A. Second Quantum Revolution Requires New Verification
Techniques

Human intuition is poorly adapted to the quantum world
than the classical world, which implies that human engineers
will make many more mistakes in designing and implementing
complex quantum systems such as quantum computer hard-
ware and software and communication protocols. Even worse,
because of the essential differences between the classical and
quantum worlds, verification techniques for classical systems
cannot be directly used to quantum systems. Novel verifica-
tion techniques will be indispensable for the coming era of
quantum engineering and technology.

B. Model Checking Techniques for Classical Systems

Model-checking is an effective technique to check whether
a system satisfies a desired property. The properties that are

checked are usually specified in a temporal logic; typical
properties are deadlock freedom, invariants, safety, request-
response properties. The systems under checking are math-
ematically modelled as e.g. (finite-state) automata, transition
systems, Markov chains and Markov decision processes [1].

In the last three decades, model-checking has become one of
the dominant techniques for verification of computer hardware
and software, and has proved mature as witnessed by a large
number of successful industrial applications. Techniques of
model checking were even applied in systems biology recently.

With quantum engineering and quantum technology being
emerging, a question then naturally arises: is it possible
and how to apply model-checking techniques in verifying the
correctness and safety of quantum engineering systems?

C. Difficulty in Model Checking Quantum Systems

Unfortunately, due to some essential differences between
the classical and quantum systems, it seems unlikely that
the classical model-checking techniques can be directly ap-
plied to quantum systems. Basically, to make model-checking
techniques effective for quantum systems, the following three
problems must be systematically addressed:
• System modelling and property specification: Behaviours

of quantum systems cannot be described using classi-
cal modelling methods, and consequently, properties of
quantum systems to be checked cannot be formalised
by classical specification languages. As a result, novel
conceptual frameworks must be proposed to properly
model and reason about quantum systems, including for-
mal models and formal description of temporal properties
of quantum systems.

• Quantum measurements: Model-checking is usually ap-
plied to check long-term behaviours of the systems. But
to check whether a quantum system satisfies a certain
property at a time point, one has to perform a quantum
measurement on the system, which can change the state
of the system. This makes studies of the long-term
behaviours of quantum systems much harder than that
of classical systems.

• Algorithms: Classical model-checking algorithms nor-
mally assume the state spaces to be finite or countably
infinite. However, state spaces of quantum systems are
inherently continuous. To develop algorithms for model-
checking quantum systems, deep mathematical properties
of the systems have to be exploited, so that a finite (or



countably infinite) number of representative elements in
the state spaces will suffice. Note that the state space of
any quantum system has a natural linear algebraic struc-
ture. A well developed algorithm for verifying quantum
systems should make clever use of this structure.

II. EARLY RESEARCH ON MODEL CHECKING OF
QUANTUM SYSTEMS

Despite the difficulties discussed above, a few model-
checking techniques for quantum systems have been developed
in the last 10 years. The earliest work mainly targeted checking
quantum communication protocols:
• Taking the probabilism arising from quantum mea-

surements into account, the probabilistic model-checker
PRISM is used in [11] to verify the correctness of quan-
tum protocols, including superdense coding, quantum
teleportation and quantum error correction.

• A branching-time temporal extension of exogenous quan-
tum propositional logic was introduced and then the
model-checking problem for this logic was studied in
[2], with verification of the correctness of quantum key
distribution BB84 as an application.

• A linear temporal extension of exogenous quantum
propositional logic was then defined and the correspond-
ing model-checking problem was investigated in [16].

• Model-checking techniques were developed in [4] for
quantum communication protocols modelled in process
algebra CQP (Communicating Quantum Processes) [10].

• A model-checker for quantum communication protocols
was also developed in [12], where only the protocols
that can be modelled as quantum circuits expressible in
the stabiliser formalism were considered. This technique
was further extended beyond stabiliser states and used to
check equivalence of quantum protocols.

III. MODEL CHECKING QUANTUM AUTOMATA

A research line pursued by the authors and their collab-
orators is to develop model-checking techniques that can be
used not only for quantum communication protocols but also
for general quantum systems, including physical systems and
quantum programs.

Quantum automata were adopted in [19], [15] as the model
of the systems:

Definition 3.1 (Quantum automata [14]): A quantum au-
tomaton is a 4-tuple A = (H,Act , {Uα : α ∈ Act},H0),
where:

1) H is a finite-dimensional Hilbert space, called the state
space;

2) Act is a finite set of action names;
3) for each action name α ∈ Act , Uα is a unitary operator

on H;
4) H0 ⊆ H is the subspace of initial states.
A quantum automaton behaves as follows: it starts from

some initial state in H0, and at each step it performs a
unitary transformation Uα for some α ∈ Act . An algorithm
for checking certain linear-time properties (e.g. invariants and

safety properties) was proposed in [19], where following
Birkhoff-von Neumann quantum logic, closed subspaces of the
state Hilbert space are used as the atomic propositions about
the state of system, and the checked linear-time properties are
defined as infinite sequences of sets of atomic propositions.
Furthermore, decidability or undecidability of several reach-
ability problems for quantum automata were established in
[15].

IV. MODEL CHECKING QUANTUM MARKOV CHAINS

The model-checking problem for a larger class of quantum
systems than quantum automata, namely quantum Markov
chains was studied in [20].

Note that continuous-time quantum Markov processes have
been studied intensively in mathematical physics. Discrete-
time quantum Markov chains were recently introduced as a
semantic model for quantum programs.

Definition 4.1 (Quantum Markov chains [20]): A quantum
Markov chain is a triple (H, E ,H0), where H and H0 are the
same as in Definition 3.1, and E is a super-operator on H.

A quantum Markov chain starts in an initial state in H0,
and at each step it performs (the same) quantum operation
modelled by the super-operator E . Note that the (discrete-time)
dynamics of closed quantum systems are usually depicted
by unitary operators, and the behaviours of open quantum
systems are described by super-operators. Obviously, the no-
tion of quantum automata can be generalised by replacing
unitary operators Uα in Definition 3.1 by super-operators
Eα. Furthermore, quantum Markov decision processes [3]
can be defined by introducing decision strategies into such
generalised quantum automata.

Several algorithms for checking reachability of quantum
Markov chains and quantum Markov decision processes were
developed. As in checking classical Markov chains and
Markov decision processes, graph reachability is a key to these
algorithms. However, classical graph theory is not suited to our
purpose; instead a new theory of quantum graphs (i.e. graphs
in a Hilbert space with adjacency relation induced by a super-
operator) was developed, and in particular, an algorithm for
the BSCC (bottom strongly connected components) decompo-
sition of the state Hilbert spaces was found in [20]. Another
decomposition technique, namely periodic decomposition, for
quantum Markov chains was recently proposed.

V. MODEL CHECKING SUPER-OPERATOR-VALUED
MARKOV CHAINS

The notion of super-operator-valued Markov chain is intro-
duced in [6] as a higher-level model of quantum programs and
quantum cryptographic protocols.

Definition 5.1 (Super-operator-valued Markov chains [6]):
A labelled super-operator-valued Markov chain over a set AP
of predefined atomic propositions is a 5-tuple (S, s0,H, Q, L),
where:

1) S is a finite set of classical states with s0 ∈ S being
the initial state;



2) H is a finite-dimensional Hilbert space, called the quan-
tum state space;

3) Q : S × S → SOH is a transition super-operator func-
tion, where SOH denotes the set of trace-nonincreasing
super-operators on H, and for each s ∈ S,

∑
t∈S Q(s, t)

is trace-preserving; and
4) L : S → 2AP is a labelling function.

A super-operator-valued Markov chain has two state spaces,
a classical one and a quantum one, which are connected
through the transition super-operator function. It behaves in
a similar manner as classical Markov chains. It starts from the
classical initial state s0 but with the quantum initial state un-
specified (it can be taken arbitrarily). Then at each step, given
the current classical state s and quantum state ρ, it proceeds to
classical state t with probability tr[Q(s, t)(ρ)], and the accom-
panied quantum state evolves into Q(s, t)(ρ)/tr[Q(s, t)(ρ)]
provided that tr[Q(s, t)(ρ)] 6= 0. The normalisation require-
ment that

∑
t∈S Q(s, t) is trace-preserving guarantees that the

probabilities of going from s to some classical state sum up
to 1.

As the atomic propositions are taken to be classical (they
apply only to classical states), this Markov chain model is
suitable for verification of quantum systems against classical
properties, such as running time, termination, reachability, etc.
One distinct feature of this model, however, is that it allows
us to check properties of the system once-for-all; that is, the
verified results apply to all initial quantum states. For example,
the model checking algorithm for the reachability problem
essentially calculates a positive operator Π, accounting for all
(classical) paths satisfying the concerned property. Then the
reachability probability when the Markov chain starts in the
initial quantum state ρ is simply tr(Πρ).

A corresponding computation tree logic (CTL) for super-
operator-valued Markov chains was defined, and algorithms
for checking such properties were developed in [6]. A tool
implementation of these algorithms has been provided [7]
based on a probabilistic model checker. Algorithms for model
checking ω-regular properties, a general class of proper-
ties subsuming LTL formulas, against super-operator-valued
Markov chains were proposed [8], thus allowing analysis
of a wide range of properties such as repeated reachability,
reachability in a restricted order, and nested Until properties.
Furthermore, the reachability problem of a recursive extension
of super-operator-valued Markov chains was studied in [9],
with the application of analysing quantum programs with
procedure calls.

VI. CONCLUSION

As reviewed in previous sections, several theoretical frame-
works and algorithms of quantum model-checking have been
developed. But certainly, quantum model-checking is still
at a very early stage of its development; in particular, its
applications are only at the level of toy examples. We envisage
that in the future, quantum model-checking techniques can be
applied to the following areas:

1) Checking physical systems: Physicists already consid-
ered the algorithmic checking problem of certain proper-
ties of quantum systems, for example, quantum measure-
ment occurrence [5] and reachability of quantum states
[17]. Quantum model-checking can offer a systematic
view of this line of research.

2) Verification of quantum circuits: Verification of circuits
has been one of the major application areas of classical
model-checking. But model-checking applied to verifi-
cation of quantum circuits is an area to be systematically
exploited.

3) Analysis and verification of quantum programs: Another
important application area of classical model-checking is
analysis and verification of programs. Several techniques
for analysis and verification of quantum programs have
been reported in the last few years [13], [18]. How-
ever, model-checking techniques specifically designed
for quantum programs are still missing.

4) Verification of security of quantum communication pro-
tocols: Applications of model-checking mentioned in
Section II focus on verification of correctness of quan-
tum communication protocols. But verification of the
security of quantum protocols is much more difficult,
and model-checking applied to it is an interesting topic
for future research.
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