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Abstract 

Single crystal, nanoscale diamond membranes are highly sought after for a variety of 

applications including nanophotonics, nanoelectronics and quantum information science. 

However, so far, the availability of conductive diamond membranes remained an unreachable 

goal. In this work we present a complete nanofabrication methodology for engineering high 

aspect ratio, electrically active single crystal diamond membranes. The membranes have large 

lateral directions, exceeding ~ 500×500 m2 and are only several hundreds of nanometers thick. 

We further realize vertical single crystal p-n junctions, made from the diamond membranes that 

exhibit onset voltages of ~ 10V and a current of several mA.  Moreover, we deterministically 

introduce optically active color centers into the membranes, and demonstrate for the first time 

a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the 

electrically active single crystal diamond membranes, offers new pathways for advanced 

nanophotonics, nanoelectronics and optomechanics devices employing diamond. 

 

Introduction 

The majority of modern photonic and optoelectronic devices including photodetectors, light emitting 

diodes (LEDs), lasers, micro-electromechanical systems (MEMS) and sensors rely on efficient doping 

(p-type and n-type) for electrical triggering or readout. Many devices also require robust 

nanofabrication protocols that enable engineering of nanoscale (tens to hundreds of nanometers) 

suspended membranes. These membranes are fundamental building blocks of advanced nanophotonic 

components such as waveguides or photonic crystal cavities, and also crucial to enable mechanical 

motion in MEMs 1-5.  

The exceptional properties of diamond, including excellent thermal conductivity, high young modulus 

and wide optical transparency6-10, make it an ideal platform for a vast majority of these applications. 

Diamond is also poised to be the leading candidate for modern nano-electronic devices due to its 

ability to sustain high temperatures and high electric fields before breakdown11-13.  However, broad 

adoption of diamond-based devices has so far been hindered by a lack of large area conductive 

diamond membranes and efficient nanoscale p-n junctions. While progress has been made to 

demonstrate proof of concept experiments and develop nanofabrication protocols to sculpt diamond 4, 

14-22, large-scale conductive diamond membranes that are suitable for efficient p-n or p-i-n junction 

engineering are currently beyond reach. This is due, in part, by the challenges associated with epitaxial 

growth onto non-diamond sacrificial substrates that can be subsequently chemically removed – a 

process that is well established for silicon and gallium arsenide. 

In this work, we overcome these barriers and demonstrate a robust method to fabricate p-type diamond 

membranes and engineer vertical p-n and p-i-n junctions that are suitable for further development of 



on-chip nanoelectronic devices. The nanoscale diamond membranes produced in our work have large 

lateral dimensions, over 500 x 500 μm2, excellent electronic properties, and are fabricated using a 

highly robust and technologically mature process, making them attractive candidates for broad 

adoption and scalable device fabrication.  

 

Results and Discussion 

To generate the p-type single crystal diamond membranes, we start with boron-doped single crystal 

diamond grown by chemical vapor deposition (CVD). Boron has been reliably used to achieve p-type 

doping in diamond23-24. The diamond is then implanted with 1 MeV of He+ ions to create a layer of 

graphitic carbon that can be subsequently removed using an electrochemical etching process that 

leaves behind standalone diamond membranes with a thickness of 1.7 m. The process is illustrated 

in figure 1, and further details are provided in the methods section. Using an optimized electrochemical 

etch method, we are able to lift off membranes with high surface area. Figure 1f shows an optical 

image of a single crystal diamond membrane with an area of ~ 0.2 mm2 and a thickness of 1.7 m. 

Raman spectroscopy was used to characterize the membrane, and a peak at ~1332 cm-1 corresponding 

to a single crystal diamond is clearly seen (Supplementary Information, SI, Figure S1). The 

membranes were subsequently thinned by Reactive Ion Etching (RIE) to achieve thicknesses smaller 

than 300 nm.  The surface roughness of the membrane before and after etching, was determined by an 

atomic force microscope to be below 3 nm, suitable for photonic and electronic devices (Figure S1). 

To test the electrical properties of the p-type diamond membranes, we measured the current – voltage 

(I-V) curves for a thick (1.7 m) and a thinned (~ 200 nm) membrane. An optical image of the latter 

is shown in figure 2a, while the electrical measurements are presented in figure 2 (b, c). As expected, 

semiconducting behaviour (Schottky junction) is observed from both membranes. The thicker 

membrane exhibits a forward threshold voltage of ~10 V and a breakdown voltage of -5V, while the 

thin membrane exhibits a slightly reduced threshold of 8 V. In both cases, currents on the order of ~ 

mA (~1.5 – 2 A/cm2) are recorded. These values are comparable to bulk and polycrystalline diamond 

devices23, 25. For reference, the inset of figure 2c shows the same measurement performed on an un-

doped diamond membrane with the same thickness (200 nm), that results in a small leakage current of 

several ~ A (~2 mA/cm2) flowing through the junction. These results confirm that the boron doped 

diamond membranes maintain their electrical properties even when they are thinned down to several 

hundred nanometers.  

The availability of p-type membranes enables the exploration of p-n junction engineering using the 

single crystal diamond membranes. To realize the p-n junctions, we employ a modified fabrication 

protocol in which an n-type diamond layer is epitaxially overgrown after the helium implantation step. 

The n-type layer thickness is set to ~ 200 nm, and gas-phase phosphorous is used as the dopant during 

the CVD growth. Our experimental conditions allow a slow growth that achieves uniform n-type 

doping across the sample. The overgrown diamond was then processed as described previously to 

produce a single crystal membrane with a total thickness of ~1.9 μm that is a vertical p-n junction (see 

figure 3(a-b)). An optical image of the membrane is shown in the inset of figure 3(b). It exhibits diode-

like behaviour with a forward threshold voltage of ~ 10 V with ~ mA (~ 3A/cm2) current, and a 

negligible current (~1×10-7 A/cm2) under a reverse bias of > 40V (figure 3c). This leads to an 

extremely high rectification ratio of ~ 104 (semi log I-V plots are shown in SI) which is ideal for diode 

fabrication26-27. This value is comparable to bulk diamond devces23.  



Upon subsequent thinning of the membrane to ~ 300 nm by RIE (yielding a p-type layer of ~ 100 nm 

and an n-type layer of ~200 nm), p-n membrane still behaves as a diode with a forward voltage of ~ 8 

V with ~ mA (~ 2 A/cm2) current, and negligible current (~2x10-7 A/cm2) under reverse bias (figure 

3d). The rectification ratio of the thin membrane is worse, ~ 30, and may be caused by roughening 

during the RIE process or by heterogeneous boron doping near the p-n interface. To the best of our 

knowledge, this is the first report of a vertical nanoscale p-n junction engineered within single crystal 

diamond, and is highly promising for a myriad of nano-electronic applications.  

To determine the thickness of the depletion region, 𝜔, of the p-n diamond junction, the following 

equation was employed, 

 

𝜔 = √
2𝜀𝑠

𝑞
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𝑁𝐴
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1

𝑁𝐷
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where 𝜀𝑠 is the permittivity, q is the electron charge, 𝑁𝐴 and 𝑁𝐵 are the acceptor ([B]~3×1020/cm3) and 

donor ([P]~8x1018/cm3) concentrations, respectively, 𝜙𝑖 is the built-in potential (~ 5.5 V) of our device 

and 𝑉𝑎 is the applied voltage (calculation is done for 𝑉𝑎 = 0 at equilibrium). Under our experimental 

conditions, a depletion layer of ~ 21 nm exists. The short depletion layer indicates that only a minimal 

voltage is needed to overcome this barrier potential and allow for recombination of electrons and holes 

flowing from the n- and p+ layers respectively and is important for practical devices. Furthermore, the 

p-n single crystal diamond membrane devices show a maximum electric field (ℰ = 2(𝜙𝑎 − 𝑉𝑖)/𝑤 ) 

of ~ 500 MV/m. While this field is not as high as millimetre scale bulk diamond, it is still an order of 

magnitude greater than silicon (300 kV/m) which is ordinarily used as the base material for 

nanoelectronic devices. A higher electric field allows the diamond membranes to withstand higher 

voltages (up to ~ 100 V for a 500 nm vertical device) and stresses before the device electrically breaks 

down and the material becomes conductive. Overall, the short depletion layer and the high breakdown 

field makes these nanoscale single crystal diamond membranes extremely attractive for real 

nanoelectronic devices.  

Beyond nanoelectronics, we foresee the great potential of our diamond membranes for optoelectronic 

and nanophotonic applications. To demonstrate a working device, we fabricated a p-i-n structure into 

a single crystal diamond membrane containing silicon vacancy (SiV) color centers that display both 

photoluminescence (PL) and electroluminescence (EL) (figure 4). The inclusion of the SiVs into the 

intrinsic layer between the p- and the n-doped regions allows for the recombination process to occur 

at the SiV centers, thus generating EL signal. The SiVs color centers were chosen intentionally, as 

they are emerging fluorescent defects in diamond that hold great potential for myriad of quantum 

photonic applications.3, 28 To realize this structure, a boron doped implanted single crystal diamond 

was overgrown in the presence of a silicon source to introduce the SiV color centers (into the intrinsic 

layer). An n-type diamond was subsequently epitaxially overgrown and the membrane was lifted off 

as described previously. 

An optical image of the stand-alone p-i-n single crystal membrane device is shown in figure 4a and 

the schematic illustration of the structure and the device are shown in figure 4b. A schematic energy 

band diagram is shown in the SI. The formed single crystal diamond membrane device displays 

excellent electrical characteristics, as shown in figure 4c. Diode-like behaviour with a threshold 

voltage at ~11 V and negligible current under a reverse bias of > 20V is measured. This is confirmed 

by the semi-log I-V curve with a high rectification ratio of ~ 106 (inset of figure 4c). The low threshold 



voltage is advantageous for efficient device operation and is comparable with many standard nano-

optoelectronic devices made of GaN, SiC and ZnO29-31.  

Figure 4d shows the PL and the EL characteristics of the device, recorded at room temperature. The 

PL was recorded using a 532 nm laser excitation, while the EL was recorded under a forward bias with 

an injection current of 3 mA. Both the EL and the PL exhibit the desirable emission of the SiV color 

centers at ~ 737 nm.  

We now discuss our results in the context of diamond membranes performance and compare it to the 

results reported by other research groups. Table 1 summarizes the literature of diamond membranes 

and provides the key characteristics of size and optical activity. Notably, the membranes reported in 

this work are amongst the largest in terms of surface area, while still being relatively thin – on the 

order of ~ 300 nm thick. Furthermore, our membranes have the advantage of being free standing single 

crystal diamond that can be transferred and accurately positioned on a substrate of choice. The 

membranes engineered in the current work also host optically active defects that can be triggered both 

optically and electrically. All these attributes combined are unique, and ideal for future fabrication of 

integrated nanophotonic, optoelectronic and optomechanical circuits using single crystal diamond 

membranes.   

 

Conclusions 

To conclude, we show the first reliable and robust engineering of nanoscale conductive diamond 

membranes. Moreover, we engineer the first-of-its-kind vertical nanoscale p-n and p-i-n nanoscale 

devices using entirely single crystal diamond. The membranes and the devices have high aspect ratio 

of lateral to vertical dimensions, are standalone and can be positioned onto a substrate of choice. 

Finally, we show that the p-i-n single crystal diamond devices can host optically active color centers 

– namely the SiV centers, that exhibit excellent EL and PL characteristics, and therefore are suitable 

for optoelectronic and photonic applications.  

Our work paves the way for numerous exciting new avenues employing the electrically active 

membranes. For instance, scalable integrated quantum nanophotonics circuits – including waveguides 

and photonic crystal cavities with electrically driven single photon emitters may become possible32-33. 

The ability of diamond to host myriad of color centers, can be leveraged to realize arrays of nanoscale 

multicolour LEDs that operate under harsh chemical and physical environments – as diamond is 

chemically inert. In addition, advanced nano-electromechanical systems (NEMS)34 may be realized. 

The availability of robust single crystal p-n junctions may lead to engineering of nanoscale diamond 

field effect transistors with high breakdown voltages to achieve fast nanoelectronic circuits on a single 

chip. Finally, advanced sensing techniques – particularly for DNA translocation35 where excellent 

mechanical and electrical properties are needed – may be developed.  

 

 

Methods 

Fabrication of p-type diamond membranes.  

Boron doped membranes were created from a bulk boron doped (~ 3 × 1020atoms/cm3) diamond 

crystal grown by Microwave Plasma Chemical Vapor Deposition (MPCVD).  The crystal was 

implanted with 1 MeV He+ ions to a dose of 5 × 1016 ions/cm2 and subsequently annealed at 900 OC 

in vacuum to create a thin amorphous carbon layer 1.7 μm below the surface, as shown in figure 1. 

The amorphous layer enables lift-off of the 1.7 μm thick diamond membrane by electrochemical 



etching. To selectively remove the graphitic residual, the sample was then immersed in deionized 

water and electrochemical etching was carried out using a constant forward bias of 60 V. During 

etching, a positively biased tip was contacted to the top surface of the diamond while the negatively 

biased tip was positioned slightly above the substrate. The diamond membranes were cleaned using a 

3:1 (sulphuric acid - hydrogen peroxide) piranha solution and transferred using a liquid droplet to a 

silicon substrate coated with ~150 nm of titanium which acts as a sticking layer and a bottom contact. 

The membranes range in size from [~50 to 1000] μm × [~100 to 2000] μm.  

A DektaXT stylus Profilometer was used to determine the thickness of the diamond membranes. To 

thin the diamond membranes, an inductive coupled plasma reactive ion etching (RIE) with a 

tetrafluoromethane/oxygen (CF4/O2) ratio of 1:3 at a pressure of 20 Pa, with a forward power of 200 

W was used.  

 

Fabrication of vertical nano-scale p-n junctions.  

A 200 nm n-layer was grown epitaxially using MPCVD on top of He+ ion implanted boron doped 

single crystal bulk diamond, before the electrochemical etch. For the n-type layer, PH3 diluted with 

H2 was used for phosphorus doping at a ratio (PH3/CH4) of 5% and the final doping is ~ 8 × 1018cm-

3 of phosphorous atoms. The sample then underwent electrochemical etching to dissociate the p-n 

diamond membrane that is ~1.9 μm thick. The p-layer was thinned by RIE to achieve a total membrane 

thickness of ~300 nm.  

 

Fabrication of vertical p-i-n junction. 

To fabricate the vertical p-i-n junction, a 100 nm intrinsic layer was grown epitaxially on top of He+ 

ion implanted boron doped single crystal bulk diamond, following by a 200 nm n-layer [~ 8×1018 cm-

3 phosphorous]. The sample then underwent electrochemical etching to dissociate the p-i-n diamond 

membrane.  

 

Fabrication of vertical p-i-ITO junction. 

A ~200 nm boron doped p-type diamond membrane was fabricated as explained above and positioned 

onto a clean silicon substrate. The membrane was then overgrown using a MPCVD chamber with a 

hydrogen/methane ratio of 100:1 at 60 Torr, a microwave power of 900W for 8 minutes to fabricate 

an ~100 nm intrinsic diamond layer that contains SiV color centers. The silicon doping occurs 

naturally with the silicon source from the substrate incorporates into the membrane. The p-i membrane 

was subsequently transferred onto a titanium coated silicon and sputtered with ~100 nm of n-doped 

indium titanium oxide (ITO) through a photolithographic mask.  

 

Electrical measurements.   

For the electrical measurements, the membranes were positioned onto a titanium (~150 nm) coated 

silicon dioxide wafer. The top contact was titanium/gold metal that was sputtered through a 

lithographic mask (thickness ~ 150 nm and 20 m diameter). To contact the devices, two xyz 

nanomanipulators were used, one positioned on top of the membrane and the second one positioned 

in a close proximity to it. The voltage was generated and controlled using the Keithley 617 

electrometer and the current passing through the device was measured using the same tool. The data 

was recorded using a custom built software. All the measurements were done at room temperature. 

 



Optical Characterization. 

A continuous-wave 532 nm laser (Gem 532, Laser Quantum) was used for excitation, focused onto 

the sample using a high numerical-aperture (NA = 0.9, Nikon) objective lens. The collected light was 

filtered using a 532 nm dichroic mirror (532 nm laser BrightLine, Semrock) and an additional long-

pass filter (Semrock). The signal was then coupled into a graded-index fibre, with the fibre aperture 

serving as a confocal pinhole, onto a spectrometer (Princeton Instruments).  
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Figures 



 
Figure 1. Schematic of the process used to engineer single crystal conductive diamond membranes. 

(a) Single crystal, boron doped CVD diamond is implanted with He ions (1 MeV, 5 × 1016 ions/cm2) 

to create a damaged layer ~ 1.7 μm below the surface (b). (c) The sample is annealed at 9000 C and 

(d) electrochemically etched to lift off the diamond membranes. (e) The membranes are transferred 

onto a Ti coated substrate using a liquid transfer process. (f) A top-down optical image (false color) 

of a membrane that has been lifted off. Inset: height profile that shows the membrane is ~ 1.7 μm thick.  

 

 

  
Figure 2. Boron-doped diamond membranes. (a) Optical image of a thin boron doped diamond 

membrane. Inset: height profile that confirms the membrane is ~ 200 nm thick. (b) An I-V curve of 

the lifted off boron doped membrane (~1.7 μm) exhibits a threshold of ~ 10 V. (c) An I-V curve of a 

200 nm thick, boron doped membrane exhibits an on-set threshold of ~ 8 V. Both I-V curves show 

semiconducting behaviour. Inset: IV curve of an undoped diamond membrane showing insulating 

behaviour with negligible A currents. 

 

 



  
Figure 3. Engineering of vertical p-n junctions. (a-b) Schematic of the process used to produce single 

crystal p-n diamond membranes. (a, b) Bulk boron doped diamond that was implanted with He ions 

to create a graphitic channel is overgrown with diamond to create a phosphorus doped n-type layer 

represented by the dark green color in (b). Inset, the lifted-off entire p-n diamond membranes. (c) 

Electrical measurements of the lifted off, 1.9 μm thick PN membrane showing diode behaviour at ~10 

V and (f) an I-V curve of the thinned (~300 nm) p-n membrane, showing a similar on-set voltage. 

 

 
Figure 4. Vertical standalone single crystal diamond p-i-n device. (a) An optical image of the p-i-n 

membrane containing a layer of SiV emitters in the intrinsic region. The circles are the metal contacts 

on the top n-type surface. (b) Schematic diagram of the cross section of the p-i-n diamond device. (c) 

The p-i-n membrane shows diode-like behaviour with an on-set voltage of ~ 11V. Inset: Log (I) vs 

(V) rectification curve of the p-i-n diamond membrane showing a rectification ratio of ~ 106. (d) 

Photoluminescence (blue) and electroluminescence (red) measurements recorded at room temperature 

showing a characteristic emission from the same SiV color center at ~737 nm. 



 

 

 

 

Length×Width (µm) Thickness (nm) PL EL Free standing Ref 

15 x 3 200 No No No 36 

2000 x 2000 3000  No No No 37 

3000 x 3000 2000 No No No 38 

400 x 400 1000  Yes, (NV) No No* 15, 39 

1100 (diameter) 1200 Yes, (NV) No No 40 

300 x 300 200 No No Yes 41 

4500 x 4500 15000 No No Yes 42 

10 x 10 200  Yes, (NV) No Yes 43 

220 x 220 200 Yes (NV, SiV) No Yes 17, 44 

1000 x 500 300 Yes, (SiV) Yes, (SiV) Yes Our work 

Table 1. A table summarising the performance of diamond membranes. The main parameters of size, 
optical activity (photoluminescence), electroluminescence (EL) and whether the membrane is free 

standing or attached are provided. *The membrane was attached to a large polycrystalline diamond 
frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


