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Abstract

Neospora caninum is an apicomplexan parasite responsible for neosporosis, a disease causing hind limb paralysis in dogs and

abortion in cattle, resulting in substantial economic losses to beef and dairy industries. Marked differences in pathogenicity exist

between N. caninum strains suggesting that intrinsic genetic differences exist between them. These differences likely exist in

genes expressed during the tachyzoite lifecycle stage which is responsible for the pathogenesis of neosporosis. An improved

understanding of these genetic differences is essential to understanding N. caninum virulence, though such knowledge is scarce.

Using a variant detection workflow we compared the tachyzoite transcriptomes of two N. caninum strains with different

virulence properties: NC-Liverpool (virulent) and NC-Nowra (avirulent). This workflow identified 3130 SNPs and 6123 indels

between the strains, and nine markers capturing 30 variants were Sanger sequenced for both strains. Sequencing of these loci

was extended to an additional eight strains and subsequent phylogenetic analysis supported a genetic population structure

comprised of two major clades with no geographical segregation. Sequence polymorphisms within coding regions of tachyzoite-

associated genes were concentrated on chromosomes XI and XII, with 19 distinct tachyzoite-associated SNP hotspot regions

identified within coding regions of the N. caninum nuclear genome. The variants were predominantly located in loci associated

with protein binding, protein–protein interactions, transcription, and translation. Furthermore, 468 nonsynonymous SNPs iden-

tified within protein-coding genes were associated with protein kinase activity, protein binding, protein phosphorylation, and

proteolysis. This work may implicate these processes and the specific proteins involved as novel effectors of N. caninum

tachyzoite virulence.
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Introduction

Neospora caninum is a cyst forming coccidian of the phylum

Apicomplexa first described as the cause of a potentially fatal

neurological disease of dogs (Dubey et al. 1988a). However,

its economic importance is primarily due to its role as the

etiological agent of bovine neosporosis, a reproductive dis-

ease characterized by abortion and stillbirths in cows that is

recognized as the leading global cause of bovine reproductive

failure (Dubey and Lindsay 1996; Dubey 1999; Reichel and

Ellis 2002; Dubey and Dubey 2003; Dubey et al. 2006; Reichel

et al. 2007). Bovine infections with N. caninum have been

reported in the Americas, Europe, Australia, and New

Zealand, causing losses within the range of US $1.1 million

in New Zealand, to an average total of US $546.3 million in

the USA (Reichel et al. 2013). The combined annual losses due

to N. caninum for the Australian and New Zealand dairy and

beef industries are estimated to be greater than AU $110

million annually (Miller et al. 2002; Reichel and Ellis 2002).

Neospora caninum is a diverse species and several strains

have been characterized revealing notable genotypic and

phenotypic differences (Al-Qassab et al. 2010b). For example,

the highly virulent NC-Liverpool strain causes foetal death in

cattle (Atkinson et al. 1999), whereas the NC-Nowra strain

has been evaluated for use as a live attenuated vaccine
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against bovine neosporosis, based on its low virulence in

mouse models (Miller et al. 2002; Williams et al. 2007;

Weber et al. 2013). NC-Liverpool infection in mice causes

severe neosporosis, characterized by encephalitis, hind limb

paralysis, and severe weight loss, whereas a Swedish bovine

isolate, NC-SweB1, induces similar but significantly milder

symptoms in a smaller number of infected mice (Atkinson

et al. 1999). The NC1 strain of N. caninum is known to induce

severe clinical manifestations including fetal death in cattle as

well as polyradiculoneuritis and granulomatous polymyositis in

infected dogs (Dubey et al. 1988a, 1988b, 1992; Innes et al.

2001; Maley et al. 2003). However, while there are studies that

report marked differences in pathogenicity between N. cani-

num strains in mouse models, there are limited results pub-

lished comparing the behavior of various strains in cattle. A

study focusing on correlating fetal loss with N. caninum infec-

tion reported fetal death in pregnant heifers following inocu-

lation of the BPA1 isolate at 118 days gestation (Barr et al.

1994). Furthermore, an absence of fetal death was reported

in pregnant heifers inoculated with NC-Spain 1 H, an isolate of

low virulence, whereas fetal death occurred in heifers inocu-

lated with the control strain NC1 (Rojo-Montejo et al. 2009).

Differences have also been demonstrated between virulent

isolates NC-Spain 7 and NC1 in cattle, with respect to the

timing of fetal death and immunological response, where

NC-Spain7 resulted inhigher fetalmortality rates andanearlier

and higher anti-N. caninum IgG response (Caspe et al. 2012).

These phenotypic differences reflect a genetically diverse

species. Analysis of mini- and microsatellite repeats for over

100 N. caninum strains has revealed extensive genetic diversity

(Regidor-Cerrillo et al. 2006, 2013; Basso et al. 2009; Al-

Qassab et al. 2010a). A typing method based on randomly

amplified polymorphic DNA (RAPD) resolved several N. cani-

num isolates into six genotypes (Schock et al. 2001).

Additionally, Regidor-Cerrillo et al. (2006) performed multi-

locus microsatellite analysis of nine cultured N. caninum iso-

lates with varying host ranges and geographical locations,

which revealed distinct genetic profiles for the 12 microsatel-

lite markers investigated. Similarly, a multiplex PCR targeting

three microsatellites and three minisatellites (Tand-3, Tand-

12, Tand-13, Cont-6, Cont-14, and Cont-16), was developed

by typing 25 cultured N. caninum isolates which identified 11

genotypes (Al-Qassab et al. 2010a). Although these methods

reflect the diversity of N. caninum as a species, they are based

on repetitive sequences that are generally noncoding and

their impact on parasite phenotype is unknown.

The Apicomplexa have evolved several unique features that

aid them in their intracellular parasitic lifestyle. These include

molecules that facilitate motility, host cell adhesion, and inva-

sion. Apicomplexan parasites manipulate host cells through se-

cretion of effector proteins produced by specialized secretory

organelles unique to this phylum; micronemes, rhoptries, and

dense granules (English et al. 2015). Micronemal (MIC) proteins

are released upon contact with host cells and facilitate adhesion

(Cerede et al. 2005), where for example MIC2 plays a role in

host-cell attachment, motility, and invasion in T. gondii (Lovett

et al. 2000; Huynh and Carruthers 2006), and MIC1 and MIC3

are soluble adhesins Naguleswaran et al. 2001; Keller et al.

2002; Cerede et al. 2005). Rhoptry family proteins are then

secreted into the host cell cytosol facilitating formation of the

tight junction between the invading parasite and target host

cell, culminating in the formation of the parasitophorous vac-

uole (Talevich and Kannan 2013). Shortly after host cell inva-

sion, the dense granules release GRA proteins that may be

involved in nutrient acquisition (Nam 2009; Leineweber et al.

2017). Studies of the closely related apicomplexan parasite

Toxoplasma gondii have identified a range of virulence factors

that exist as orthologues in N. caninum, including dense gran-

ule protein GRA9 (Leineweber et al. 2017), ROP5 (Reese et al.

2011; Ma et al. 2017b), and ROP16 and ROP18 (Saeij et al.

2006; Taylor et al. 2006; Lei et al. 2014; Ma et al. 2017a).

Although current typing approaches for N. caninum have

confirmed genetic variation in repetitive elements, there is a

lack of knowledge on polymorphisms occurring in the coding

regions of its genome. Sequence polymorphisms within many

notable virulence factors have been described in T. gondii. For

example, the identification of sequence polymorphisms

within GRA6 and GRA7 of T. gondii led to the development

of serotyping technology that is now commonly used for

genotyping strains within this species (Kong et al. 2003;

Sousa et al. 2009). Similarly, differences in virulence properties

reported between N. caninum strains might imply that genetic

diversity exists within, upstream, or downstream of genes that

are transcriptionally active in tachyzoites which are the life

cycle stage responsible for the pathogenesis of neosporosis.

The present study employed a variant detection workflow

to compare the transcriptomes of two N. caninum strains with

markedly different virulence properties: NC-Liverpool (viru-

lent) and NC-Nowra (avirulent in mice). Phylogenetic analysis

of sequenced polymorphic markers identified in silico,

revealed a population structure consisting of two major clades

showing no obvious geographical segregation. Tachyzoite-

associated polymorphisms were associated with kinase activ-

ity, ATP binding, protein–protein interactions, and proteolysis,

implicating several proteins involved in these processes as po-

tentially novel determinants of N. caninum virulence.

Materials and Methods

Parasite Culture for Nucleic Acid Extraction and
Sequencing

Neospora caninum strains (supplementary file S1, table S1,

Supplementary Material online) were grown in vitro using

Vero cells as the host cell line, at 37�C in RPMI media supple-

mented with 10% heat inactivated horse serum. Total RNA

was extracted from the tachyzoites using TriSure reagent

(Bioline) and treated with RNAase-free DNAase (Sigma).

Genome Wide Identification of Mutational Hotspots in N. caninum GBE

2418 Genome Biol. Evol. 10(9):2417–2431 doi:10.1093/gbe/evy188 Advance Access publication August 25, 2018

Deleted Text: While 
Deleted Text: -
Deleted Text: s
Deleted Text: While 
Deleted Text: -
Deleted Text: -
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data


RNA-seq was performed on three biological replicates of

mRNA, each extracted from difference passages of both

NC-Liverpool and NC-Nowra only. For each strain, two tech-

nical replicates (RNA-seq libraries) were prepared, constituting

six libraries in total. The sequencing reads were generated

using Illumina HiSeq2000, 100 base paired-end sequencing.

For laboratory confirmation of the SNPs, genomic DNA

was also extracted using the solvent extraction technique,

from cultured tachyzoites of N. caninum and Neospora hugh-

esi strain NE1 (imported from ATCC). Briefly, cells were pel-

leted and then extracted three times with equal volumes of

phenol and chloroform and then once more with chloroform

only, with thorough vortexing and centrifuging at 13,000� g

for 1 min between extraction steps. The DNA was precipitated

from the final aqueous phase by isopropanol and resus-

pended in 100ll of ddH2O. The DNA extracts were stored

at �20 �C until required.

Read Quality Control and Mapping

Illumina reads were trimmed for quality and length using the

Filter FASTQ tool (Blankenberg et al. 2010a), available on the

Galaxy Platform (Blankenberg et al. 2010b) through the

Garvan Institute for Medical Research (http://galaxyproject.

org/; Last accessed June 2015). Illumina reads <15 base pairs

long, and with per base quality scores <20, were discarded

using the Filter FASTQ tool (Bao et al. 2014; Pabinger et al.

2014; Broad Institute 2015). A Perl script (supplementary file

S1, Supplementary Material online) was used to ensure paired

read information was preserved, resulting in two paired read

files, and an unpaired (singlet) read file. These processed reads

were next mapped to the N. caninum reference genome avail-

able from ToxoDB (NC-Liverpool genome, version 28, http://

www.toxodb.org/toxo/; Last Accessed April 2018) using

TopHat version 2.1.1 (Bao et al. 2014; Pabinger et al. 2014;

Broad Institute 2015). Read mapping was optimized by

adjusting alignment parameters to increase the overall read

alignment rate, as detailed in supplementary file S1,

Supplementary Material online.

De Novo Transcriptome Assembly

An in-house reference transcriptome was created for NC-

Liverpool by performing a de novo transcriptome assembly.

The TopHat alignment tool was first used to map the N.

caninum reads to the Vero genome, resulting in unmapped

BAM files containing N. caninum reads that were sorted and

converted into fastq files using scripts provided in supplemen-

tary file S1, Supplementary Material online. The resulting fastq

files were assembled using Trinity (version 2.5.1) (Grabherr

et al. 2011). Removal of redundant contigs was performed

using CD-HIT-EST which sorts comparable nucleotide sequen-

ces based on a user-defined similarity threshold, and reports

the longest sequence in each cluster as the representative

contig (version 4.6.6) (Li and Godzik 2006). This step was

included to ensure the same variants were not identified

and duplicated in the final callset, within redundant contigs

generated by Trinity from the same or very similar sequence

reads. The scripts available in the Trinity package and the

TransRate software package (version 1.0.3) (Smith-Unna

et al. 2016) were employed to assess the quality of both

the original and new transcriptome assembly following CD-

HIT-EST analysis, using the parameters and thresholds pro-

vided in supplementary file S1, Supplementary Material online,

where a similarity threshold of 0.8–0.85 was used (n¼ 5). A

summary of assembly metrics assessed is contained within

supplementary file S1, table S2, Supplementary Material on-

line, and the NC-Liverpool transcriptome can be found in sup-

plementary file S2, Supplementary Material online, in FASTA

format. The NC-Liverpool transcriptome generated in-house

was compared with published NC-Liverpool reference tran-

scripts from ToxoDB by mapping RNA-seq reads generated

in-house from NC-Liverpool. Variant calling was performed

from the resulting BAM (binary alignment/map) files.

Variant Calling

SAMtools (Li et al. 2009) was used to sort and index the

“mapped” BAM files generated by TopHat, and to generate

an mpileup (multi-sample pileup) output. This data was then

imported into VarScan 2 (Koboldt et al. 2013) for variant

calling using the recommended parameters. The identified var-

iants were filtered using VarScan’s accessory scripts, which re-

move variants that do not meet thresholds pertaining to strand

bias, sequence and variant coverage thresholds, mismatch qual-

ity sum, and read position bias. A detailed description of this

workflow can be found in supplementary file S1,

Supplementary Material online. Variants were visualized using

the Integrative Genomics Viewer (IGV) (Robinson et al. 2011;

Thorvaldsdottir et al. 2013). Briefly, the N. caninum reference

genome FASTA file was uploaded to IGV (version 2.3.67), along

with the sorted BAM files for each sample. Hundreds of variants

were randomly selected for viewing from the SNP and indel lists

produced by VarScan, and a set of high confidence variants

were selected from amongst these for laboratory validation.

Variant Annotation

The de novo transcriptome assembly generated for NC-

Liverpool was queried against the published NC-Liverpool

reference genome using a BLASTN search (version 2.7.1), to

facilitate assignment of each transcript to a chromosome.

High confidence hits (E-value � 1E�50, Bit-score � 200, and

PID � 90%) were subsequently cross-referenced with the

contig location of each SNP, for allocation of SNPs to a chro-

mosome. A BLASTX search was also performed querying the

de novo NC-Liverpool transcriptome assembly against NC-

Liverpool annotated proteins from ToxoDB (NcaninumLIV,

version 30), to assign SNPs to a gene ID (PID � 90%). The

location of SNPs along the N. caninum genome was then

Calarco et al. GBE

Genome Biol. Evol. 10(9):2417–2431 doi:10.1093/gbe/evy188 Advance Access publication August 25, 2018 2419

Deleted Text:  
Deleted Text: ute
Deleted Text: -
http://galaxyproject.org/
http://galaxyproject.org/
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
http://www.toxodb.org/toxo/
http://www.toxodb.org/toxo/
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
Deleted Text: to 
Deleted Text: `
Deleted Text: '
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy188#supplementary-data


plotted to investigate the distribution of variants. Circos plots

(Krzywinski et al. 2009) were generated to present the SNP

data set in the context of the N. caninum genome, and to

determine whether any particular regions might represent

mutational (i.e., SNP) hotspots. A gene region was classified

as a mutational hotspot if it contained >15 SNPs within a

50 kb window. The genes within these regions and their

SNP information were extracted for gene ontology analysis.

Functional Analysis of Mutational Hotspots

InterProScan (version 68.0) was used to assign functional in-

formation to proteins putatively encoded by the genes within

each SNP hotspot (Quevillon et al. 2005; Finn et al. 2017). For

each of these hotspot genes, their respective protein sequen-

ces were analyzed using TMHMM (Sonnhammer et al. 1998),

Phobius (Kall et al. 2004), and Philius (Reynolds et al. 2008), to

identify potential transmembrane helices and signal peptides.

The transcripts were also ranked by SNP density (contig

length/number of SNPs) to investigate whether genomic

regions with either a high or low SNP density were function-

ally significant. To do this, contigs were ranked on SNP density

and contigs from within the first and third quartiles were

extracted and their chromosome locations were identified.

A z-test was performed to elucidate whether any chromo-

somes encoded a significantly larger number of SNP-dense

contigs (P value <0.05). DNAPlotter (Carver et al. 2009)

was then used to visualise the main features for chromosomes

of interest, using available NC-Liverpool GenBank records

(Ramaprasad et al. 2015).

Identifying Nonsynonymous and Synonymous Mutations

A de novo transcriptome was generated for NC-Nowra using

Trinity, as described previously for NC-Liverpool.

TransDecoder (Haas et al. 2013) was used to identify candi-

date protein-coding regions within the transcripts based on

nucleotide composition and open reading frame (ORF) length.

The protein sequences generated by TransDecoder for NC-

Nowra were subjected to a BLASTP search (PID �80%)

against the protein sequences generated for NC-Liverpool

via the same procedure, to identify transcripts with identical

ORFs, and those with mismatches or gaps between the two

strains. These two lists were then cross referenced against the

list of SNPs identified by VarScan, to identify nonsynonymous

and synonymous mutations. The protein sequences from

transcripts found to contain nonsynonymous SNPs were sub-

sequently submitted to InterProScan for functional annota-

tion, and the elucidation of gene ontologies, domains,

repeats, and protein superfamilies.

Polymerase Chain Reaction (PCR) and Sanger Sequencing

PCR primers were designed to capture randomly selected

variants identified by VarScan (supplementary file S1, tables

S3 and S4, Supplementary Material online). All PCRs were

prepared using the reagents provided in a MyTaq (Bioline)

PCR kit. Each reaction contained 10lM of each forward

and reverse primer, 0.5ll of MyTaq DNA Polymerase

(5 U/ll), 2ll of DNA template, and 5ll of 5�MyTaq reaction

buffer in a total volume of 50ll. Each reaction was accom-

panied by a negative control, where DNA template was

substituted with ddH2O. The temperature cycling conditions

employed were as follows: 1) 95 �C for 5 min, 2) 95 �C for

1 min, 3) 57–61 �C (primer dependent—see supplementary

file S1, tables S3 and S4, Supplementary Material online) for

40 s, and 4) 72 �C for 40 s. Steps 2–4 were repeated 39 times,

followed by a final extension step (5) of 72 �C for 5 min. PCR

was performed on genomic DNA extracted from cultures of

NC-Liverpool and NC-Nowra, as well as NC1, JPA1, NC-

SweB1, WA-K9, NC-Beef, BPA1, BPA6, and an additional

NC-Liverpool that had been cryogenically stored since 1998.

This NC-Liverpool passage from 1998 was included as a con-

trol to investigate the genetic stability of this isolate over sev-

eral years. The PCR products were then subject to

electrophoresis on 2% agarose gels containing GelRed,

visualized under UV light, and excised from gels using a sterile

scalpel blade. Amplicons were purified from gel slices using a

Qiagen QIAquick Gel Extraction Kit in accordance with the

manufacturer’s instructions. Sequencing was performed

twice in both the forward and reverse direction on an ABI

capillary sequencer, by the service provider Macrogen

(South Korea). The ABI files were analyzed using SeqTrace

(Stucky 2012). The forward and reverse sequences were as-

sembled into contigs using an online version of CAP3 (Huang

and Madan 1999). The resulting contigs were aligned for

comparison using Clustal Omega (Sievers and Higgins 2014).

A summary of the workflow discussed above in its entirety

is presented in figure 1, including the data sets exploited and

created, the tools and software employed, and the analyses

conducted.

Population Structure

To investigate whether an underlying population structure

existed amongst the N. caninum strains studied based on

identified sequence polymorphisms, a neighbor-joining tree

was generated from a genetic distance matrix using the

neighbor-joining tree estimation method of Saitou and Nei

(1987). This was performed with the “nj” function within

the “ape” R package, using the sequencing data generated

through PCR analysis for each isolate as input.

DNA extracted from cultured N. hughesi tachyzoites was

subjected to PCR amplification and sequencing of the same

polymorphic loci, to investigate whether the confirmed var-

iants identified in this study for N. caninum isolates were pre-

sent. The sequences were used to generate an additional

neighbor-joining tree incorporating the ten N. caninum

strains, as well as N. hughesi.
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Comparison to Toxoplasma gondii Markers

Genetic markers commonly used in RFLP analyses of T. gondii

were identified and cross referenced to the N. caninum SNP

callset, in an attempt to elucidate whether the two closely

related species were comparable with respect to genotyping

markers (Lorenzi et al. 2016; Ruffolo et al. 2016). Additionally,

based on the current understanding of genomic variation

exhibited among the four major T. gondii lineages (Boyle

et al. 2006; Khan et al. 2006; Khan et al. 2011b), the genes

located on chromosome Ia in N. caninum were examined to

see whether SNPs identified in this study mapped to this locus.

Results

Generation of a Reference Transcriptome

VarScan identified 1,520 high confidence SNPs following

mapping of the NC-Liverpool transcriptome reads to the pub-

lished NC-Liverpool reference genome. A total of 12 SNPs

from this callset were subsequently confirmed through PCR

analysis and Sanger sequencing as true differences between

the two sources (see supplementary file S1, table S3,

Supplementary Material online). The NC-Liverpool DNA se-

quenced from a cryopreserved 1998 NC-Liverpool culture

(sourced from Liverpool University [Barber et al. 1993]) and

the 2017 NC-Liverpool passage sequenced for this study were

identical at these SNP locations. This confirmed the genetic

stability of the strain over time, and indicated that the NC-

Liverpool strain cultivated in-house was either genetically dis-

tinct from the published NC-Liverpool genome, or that the

published NC-Liverpool genome contained some erroneous

SNPs. This led us to use our in-house de novo transcriptome

assembly as our reference for variant calling, given we could

validate it by Sanger sequencing. Following removal of redun-

dant contigs using CD-HIT-EST, 45,297 transcripts

(27,570,740 assembled bases) remained in the Trinity assem-

bly for use as a reference for mapping NC-Nowra reads and

subsequent variant calling. A summary of the assembly met-

rics is contained within supplementary file S1 and S2,

Supplementary Material online.

FIG. 1.—A summary of the complete variant detection workflow used in this study. Beginning with NGS (Illumina HiSeq) data, the reads generated from

NC-Liverpool and NC-Nowra were used to assemble individual transcriptomes, and identify sequence variations between the two strains. A subset of high

confidence variants was subsequently selected for laboratory validation for a total of ten N. caninum strains, each of which differs in pathogenic capability,

geographical origin, and source. The SNP callset was then subjected to various computational analyses to determine their genomic location and functional

significance, identify highly polymorphic regions, reveal whether their presence resulted in nonsynonymous (missense) or synonymous (silent) mutations, and

determine an underlying population structure.
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Variant Calling

The NC-Nowra and the NC-Liverpool tachyzoite transcrip-

tomes differed by 3,130 SNPs and 6,123 indels (table 1).

Supplementary file S3, Supplementary Material online, con-

tains a list of NC-Liverpool transcriptome contigs containing

SNPs identified by VarScan, along with the variant positions,

and reference and alternate bases. The number of SNPs ob-

served in a contig ranged from 0 to 28, the average being

1.55 SNPs per contig. A total of 1,838 transitions (A/G and

C/T) and 1,292 transversions (A/C, A/T, C/G, and G/T) were

observed between the NC-Nowra and NC-Liverpool strains,

representing a transition/transversion ratio (Ti/Tv) of 1.42. The

3,130 high confidence SNPs were distributed across 2,021

unique transcripts encoded by 1,879 genes. Additionally,

the current N. caninum reference genome consists of multiple

large contigs that are not assigned to one of the 14 chromo-

somes. There were 162 SNPs distributed across 22 such con-

tigs, with the majority of this callset (�78%) assigned to eight

of these contigs alone. These SNPs were subsequently allo-

cated to 34 unique protein-coding genes. It is worth noting

that when blasting the NC-Liverpool transcriptome against

the published N. caninum annotated proteins to assign SNPs

to annotated genes, several contigs containing SNPs returned

high confidence BLAST hits (i.e., PID � 90%) to multiple

genes along the genome, however not all SNPs were assigned

to protein-coding genes based on the BLAST results.

A set of 27 variants identified in silico between NC-

Liverpool and NC-Nowra were subject to PCR and sequencing

analysis (table 2). No false-positive variants were identified

from among the 27 variants examined, though the workflow

failed to detect three true variants (i.e., three false negative

SNPs) within these genetic markers, as revealed by Sanger

sequencing. It was found that VarScan originally identified

these variants, but they were discarded during subsequent

filtering steps.

Distribution and Functional Annotation of SNPs

Multiple SNP hotspots were identified, distributed unevenly

throughout the N. caninum genome (fig. 2). A large number

of SNPs clustered on chromosome XI (FR823392), in addition

to various hotspots identified in chromosomes V (FR923386),

VI (FR823387), and XII (FR823393). There were 19 hotspots

containing 73 N. caninum genes, many of which were impli-

cated in translation (NCLIV_057380 and NCLIV_057360),

transcription (NCLIV_057870 and NCLIV_065940), ribosomal

subunit formation (NCLIV_056680, NCLIV_056820,

NCLIV_056830, and NCLIV_057070), GTP binding and

GTPase activity (NCLIV_057820 and NCLIV_057390), protein

transport (NCLIV_057490), and kinase activity or protein

phosphorylation (NCLIV_ 056620 and NCLIV_057940). The

genomic location of these 73 genes contained within SNP

hotspots and their annotations are tabulated in

supplementary file S1, table S5, Supplementary Material on-

line. Thirty-five genes from this callset contained five or more

SNPs.

Prior to functional analysis, 23 of the 35 SNP hotspot genes

were identified as hypothetical proteins or unspecified prod-

ucts based on their corresponding gene IDs. All but nine were

assigned GO terms, protein families, domains and/or repeats

by InterProScan. Protein superfamilies that appeared more

than once among these 35 SNP hotspot genes included

WD40 repeat containing domain superfamily (IPR036322),

ARM-like helical (IPR011989), ARM-type fold (IPR016024),

and P-loop-containing nucleoside triphosphate hydrolase

(IPR027417). Other superfamilies of functional interest were

zinc finger RING/FYVE/PHD type (IPR013083), Sec1-like super-

family (IPR036045), EF-hand domain pair (IPR011992), ABC

transporter superfamily (IPR036640), and the translation initi-

ation factor eIF-4e-like (IPR023398) superfamilies. Domains

and repeats featured were AAAþ ATPase domain

(IPR003593), tetratricopeptide repeat (IPR019734), subtilisin

SUB1-like catalytic domain (IPR034204), and WD40-repeat-

containing protein (IPR017986).

Recurring Gene Ontologies (GO) for molecular function

included protein binding (GO: 0005515), binding (GO:

0005488), and hydrolase activity (GO: 0016787). Regarding

biological process GOs, those assigned included lipid

metabolic process (GO: 0006629), translation initiation

Table 1

Summary of VarScan Variant Calling Using NC-Nowra RNA-seq Reads

Aligned to the De Novo NC-Liverpool Transcriptome Reference

Number of SNPs Called Number of Indels Called

Prefiltering Postfiltering Prefiltering Postfiltering

Pre-CD-HIT-EST 15,807 3,562 8,163 5,067

Post-CD-HIT-EST 15,361 3,130 8,966 6,123

NOTE.—Most SNPs initially called by VarScan were discarded following filtering
based on strand bias, sequence, and variant coverage thresholds, mismatch quality
sum, and read position bias.

Table 2

A Summary of the Total Number of Variants Selected for and Confirmed

Through Sequencing, Based on Targeting Various Loci

Metric Value

High confidence SNPs called by VarScan between NC-Liverpool

transcriptome and NC-Nowra reads

3,130

Variants captured and confirmed through Sanger sequencing 37

Variants captured and confirmed in MLST targets 27

Variants captured in MLST, identified as false positives through

Sanger sequencing

0

Variants discovered via Sanger sequencing, identified as false

negatives by VarScan

3

Total variants captured in MLST, sequenced for a total of ten N.

caninum strains

30
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(GO: 0006413), metabolic process (GO: 0008152), proteolysis

(GO: 0006508), and transmembrane transport (GO:

0055085). Supplementary table S6 within supplementary

file S1, Supplementary Material online contains a complete

list of gene annotation information and ontologies for the

putative proteins encoded within these SNP hotspots.

The three bioinformatic tools employed to identify trans-

membrane (TM) proteins and signal peptides within the SNP

hotspot list, did not present consistent results for all protein

sequences explored. However, mutually reported between

both Phobius and Philius, were four transmembrane proteins,

and six globular proteins with signal peptides, all of which

were present on either chromosome VI or XI, except for

one signal peptide containing protein which was located on

chromosome V. Two hotspot genes also encoded transmem-

brane proteins with signal peptides, both of which were lo-

cated on chromosome XI (NCLIV_056900 and

NCLIV_057550). Interestingly, two TM proteins and two sig-

nal peptide containing proteins could not be assigned any

additional annotations or gene ontologies.

Estimation of Synonymous and Nonsynonymous SNP
Count

When the translated transcriptomes of NC-Nowra and NC-

Liverpool were compared, 652 SNPs were found to be located

in open reading frames that possessed different translations

between the strains, and these SNPs were distributed across

287 unique genes. There were also 470 SNPs assigned to a

protein-coding gene where the translation of the respective

transcript was identical between the strains (i.e., synonymous

mutations). However, where the number of mismatches

reported by BLASTP exceeded the number of SNPs within a

contig, it was assumed that VarScan had filtered out real

FIG. 2.—Circos plot representing the SNP data in the context of the N. caninum genome. The outer track is an ideogram representing the 14 N. caninum

chromosomes and their sizes, followed by a histogram of the 7,121 annotated genes along each chromosome in the middle track. This histogram is based on

each gene’s location within a chromosome, plotted in 50 kb windows, relative to the ideogram. The inner most track contains the distribution of identified

SNPs as located within these annotated genes. Each tile in this inner track represents a SNP that has fallen within that gene region, relative to the ideogram.

The tiles are also colored based on their size, where those that are blue represent genes that are larger than 10,000 bases.
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sequence variants between the two strains (i.e., false nega-

tives SNPs). Alternatively, in the event that there were more

SNPs identified by VarScan within a contig than BLASTP mis-

matches, the additional SNPs were presumed to result in syn-

onymous mutations. Therefore, it was estimated that the final

VarScan SNP callset contained at least 468 nonsynonymous

SNPs, and 654 synonymous SNPs. Figure 3 displays the distri-

bution of the nonsynonymous and synonymous SNPs identi-

fied across the N. caninum genome. Many nonsynonymous

mutations coincided with the locations of the SNP hotspots

identified, including those on chromosomes VI (FR823387), XI

(FR823392), and XII (FR823393), whereas almost all the SNPs

located on chromosome V (FR823386) were found to be syn-

onymous mutations. Additionally, the aforementioned callsets

included 60 nonsynonymous SNPs, and 63 synonymous SNPs

part of large contigs within the N. caninum genome, which

are not pictured in the Circos plots generated.

Functional Analysis of Transcripts Containing
nonsynonymous SNPs

The GOs that were overrepresented in transcripts containing

nonsynonymous SNPs from amongst the molecular function

GO category included protein kinase activity (GO: 0004672),

ATP binding (GO: 0005524), and protein binding (GO:

0005515). Recurring GOs from the biological process cate-

gory included protein phosphorylation (GO: 0006468), prote-

olysis (GO: 0005576), and oxidation–reduction process (GO:

0055114). The protein superfamilies repeatedly featured

were protein kinase-like domain superfamily (IPR011009), p-

loop containing domain-like superfamily (IPR027417), WD40-

repeat containing domain superfamily (IPR036322), and

tetratricopeptide-like helical domain superfamily

(IPR011990). Recurring protein domains of functional impor-

tance included protein kinase (IPR000719), AAAþ ATPase

(IPR003593), EF-hand calcium binding (IPR018247), and

PAN/Apple domain (IPR003609), as well as featured protein

repeats such as WD40 repeat (IPR001680), and Ankyrin re-

peat (IPR002110). Also of interest as reported by

InterProScan, were protein signatures such as serine/threo-

nine protein kinase active-site signature, protein kinase ATP

binding site signature, protozoan surface antigen signature

(SAG1), and ABC transporters family signature.

Twenty-seven of the 35 SNP hotspot genes were found to

contain nonsynonymous SNPs, including proteins coding for

kinesin, SUB2, an ABC transporter, a Sec1 protein, and fatty

acyl-CoA desaturase.

Distribution of Transcripts of High and Low SNP Densities

Chromosome XI (FR823392) possessed the largest number of

contigs with a high SNP density across the genome. The z-test

confirmed that the two chromosomes encoding a signifi-

cantly larger number of SNP-dense transcripts (P value

<0.05), compared with the number of contigs with a low

SNP density, were chromosomes VI (FR823387) and XI

(FR823392). Figure 4A and B depict the main genomic fea-

tures of chromosomes VI and XI, plotted using the available

GenBank records for chromosome VI (LN714480.1) and XI

(LN714480.1). Both chromosomes are transcriptionally active

in N. caninum tachyzoites, and only a very small number of

noncoding regions exist between genes. The SNP hotspots

within these chromosomes seem localized to selected geno-

mic windows. The chromosomes also encode ncRNA

(noncoding RNA) molecules, including tRNAs, dispersed

unevenly along the length of each chromosome.

Additionally, there are clear areas where the GC content

along the chromosome either peaks above average, or

decreases. Some SNP hotspots on either chromosome

also appear to coincide with peaks in GC content, such

as that on chromosome VI between approximately

450,000 and 500,000 bases.

Genetic Population Structure

The Sanger data generated for eight additional N. caninum

strains, across nine selected loci (NC1, JPA1, NC-SweB1,

WA-K9, NC-Beef, BPA1, BPA6, and an additional NC-

Liverpool strain cryogenically frozen since 1998) containing

30 of the confirmed variants, did not reveal any specific

patterns of segregation (i.e., geographical or otherwise).

Nevertheless, JPA1, BPA1, and NC1 were more similar to

NC-Liverpool, whereas NC-Nowra, NC-SweB1, NC-Beef,

BPA6, and WA-K9 were more similar to each other than

to the formerly mentioned isolates. The NC-Liverpool

strains from different passage numbers were identical.

The neighbor-joining tree presented in figure 5A revealed

the grouping of the ten strains into two distinct clades

based on the SNP data: the virulent strains including NC-

Liverpool, and the more attenuated group including NC-

Nowra and NC-SweB1.

Seven of the nine sequenced polymorphic loci (supplemen-

tary file S1, table S4, entries 1–7, Supplementary Material

online) which contained 28 confirmed variants between

NC-Liverpool and NC-Nowra identified in this study, were

able to be amplified for N. hughesi, through the DNA extrac-

tion and PCR amplification methodology described. The se-

quencing results for N. hughesi revealed the presence of all 28

variants identified in silico for N. caninum, as well as the ex-

istence of an additional 28 SNPs that were unique to N. hugh-

esi. Presented in figure 5B is an additional neighbor-joining

tree generated from seven of the nine aligned polymorphic

loci, for N. hughesi and all ten N. caninum strains. These

results provide further additional support for the existence

of two clades of N. caninum.

Comparison to Toxoplasma gondii Markers

Of the 12 T. gondii genotyping markers examined, only two

SNPs were present within N. caninum orthologous genes.
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They were in dense granule protein (GRA7) and class I chiti-

nase (CLP1). These results appear to be consistent with that of

Al-Qassab et al. (2010b), where no sequence differences were

detected in various proteins of canine and bovine N. caninum

strains. This included SAG1, SRS2, and GRA6, all of which are

among the 12 T. gondii genotyping markers explored in this

study. Due to the location of one SNP at the very beginning of

the contig, PCR and sequencing analysis was only performed

and confirmed for one of these SNPs, as per the last entry in

supplementary table S4 of supplementary file S1,

Supplementary Material online.

After assigning the location of each SNP to a chromosome

(fig. 2) to examine the distribution of variation along the N.

caninum genome, it was observed that chromosome Ia

(FR823380) had the second lowest SNP density with <100

SNPs being present, only second to chromosome Ib

(FR823381).

Discussion

Neospora caninum is an apicomplexan parasite, responsible

for reproductive failure in cattle and neurological disease in

dogs. Intraspecies diversity is known in the form of extreme

differences in virulence between strains found across the

globe. The genetic basis of this diversity is unknown though

an improved understanding of this could help to identify novel

virulence loci.

We used a bioinformatics workflow to identify genome-

wide genetic differences between two phenotypically distinct

strains of N. caninum. These strains vary drastically in their

pathogenic propensity, and represent extremes of N. caninum

virulence (Atkinson et al. 1999; Miller et al. 2002). A variant

analysis workflow was employed to identify SNPs present in

the genomes of NC-Liverpool and NC-Nowra, and the SNPs

were subsequently subjected to laboratory validation through

PCR and Sanger sequencing. A multilocus sequencing

FIG. 3.—Circos plot presenting the location of nonsynonymous SNPs identified in the N. caninum genome. The outer track is an ideogram, representing

the 14 N. caninum chromosomes and their sizes, followed by a histogram of the 7,121 annotated genes along each chromosome on the second track from

the outside. This histogram is based on each gene’s location within a chromosome, plotted in 50 kb windows, relative to the ideogram. The next track (third

from the outside) represents the locations of nonsynonymous SNPs called by VarScan within these annotated genes. Similarly, the innermost track depicts the

locations of synonymous SNPs identified by VarScan.
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approach was developed using this information, compris-

ing of nine randomly selected loci, with a combined length

of 3.4 kb and containing 30 validated variants. This method

was applied to ten N. caninum strains, including two NC-

Liverpool samples from different passages and NC-Nowra,

to reveal a population structure consisting of two major

clades. We also identified SNP hotspots within the genome

of N. caninum, characterized by elevated levels of SNP

density.

The choice of variant caller for genome-wide SNP detection

requires careful consideration and optimization depending on

the organism under investigation and the data available

(Reumers et al. 2012; O’Rawe et al. 2013; Bao et al. 2014;

Pabinger et al. 2014; Ribeiro et al. 2015). In addition, some

variant callers such as the routinely used Genome Analysis

Toolkit (GATK) (McKenna et al. 2010) require a database of

known SNPs to preprocess reads for variant calling, and con-

sequently fail to consider nonmodel organisms such as N.

caninum. As the majority of variant callers are like the

GATK and depend on reference-based mapping, their use

in nonmodel species is often restricted due to the absence

of high-quality reference genomes (Dou et al. 2012).

The VarScan package employed in this study exploits em-

pirical and statistical thresholds based on user-defined criteria

to call variants, representing a simple pipeline that is compat-

ible with several short-read aligners (Koboldt et al. 2013). This

versatility means it can be applied to nonmodel organisms

such as N. caninum. Using its default recommended param-

eters, the VarScan 2 pipeline (Koboldt et al. 2013) identified

thousands of high confidence SNPs and indels between the

de novo NC-Liverpool transcriptome generated in-house, and

the NC-Nowra RNA-seq data. Of the hundreds of variants

that were randomly selected for manual visualization in IGV,

most exhibited robust quality scores and high sequence cov-

erage at the variant position. Sanger sequencing identified a

small number of false negative variants filtered out subse-

quent to variant calling. This highlights the need for careful

optimization of filtering parameters and the necessity of val-

idating SNPs identified in silico by Sanger sequencing before

deriving any biological conclusions.

Ribeiro et al. (2015) explored the relationship between the

choice of tools and parameters, and their impact on false

positive variants. Out of the seven factors explored, the quality

of the reference sequence used had the most pronounced

effect on the false positive variant calling rate. This finding

raises concerns for the use of similar variant calling pipelines

on nonmodel organisms in the early stages of genomic exam-

ination where the reference genomes may be poor or mis-

assembled, the product of limited or incomplete sequencing,

or the result of inadequate quality control and validation. This

can subsequently result in errors in the reference sequence

being identified as read mismatches, producing false positive

variants.

Using the NC-Liverpool genome from ToxoDB as a refer-

ence, all the variants called were false positives, typically lo-

cated at the ends of reads or in homopolymer runs, which are

known error sources associated with DNA sequencing

(Reumers et al. 2012; Durtschi et al. 2013). This discovery

prompted the assembly of a de novo transcriptome using

RNA-seq data derived from the NC-Liverpool parasites cul-

tured in-house. The variant calling workflow employed here

identified numerous SNPs when comparing our cultured NC-

Liverpool strain to the ToxoDB NC-Liverpool reference,

FIG. 4.—Plots displaying the features of chromosome VI (A) and XI (B).

The outer most track (pink) in both plots represents the location of all

genes on either chromosome. The adjacent two tracks contain the CDS

on the forward (red) and reverse (blue) strands. The green strokes on the

next two tracks show the location of tRNAs on the forward and reverse

strands, respectively, and similarly the location of ncRNAs are represented

by the aqua strokes on either strand. The GC content along the chromo-

some is displayed in the second most inner track, where the yellow depicts

areas above average content, and the pink being below average.
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suggesting the reference in ToxoDB was erroneous. Although

alternatively it is possible that such identified variants could

represent allelic variation between these NC-Liverpool cul-

tures, this does not seem to be the case, at least for the set

of 12 variants that were confirmed through sequencing.

Based on our extensive work and the original use of the

ToxoDB NC-Liverpool genome as a reference for variant call-

ing, the confirmed SNPs are most likely attribulable to errors in

this published genome. The absence of any differences be-

tween the 2017 and 1998 NC-Liverpool strains based on our

MLST approach also supports this.

Analysis of the distribution of identified SNPs elucidated the

existence of SNP hotspots across the N. caninum genome

(fig. 2), especially their clustering on chromosome VI

(FR923387), XI (FR923392), and XII (FR823393). However,

the current (or absence of) annotation of the N. caninum ge-

nome presented a problem for assigning functional signifi-

cance to the SNPs identified in this study, and more broadly

remains a problem for the study of virulence and pathogenic-

ity within the species. The fact that 4,011 of 6,936 genes in

the published N. caninum genome are annotated as hypothet-

ical proteins, presents a major and concerning hindrance to

the study of potential virulence factors. Furthermore, recent

studies focusing on improving and expanding the available

gene structure and annotations for N. caninum are yet to ap-

pear in ToxoDB reference resources (Goodswen et al. 2015;

Krishna et al. 2015; Ramaprasad et al. 2015). Although 3,130

high confidence SNPs were called and 19 genomic SNP hot-

spots identified, many were located within the coding regions

of hypothetical proteins or uncharacterized genomic regions,

which greatly hindered the ability to assign biological context

to these polymorphic regions.

In an effort to annotate the corresponding protein sequen-

ces for each SNP hotspot identified in this study, many of

which were hypothetical proteins, various tools such as

InterProScan were used. Within these hotspots were two

genes coding for WD40 domain containing protein:

NCLIV_057900 and NCLIV_013170. WD40 repeat containing

proteins belong to one of the largest, most abundant protein

families found in all eukaryotes (Neer et al. 1994). These pro-

teins are associated with a variety of functions including signal

transduction and transcription regulation, cell cycle control,

autophagy, apoptosis, transmembrane signaling, and cyto-

skeleton assembly. The fundamental shared function of all

WD40-repeat proteins is facilitating multi-protein complexes,

where the repeats serve as a rigid scaffold for protein inter-

actions. The significance of this is that for intracellular proto-

zoan parasites, the efficiency of infection is contingent on the

parasite’s capacity for host cell recognition, adhesion, and

invasion, which are generally mediated by protein–protein

interactions (von Bohl et al. 2015).

InterProScan characterized one hypothetical, SNP hot-

spot protein (NCLIV_057320) as belonging to the

tetratricopeptide-like helical domain superfamily. As

with members of the WD40 family, TPR containing pro-

teins are involved in protein–protein interactions and var-

ious metabolic and regulatory processes, and thus play an

important role in virulence (Goebl and Yanagida 1991).

Also amongst the most abundant proteins in eukaryotes,

and characterizing one identified hotspot gene, zinc fin-

ger domain containing proteins exhibit versatile binding

modes, suggesting that such motifs are stable scaffolds

with specialized functions. Zinc finger proteins are in-

volved in transcription and translation regulation, DNA

FIG. 5.—Unrooted neighbor-joining trees showing the population structure within the Neospora genus. (A) This unrooted neighbor-joining tree was

generated from pairwise genetic distances calculated from nine genetic markers capturing 30 variants, including ten N. caninum strains (including one repeat

of NC-Liverpool; NC-LIV98). The tree suggests a population genetic structure comprising two major lineages of N. caninum. (B) This neighbor-joining tree

was generated from seven of the nine genetic markers capturing 28 confirmed variants for N. caninum strains, as well as an additional 28 SNPs that were

unique only within the N. hughesi sequences. The values displayed in both trees indicate the genetic distance between nodes.
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and RNA recognition, protein folding and assembly, apo-

ptosis, and cell adhesion (Laity et al. 2001).

The ATP binding cassette (ABC) superfamily of proteins are

expressed as efflux transporters in eukaryotes, that translo-

cate a plethora of substrates including proteins, ions, toxins

and amino acids across membranes (El-Awady et al. 2017). All

ABC transporters consist of two domains: the nucleotide

binding domain (NBD) and the (transmembrane domain

[TMD], where the coupling of these domains facilitates import

and export). The protein hotspot identified as an ABC trans-

porter, NCLIV_065950, had gene ontologies related to trans-

membrane transport (GO: 0055085), ATP binding (GO:

0005524), and ATPase activity coupled to transmembrane

movement of substances (GO: 0042626). However, while

Phobius recognized the transmembrane topology of this pro-

tein coding sequence, Philius and TMHMM did not.

Since the data exploited in this study was generated from

RNA-seq data, it was unexpected that SNPs were identified

that were not located in annotated genes. This suggests that

either the current gene annotation is incorrect or incomplete,

or that new/novel abundantly expressed transcripts were pre-

sent in the culture from which the RNA-seq data was gener-

ated. However, this study did not investigate the presence of

sequence variants located within apicoplast or mitochondrial

DNA, to which some of the identified SNPs may have been

located within.

In addition to the mutational hotspots revealed throughout

the N. caninum genome in this study, the nonsynonymous

mutations identified can also contribute to the current under-

standing of pathogenic variability within the species. As a

nonsynonymous SNP alters a protein’s sequence, their pres-

ence can cause changes in biochemical activity, protein–pro-

tein interactions, and molecular function, which can

consequently establish the link between genotype and biolog-

ically significant phenotypes (Ng and Henikoff 2006; Zhao

et al. 2014; Tang and Thomas 2016). This stresses the impor-

tance of not only identifying and comparing sequence var-

iants present between populations, but also understanding

whether such mutations have the potential to disrupt the

resulting protein’s function. The identification of nonsynony-

mous SNPs within protein coding genes in this study may

provide new insight into and sources for studying the under-

lying causes of phenotypic differences between isolates of N.

caninum, presenting new potential determinants of virulence

and pathogenic capability.

Analyzing and recognizing the existence of population

structure within a species is conducive to understanding and

determining the spread of virulence factors within and be-

tween geographic locations (Khan et al. 2011b). As presented

in figure 5A, the ten strains, including two NC-Liverpool

strains from different passages, comprise two distinct genetic

clusters that may reflect differences in pathogenicity. The

highly virulent NC-Liverpool strain was the most distinct

type, and was placed at a genetic distance furthest from

the clades containing the less virulent NC-Nowra and NC-

SweB1 strains, but at a small distance from the virulent NC1

strain. Although significant differences in virulence between

select N. caninum strains have been published in either mice

or cattle models (Dubey et al. 1992; Atkinson et al. 1999;

Innes et al. 2001; Miller et al. 2002; Maley et al. 2003), limited

studies currently exist that comprehensively document the

pathogenic variability of many other isolated strains, including

NC-Beef, BPA6, and WA-K9. This makes it difficult to corrob-

orate the population structure elucidated in this study and

make an assumption regarding virulence, based on the pres-

ence or absence of sequence variations investigated.

However, the neighbor-joining tree presented in figure 5B

with the inclusion of N. hughesi, supports the existence of a

two-clade population structure for N. caninum, dividing the

ten strains into genetic clusters potentially resembling their

virulence properties. We refrain from suggesting that N. can-

inum as we know it, may represent two independent species.

The relationship represented in figure 5B including N. hughesi

suggests that this idea is worth investigating further. It is also

worth mentioning that the two clades elucidated in this study

reflect the results of the Tand-12 minisatellite marker de-

scribed by Al-Qassab et al. (2010a) for these isolates. The

NC-Liverpool cluster contained three copies of this repeat,

whereas the NC-Nowra cluster is characterized by four copies

of this repeat.

Fatality was observed in only one of eight susceptible c-INF-

KO mice infected with NC-Beef oocysts, Lindsay et al. (1999)

suggested that this strain may be characterized by a lack of

pathogenicity. Additionally, WA-K9 was the first canine strain

from Australia, cultivated from skin lesions found on a dog in

Western Australia (McInnes et al. 2006). What was notewor-

thy about the clinical presentation of this dog was that infec-

tion initially manifested as cutaneous neosporosis, where the

parasite is primarily responsible for neurological illness in can-

ines. However, the dog was essentially normal at a 2.5 year

follow up examination after continuous treatment with a high

dosage of clindamycin, and subsequent to initial treatment

and recrudescent infection. The successful treatment and op-

portunistic infection characterizing this particular case, may

suggest reduced virulence of this strain, and hence further

affirm the population structure determined in this study.

The NC-Liverpool DNA sequenced from the 1998 culture

(sourced from Liverpool University [Barber et al. 1993]) and

the 2017 passage sequenced for this study were identical at

the genomic locations studied in MLST, confirming the ge-

netic stability of the strain over time, and indicating that the

NC-Liverpool cultivated in-house was either genetically dis-

tinct from the published NC-Liverpool genome, or that this

genome contains erroneous SNPs. It is also important to note

that the 1998 isolate is known to be virulent in mice (Atkinson

et al. 1999). Additionally, the absence of virulence in the NC-

Nowra isolate was confirmed as recently as 2013 in cattle

vaccine trials (Weber et al. 2013). However, it should be noted
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that this study did not compare other isolates previously

categorized as virulent in cattle, such as NC-Liverpool.

Although studies have established varying degrees of intra-

species genetic diversity within N. caninum in repeat regions,

it is expected that SNPs will replace repetitive sequences as

DNA markers, due to their distribution throughout the entire

genome and their low mutation rates (Picoult-Newberg et al.

1999). As variant identification using RNA-seq data from N.

caninum is unprecedented, it is valuable to compare these

results to genetic variation identified in well-studied model

organisms. Toxoplasma gondii is a model Apicomplexan

with robust data available, and has been thoroughly studied

to elucidate existing genotypes, population structure, and po-

tential virulence markers. The plethora of studies exploring the

population structure of T. gondii has shown that the global

between-lineage variation ranges from approximately 0.01 to

5% (Boyle et al. 2006). It is well documented that a distinct

split exists between T. gondii lineages found in North America

and Europe, compared with those in South America (Khan

et al. 2011b). Furthermore, the cause of most infections in the

Northern Hemisphere can be traced to four clonal lineages,

each with differing levels of pathogenicity (Khan et al. 2011a).

It was observed that very few sequence polymorphisms exist

on chromosome 1a between these dominant lineages (Khan

et al. 2006, 2011b). Due to this common monomorphic chro-

mosome, the current model of evolution suggests that ap-

proximately 10,000 years ago a genetic sweep caused the

expansion of these lineages, from only a limited number of

genetic crosses between highly related precursor strains

(Boyle et al. 2006). After assigning the location of each SNP

to a chromosome (fig. 2), it was observed that chromosome Ia

in N. caninum had the second lowest SNP density with <100

SNPs being present. Whether N. caninum experienced a sim-

ilar genetic sweep to T. gondii at the time is not entirely clear,

however if this was the case, based on the existence of SNPs

across this locus, such a sweep may not have been as severe.

In summary, this study shows that variant analysis can con-

tribute to our understanding of the existence and underlying

mechanisms of genetic diversity within the N. caninum spe-

cies, as well as the mechanisms of virulence and pathogenesis.

Based on this, SNP identification has the potential to replace

mini- and microsatellite markers for exploring such intraspe-

cies diversity. The MLST approach developed in this study

reveals a population structure reflecting two major clades

that do not support any obvious geographical segregation.

This knowledge will facilitate the future identification of novel

virulence markers and guide the selection of candidate com-

ponents for a subunit vaccine against bovine neosporosis.

In addition, we present a bioinformatic workflow that iden-

tified thousands of genetic variants in loci that are transcrip-

tionally active during the tachyzoite stage of the N. caninum

life cycle. This data informed the development of an MLST

approach based on nine transcriptionally active tachyzoite-

associated loci that provides new insights on the population

genetic structure of N. caninum. We also identify a set of N.

caninum proteins as potentially novel virulence determinants

for downstream investigation, based on both the presence of

SNP-dense regions (hotspots), and nonsynonymous mutations

within protein-coding genes. This work provides new insights

into the molecular basis behind the marked virulence proper-

ties reported between strains of N. caninum, which is knowl-

edge that will be pertinent to the future development of a

subunit vaccine against bovine neosporosis.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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