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HIGHLIGHTS 
 

A numerical mode matching approach is proposed to model sound propagation in 

silencers containing granular material. 

 

It allows efficient computation of arbitrary transversal geometries, material 

heterogeneities and abrupt changes of properties. 

 

TL curves computed through the proposed approach agree with full 3D FE calculations 

and experimental measurements. 

 

The acoustic influence of several parameters is analyzed, including granular size and 

geometry of the silencer cross section. 
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ABSTRACT 

This work presents an efficient numerical approach based on the combination of 

the mode matching technique and the finite element method (FEM) to model the 

sound propagation in silencers containing granular material and to evaluate their 

acoustic performance through the computation of transmission loss (TL). The 

methodology takes into account the presence of three-dimensional (3D) waves and 

the corresponding higher order modes, while reducing the computational 

expenditure of a full 3D FE calculation. First, the wavenumbers and transversal 

pressure modes associated with the silencer cross section are obtained by means 

of a two-dimensional FE eigenvalue problem, which allows the consideration of 

arbitrary transversal geometries and material heterogeneities. The numerical 

approach considers the possibility of using different filling levels of granular 

material, giving rise to cross sections with abrupt changes of properties located not 

only in the usual central perforated passage, but also in the transition between air 

and material, that involves a significant change in porosity. After solving the 

eigenvalue problem, the acoustic fields (acoustic pressure and axial velocity) are 

coupled at geometric discontinuities between ducts through the compatibility 

conditions to obtain the complete solution of the wave equation and the acoustic 

performance (TL). The granular material is analysed as a potential alternative to 

the traditional dissipative silencers incorporating fibrous absorbent materials. 

Sound propagation in granular materials can be modelled through acoustic 

equivalent properties, such as complex and frequency dependent density and 

speed of sound. TL results computed by means of the numerical approach 

proposed here show good agreement with full 3D FE calculations and 

experimental measurements. As expected, the numerical mode matching 

outperforms the computational expenditure of the full 3D FE approach. Different 

configurations have been studied to determine the influence on the TL of several 

parameters such as the size of the material grains, the filling level of the chamber, 

the granular material porosity and the geometry of the silencer cross section. 

 

Keywords: Sound Attenuation; Silencer; Granular Material; Numerical Mode 

Matching; Finite Element Method; Computational Performance 
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1. INTRODUCTION 

Multidimensional methods are widely used for the acoustic modelling of silencers 

and other exhaust devices [1]. Accurate predictions of the sound attenuation 

performance at mid and high frequencies require the consideration of three-

dimensional waves corresponding to higher order modes. Numerical approaches 

such as the boundary element method (BEM) and the finite element method (FEM) 

are usual design tools, although the associated computational expenditure of these 

fully numerical schemes can be considerable as the number of degrees of freedom 

increases [2, 3]. Thus, an effort has been made in the last two decades with a view 

to developing alternative modelling techniques that provide improved 

computational efficiency without sacrificing accuracy. Some of these techniques 

are based on hybrid approaches [4-11] that combine analytical and numerical 

aspects of the wave propagation. For example, in silencers with irregular but 

axially uniform cross section, a numerical approach can be used to model the 

transversal governing eigenequation [7]. The complete solution of the acoustic 

field in a particular silencer subdomain is obtained by considering the contribution 

of the axial propagating terms analytically. Finally, the acoustic coupling of all the 

subdomains involved is achieved through enforcing suitable compatibility 

conditions of acoustic pressure and axial velocity across the geometrical 

discontinuities. Bibliography tends to favour the point collocation technique and 

mode matching method as techniques to enforce these conditions [4, 11-13]. In 

general, for geometries with small dimensions, mode matching has been shown to 

have some advantages in terms of speed and accuracy, due in part to symmetry 

properties, orthogonality of the transversal modes, the sensitivity of point 

collocation to the grid chosen and acoustic scattering at particular locations [4, 12, 

13]. 

 

On the other hand, granular absorbent materials are studied here, from an 

acoustical point of view, as a potential alternative to the traditional fibrous 

materials used in dissipative silencers. As shown in earlier studies, sound 

propagation in absorbent materials can be modelled through complex and 

frequency dependent density and speed of sound [14]. Following the same 
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approach for granular materials, their acoustic properties can be predicted 

through models available in the bibliography [15-17], which will be used in the 

context of the current investigation. 

 

In this work, a mathematical approach based on a numerical version of the mode 

matching method [8, 9] is presented to compute the transmission loss of silencers 

with granular material. Multidimensional sound propagation is taken into account 

in configurations with arbitrary, but axially uniform, cross section. Transversal 

material heterogeneities are included in the model [3, 11]. Also, the possibility of 

using different filling levels of granular material gives rise to cross sections with an 

abrupt change of properties located not only in the commonly used central 

perforated passage, but also in the transition between air and material, that 

involves a remarkable change in porosity (see interface Γa_gr in Fig. 1). The 

computational requirements of a full numerical scheme such as FEM are reduced 

through a method that combines analytical axial propagation terms with numerical 

transversal eigensolutions of the silencer heterogeneous cross section. Numerical 

mode matching [8, 9] is then used to couple the modal expansions associated with 

each silencer component and to obtain the complete solution of the wave equation. 

To this end, the compatibility conditions of the acoustic fields (acoustic pressure 

and axial velocity) at the geometric discontinuities between the silencer chamber 

and the inlet and outlet pipes are taken into account. Transmission loss predictions 

show good agreement with experimental results obtained for a particular 

configuration. Also, the results obtained with the proposed approach are compared 

favourably with general three-dimensional FE computations, offering a reduction 

in the computational effort. Finally, a number of silencer geometries with granular 

material have been considered. The effect of several parameters on the acoustic 

attenuation has been assessed, including grain size, filling level, porosity and 

silencer cross section. 

 

2. MODE MATCHING APPROACH 

As indicated previously, the mode matching approach is combined with FEM to 

reduce the computation time of a full 3D FE formulation. The procedure can be 
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especially useful for configurations with arbitrary, but axially uniform, cross 

section, which are very commonly found in commercial silencer designs. In the 

current study, as observed in Fig. 1, the filling level of the silencer is assumed to be 

uniform along the z-direction, according to the previous premise. In addition, 

several subdomains can be distinguished depending on the propagation medium: 

air within the central airway of the silencer, denoted by ΩA; granular material in 

the central chamber surrounding the perforated central duct, represented by ΩCgr, 

and air on the top of the chamber, described by ΩCa. In the context of the current 

work, the symbol Γ is used to denote the boundary of a given subdomain Ω, while S 

refers to its cross section (the same subscripts associated with subdomains are 

also used for corresponding Γ and S to keep notation consistency). Finally, the 

transition air/material boundary is defined by Γa_gr, whereas Γp refers to the 

perforated surface used to confine the granular material inside the outer chamber 

of the silencer. The air is characterized by its density ρa and speed of sound ca, 

while the equivalent properties of the granular material are ρgr and cgr, both 

complex and frequency-dependent. Finally, the inlet and outlet ducts subdomains 

are denoted by ΩI and ΩO. 

 

Figure 1. Scheme of silencer with granular material. 

 

In the current investigation, only the procedure used to obtain the eigenvalues 

(axial wavenumbers) and eigenvectors (pressure modes) associated with the cross 

section of the chamber will be described, since computing the eigenvalues and 

eigenvectors associated with the rigid wall inlet/outlet ducts is straightforward [7, 
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11, 18]. Then, the compatibility equations of the acoustic pressure and axial 

velocity are applied at geometric discontinuities to obtain the modal amplitudes 

and to compute the silencer attenuation. 

 

2.1. Acoustic formulation of the problem 

The sound propagation within the air subdomains ΩA and ΩCa is governed by the 

wave equation for a heterogeneous medium [3, 11] 

 
21

0,a
a a

a a

k
P P

 
    

  
 (1) 

where  is the gradient operator, Pa the acoustic pressure, ρa the air density and ka 

the wavenumber, defined as the ratio between the angular frequency ω and the 

speed of sound ca. In a similar way, the wave equation in the granular material can 

be expressed as [3, 11] 
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 (2) 

Pgr being the acoustic pressure, kgr the wavenumber, and ρgr the equivalent density 

associated with subdomain ΩCgr [14]. Then, assuming a chamber with axially 

uniform cross section, and applying separation of variables, allows to express the 

acoustic pressure as [7, 8] 
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where  ,xy x y  is the transversal pressure mode and kz the axial wavenumber. 

Now, combining Eq. (3) with (1) and (2) yields three tranversal wave equations for 

SA, SCa and SCgr, that can be written as 
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2.2. FE formulation and quadratic eigenvalue problem 

In the framework of a 2D FE discretization, the transversal pressure  ,xy x y  of 

Eq. (3) for SA, SCa and SCgr can be approximated by shape functions as 

    , , ,xy x y x y N Ψ  (7) 

where  ,x yN  contains the nodal shape functions of each subdomain (functional 

dependence in terms of the independent variables x and y is dropped hereinafter 

to simplify the notation), and Ψ  contains the unknown nodal values of each 

transversal pressure mode [19]. Now, the weighted residuals method is applied to 

Eqs. (4)-(6) together with Green’s theorem and the Galerkin approach [11, 19]. 

Assuming rigid wall subdomains, this leads to 
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The coupling conditions at boundaries Γa_gr and Γp are applied as follows. In the 

first case, continuity of pressure and normal acoustic flow are considered, the 

latter being written as 
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where ϕ is the porosity of the granular material and n represents the outward 

normal direction. Eq. (11) is introduced in Eq. (10), then Eq. (10) is multiplied by ϕ 

and finally Eqs. (9) and (10) are considered altogether, yielding 
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where it should be noted that the boundary integrals at Γa_gr have been cancelled. 

Eq. (12) can be written in compact form as 
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k d
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 (13) 

where CΨ  contains the unknown nodal values CaΨ  and CgrΨ  in SCa ∪ SCgr (the 

perforated central passage is not yet included). The corresponding submatrices are 
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Eq. (8) can also be written in compact form as follows 
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with 
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Regarding the perforated duct, the acoustic coupling of Eqs. (13) and (16) at Γp (air 

in the central passage with the surrounding chamber) can be carried out by means 

of the perforated duct impedance. The continuity of the normal acoustic flow given 

by Eq. (11) is considered together with the condition corresponding to the 
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impedance pZ , the latter being defined as the ratio of the pressure jump to the 

acoustic velocity normal to surface [1, 11]. The condition applied over Γp is 

expressed as follows 

 j ,A CgrA
a

pn Z

 



   (19) 
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.Cgr gr A Cgr
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 (20) 

After substituting Eqs. (19) and (20) in expressions (13) and (16), the following FE 

system of equations is obtained 
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which is expressed in matrizant form as 

  2 .zk K M Ψ 0  (23) 

The following global matrices K and M have been defined 
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and all the unknown nodal values are included in vector Ψ . The corresponding 

submatrices are 
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Finally, the system of equations (23) can be conveniently arranged as an 

eigenvalue problem [7, 11] 
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z z

k
k k

    
    

    

Ψ Ψ0 I

Ψ ΨM K 0
 (30) 

I being the identity matrix and 0 a matrix composed of zeros. The solution 

provides the axial wavenumbers and the pressure modes associated with the cross 

section of the chamber. 

 

2.3. Continuity of the acoustic pressure and axial velocity fields. Numerical 

mode matching 

For the subdomains involved (inlet/outlet ducts defined by ΩI and ΩO, respectively, 

as well as the chamber ΩC = ΩA ∪ ΩCa ∪ ΩCgr), the full acoustic pressure and axial 

velocity fields can be described by modal expansions depending on incident and 

reflected waves. In the case of the inlet duct, the following expressions can be used 

[1, 7, 11, 20-22] 
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 (32) 



nI  and 


nI being the unknown modal amplitudes associated with the incident and 

reflected waves, respectively, and  , ,I n x y  the transversal pressure mode 

related to the cross section of the inlet duct (note that, compared to Eqs. (3)-(6), 

superscript xy is dropped hereinafter to simplify the notation). Besides, kI,n 

represents the inlet duct axial wavenumber, ω the angular frequency and j the 

imaginary unit. The acoustic fields within the chamber and the outlet duct can be 

analogously described after the appropriate modifications, the unknown modal 
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amplitudes being nC 
, nC 

, nO
 and nO

. From a practical point of view, the 

expansions are truncated to NI, NC and NO terms, respectively. 

 

To take advantage of the modal orthogonality properties, and with a view to 

reducing the computational effort of numerical integrations, the pressure 

expansion of Eq. (31) for the chamber takes into account the transversal pressure 

modes  , ,C n x y , while the velocity expansion of Eq. (32) considers the mode 

     , , ,, ,C n U a C nx y x y    . Here,   is chosen depending on the subdomain of 

the chamber cross section involved (SA, SCa or SCgr, see Fig. 1 for details). Additional 

details of the procedure can be found in references [21, 22]. 

 

With a view to computing the sound propagation within the silencer, it is 

necessary to evaluate all the unknown modal amplitudes. The acoustic fields are 

matched at geometric discontinuities to generate a suitable system of equations. 

Compatibility conditions are provided by continuity of acoustic pressure and axial 

velocity at the expansion/contraction, and zero axial velocity normal to the rigid 

endplates [1, 7-9, 11]. For the expansion, these equations can be written as 

      , , 0 , , 0       , ,I C I AP x y z P x y z x y S S      (33) 

      , , 0 , , 0       , ,I C I AU x y z U x y z x y S S      (34) 

    , , 0 0      , ,C C AU x y z x y S S     (35) 

where sections SI ≡ SA belong to the inlet and the central perforated passage, 

respectively, and SC = SA ∪ SCa ∪ SCgr is related to the complete section of the 

chamber. 

On the other hand, at the contraction, the compatibility equations can be written as 

      , , , , 0       , ,C C O A OP x y z L P x y z x y S S      (36) 

      , , , , 0       , ,C C O A OU x y z L U x y z x y S S      (37) 

    , , 0      , ,C C C AU x y z L x y S S     (38) 

SO being the cross section of the outlet duct. 
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Now, regarding the expansion, Eq. (33) is multiplied by the weighting function 

 , ,I m x y  corresponding to the transversal mode of the inlet duct, and integrated 

over SI ≡ SA. This leads, for m = 1, 2, …, NI, to the following expression 
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It should be noticed that, due to the orthogonality of the transversal modes, the 

previous equation can be simplified and written as 
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        (40) 

where no modal summation appears on the left hand side. Besides, Eqs. (34) and 

(35), related to the axial acoustic velocity field, can be multiplied by the incident 

transversal mode of the chamber  , ,C m x y , with m = 1, 2, …, NC. The first 

equation is integrated over SI ≡ SA, and the second one over SC - SA, resulting after 

summation in 
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Considering the orthogonality properties of the transversal modes leads to [21, 22] 
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Now, following a similar procedure for the contraction, Eqs. (36)-(38) can be 

rewritten as  
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where Eqs. (43) and (44) are related to the acoustic pressure and axial velocity 

fields, respectively. The former has been multiplied by the weighting function 

 , ,O m x y , with m = 1, 2, …, NO, and the latter by  , ,C m x y , with m = 1, 2, …, NC. 

 

Finally, the weighting integrals can be numerically computed, and the algebraic 

system defined by Eqs. (40), (42)-(44) provides NI + 2 NC + NO equations to obtain 

the modal amplitudes. To compute the transmission loss (TL), two additional 

conditions are required given by an incident plane wave at the inlet duct (

   0 1,  0,  nI I n) and an anechoic termination at the outlet duct (
  0,  nO n ) [7, 

8-13]. Finally, once the modal amplitudes are known, the attenuation of the 

silencer can be obtained as 

 020log ,O

I

S
TL O

S
 

   
 

 (45) 

assuming that the outlet duct is long enough to guarantee the rapid decay of higher 

order evanescent modes [11, 20, 21]. 

 

3. ACOUSTIC MODEL FOR THE GRANULAR MATERIAL 

The granular material can be modelled by means of its equivalent acoustic 

properties, e.g. density and bulk modulus, both complex and frequency dependent. 

According to the bibliography [15, 16], the equivalent density of the granular 

material can be expressed as 

 
2 2

2 2

4
1 1 ,
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a p
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a p

jωρ q kμσ
ρ ρ q

jωρ k q μ σ

 
   
 
 

 (46) 

where q is the tortuosity [14], μ is the dynamic viscosity, σ the volume porosity 

(which can differ from the surface porosity ϕ at the interfaces Γa_gr and Γp defined 

in the previous section), kp the permeability and Λ the viscous characteristic length 

defined as follows  

 
 

 

4 1 Θ
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9 1 Θ

partσqR



 (47) 
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Rpart being the particle radius (spheres in the context of the present investigation), 

while tortuosity is given by  

 
1

1 .
2

σ
q

σ


   (48) 

In addition, permeability is represented by kp = μ/R, where R is the flow resistivity 

that can be written as  

 
   

2 2 23
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2 5 9 5part

R
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 (49) 

In Eqs. (47) and (49), Θ is the cell radius defined as  

  
3

Θ 1 .
2

σ
π

   (50) 

In addition, the complex bulk modulus can be expressed as [16] 
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 (51) 

γ being the specific heat ratio, P0 the atmospheric pressure, Pr the Prandtl number 

(Pr = Cp μ/κ, where Cp is the heat capacity at a constant pressure and κ the thermal 

conductivity), and Λ′ the thermal characteristic length that can be written as 

 
 
3Λ

Λ .
2 1 Θq




 (52) 

Once ρgr and Kgr are obtained, the equivalent characteristic impedance of the 

granular material can be determined by [16] 

 ,gr gr grZ K ρ  (53) 

while the wavenumber kgr and the speed of sound cgr are defined through the 

following expressions 

 ,gr

gr

gr

ρ
k ω

K
  (54) 
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 .gr

gr

gr gr

Kω
c

k ρ
   (55) 

 

4. RESULTS 

First, the validation of the numerical mode matching approach previously 

described and a study of convergence of the solution are presented. In addition, 

some results are shown to assess the influence of a number of parameters related 

to the granular material (composed of rigid spherical particles), such as the grain 

size, the volume of the chamber filled with spheres and the porosity. Finally, the 

impact of the cross section geometry has been also analysed to evaluate the 

acoustic behaviour of different silencer configurations with granular material. 

Regarding the porosity of the perforated duct, it is assumed high enough so that, in 

practical terms, its acoustic impedance can be neglected [1]. Therefore, its 

influence is not considered in any of the cases under study, detailed in Table 1. 

 

4.1. Validation and study of convergence 

4.1.1. Validation  

The first silencer configuration under study presents a circular cross section, its 

main dimensions being: LI = LO = 0.1 m (length of the inlet/outlet ducts), LC = 0.3 m 

(length of the chamber), RI =RO = 0.0268 m (radius of the inlet/outlet ducts) and RC 

= 0.091875 m (radius of the chamber). The air properties have been measured at 

room temperature (21.4°C), the speed of sound being c0 = 344.13 m/s and the 

density ρ0 = 1.1979 kg/m3. The validation of the mode matching approach has 

been carried out for cases I and II (see Table 1 and, Figs. 2 and 3, respectively). In 

both of them the granular material presents a porosity of 39.9% and is composed 

of spheres of 0.006 m in diameter. 
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Case 
Granular 

diameter (m) 

Volume filling of the 

chamber (%) 

Chamber cross 

section shape 
Porosity (%) 

I 0.006 25 Circular 39.9 

II 0.006 37.5 Circular 39.9 

III 0.001 100 Circular 39.9 

IV 0.003 100 Circular 39.9 

V 0.006 100 Circular 39.9 

VI 0.002 100 Circular 39.9 

VII 0.004 100 Circular 39.9 

VIII 0.001 25 Circular 39.9 

IX 0.001 50 Circular 39.9 

X 0.001 75 Circular 39.9 

XI 0.001 100 Circular 42 

XII 0.001 100 Circular 47.6 

XIII 0.006 100 Circular 42 

XIV 0.006 100 Circular 47.6 

XV 0.001 100 Elliptical 39.9 

XVI 0.001 100 Triangular 39.9 

Table 1. Silencer configurations containing spherical granular material. 

 

The attenuation computed by means of the mode matching approach for filling 

cases I and II is compared in Figs. 2 and 3 with experimental measurements [22, 

23] and numerical results. The former have been obtained in the experimental 

facilities of the research centre, and show good agreement with the TL obtained 

through the mode matching method, thus validating the proposed numerical 

technique from a practical point of view. Also, a comparison is provided with full 

3D FE computations carried out with the commercial package Comsol 
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Multiphysics®, showing an excellent agreement with undistinguishable attenuation 

curves. Regarding the agreement with the experimental results, however, higher 

discrepancies appear in filling case II (see Fig. 2b) compared with case I. The 

reasons will be further studied in future research. In addition, it is worth noting 

that the addition of granular material within the chamber increases the TL in the 

mid and high frequency range, as expected. 

 

 a) 

 b) 

Figure 2. a) Picture of the prototype; b) TL of a silencer partially filled with granular 

material, case I: +++, experimental measurement; —, mode matching method; - - -, Comsol 

Multiphysics®. 

 

 

 

 a) 

 b) 

Figure 3. a) Picture of the prototype; b) TL of a silencer partially filled with granular 

material, case II: +++, experimental measurement; —, mode matching method; - - -, 

Comsol Multiphysics®. 
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4.1.2. Numerical impact of the weighting modes  

Several computations have been carried out to assess the accuracy and 

computation time of the mode matching method with an increasing number of 

weighting modes (see Fig. 4a and 4b). The geometry under consideration is the 

same as in the previous section, but now the chamber has been fully filled with 

0.001 m, 0.003 m and 0.006 m spheres (cases III, IV and V, respectively). The 

transversal FE mesh of the complete chamber is composed of 104 8-node 

quadratic quadrilateral elements. 

 

In order to compare the results obtained when using a different number of 

weighting modes, a full 3D FE “reference” solution computed with Comsol 

Multiphysics® has been considered. In this case, a mesh with an element size of 

approximately 0.001 m has been used to obtain accurate results. This analysis has 

required a computational effort of several hours due to the small size of the 

element compared to the dimensions of the silencer. The relative errors between 

the “reference” solution and the results computed with the numerical mode 

matching method have been computed as 

      
2 2

1 1

100.
n _ freq n _ freq

ref ref
i i i

i i

Error % TL TL TL
 

    (56) 

The analyses have been carried out for a frequency range from 20 Hz to 3200 Hz 

considering increments of 20 Hz, and the corresponding results are shown in Fig. 

4. In addition, the weighting modes considered are: 1, 2, 5, 10, 20, 40, 60, 80 and 

100 for each sphere size. 

 

As it can be observed in Fig. 4a, the relative error decreases as the number of 

weighting modes increases, showing the same trend for the different grain sizes. 

However, the condition of the problem has been measured through the reciprocal 

condition number. This parameter is close to zero for badly conditioned matrices 

and, in the current investigation, it presents values 10-18, 10-20 and 10-21 for 0.001 

m, 0.003 m and 0.006 m grain sizes, respectively. It can be noticed that as the 

diameter increases the problem tends to be worse conditioned and the error 

becomes higher. On the other hand, the time expenditure increases with the 
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number of weighting modes (see Fig. 4b), the results being practically the same for 

the three cases under study, as expected. A balance between accuracy and 

computational cost must be found when using numerical mode matching. For 

example, the error for 20 modes is below 5% in all the cases and the computation 

time is around 450 s, this value being much lower than the one required for the 

“reference” solution analysis. 

                                                                   
a) b) 

Figure 4. a) Relative error (%) between the TL obtained with the mode matching method 

and Comsol Multiphysics®; b) Computation time for: xxx, case III; ooo, case IV; +++, case V. 

 

4.2. Influence of parameters and geometry on the attenuation 

4.2.1. Influence of the sphere diameter on the attenuation 

The influence of the spherical granule size on the acoustic behaviour of the silencer 

is studied in this section. Several diameters detailed in Table 1 have been 

considered: 0.001 m (case III), 0.002 m (case VI), 0.004 m (case VII) and 0.006 m 

(case V); in all the cases the silencer outer chamber has been fully filled. As it can 

be observed in Fig. 5, as the sphere size decreases, the attenuation achieved 

increases in practically all the frequency range under consideration, in particular 

at mid and high frequencies. 
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Figure 5. TL of a silencer for different diameters of spherical granules: +++, case III; —, 

case V; ooo, case VI; - - -, case VII. 

 

4.2.2. Influence of the filling level of the chamber 

The geometries considered to study the influence of the chamber filling are 

detailed in Table 1 and the diameter of the spherical granules is given by 0.001 m. 

In the cases under study, the chamber has been filled up to 25% of the chamber 

volume (case VIII), 50% (case IX), 75% (case X) and 100% (case III). An extra case 

has been also included in order to compare the acoustic behaviour of the granular 

material with a fibrous absorbent material, such as Owens-Corning fibre, with a 

resistivity of 4896 rayl/m for 100 kg/m3 [21, 22]. In this latter case, a typical 

perforated duct has been included to confine the fibre, with hole diameter dh= 

0.0035 m, thickness t = 0.001 m and a porosity of 10% [1, 21, 22]. 

 

As it can be observed in Fig. 6, increasing the filling of the chamber leads to higher 

TL in practically the whole frequency range. The behaviour of silencers with 

granular material tends to be similar to the configuration with fibrous material. It 

should be noticed that at high frequencies, and for the particular configurations 

under study, the attenuation achieved by some of the silencers containing granular 

material shows higher TL values than the perforated dissipative silencer with 

fibres. Therefore, for some practical applications the granular material could be a 

potential alternative to the traditional sound absorbing fibres. 
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Figure 6. TL of a silencer with different fillings of granular material with 0.001 m in 

diameter: +++, case III; - - -, case VIII; ooo, case IX; xxx, case X; —, Owens-Corning fibre. 

 

4.2.3. Influence of porosity 

Several computations have been carried out with a view to determining the 

influence of the granular material porosity on the TL. Spheres can be arranged in 

many configurations, and the associated theoretical porosity can be calculated for 

each of them. If a random packing of spherical granules is assumed, porosity 

depends on the grain size but cannot be below 39.9% [24]. Nevertheless, the 

porosity value measured by Cobo and Simón for random packings of glass beads 

for several diameters (0.001 m, 0.002 m and 0.003 m) was 40.5%, which is close to 

this minimum value [17]. Therefore, a porosity value of 39.9% has been 

considered as the minimum porosity reachable and the maximum is assumed to be 

that obtained for an ideal cubic distribution, i.e. 47.6% [24]. Two analyses have 

been done with porosity values of 39.9% and 47.6%, as well as a third computation 

considering a porosity of 42%. In all the cases, two different granule diameters 

given by 0.001 m and 0.006 m have been considered (see Table 1). 

 

As it can be observed in Fig. 7, porosity seems to have more influence on the 

attenuation as the sphere size decreases. In fact, for grains of 0.006 m in diameter 

the effect is relatively slight and only noticeable in some narrow frequency bands. 

In general, lower porosities achieve higher TL values with the granular material 

model under consideration. The effect is stronger for the smallest spheres, for 
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which the influence of the porosity can be considerable (more than 5 dB in some 

frequency bands). 

 

Figure 7. TL for different distribution and sizes of spheres: +++, case III; —, case XI; - - -, 

case XII; xxx, case V; ···, case XIII; ooo, case XIV. 

 

4.2.4. Transmission loss for different cross section geometries 

The attenuation delivered by several silencer configurations with different cross 

section (but the same area) is studied. The configurations considered are cases III, 

case XV and XVI, all of them defined in Table 1. In all the cases, the inlet/outlet 

ducts have the same circular cross section, its radius being Rt = 0.0268 m. The 

dimensions for the concentric circular chamber (case III) have been presented in 

section 4.1.1, while the geometry of the elliptical configuration with offset 

inlet/outlet pipes (case XV) is defined by its major and minor axes as Ly = 0.2253 m 

and Lx = 0.1352 m, the offset being d = 0.036 m (see Fig. 8a). Finally, the triangular 

cross section with rounded corners (case XVI) has Ly = 0.2354 m in height, whereas 

the inlet/outlet pipes are placed at a distance d = 0.1042 m from the bottom of the 

chamber. In addition, Ra = 0.5117 m is the radius of the rounded corners (see Fig. 

8b). In all the cases, the chamber surrounding the central duct is fully filled with 

spherical particles of 0.001 m in diameter. 
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Lx

Ly

d

Rt

                                                                       a) 
 

                                                    b) 

Figure 8. Cross section: a) elliptical chamber; b) triangular chamber with rounded corners. 

 

Fig. 9 shows the comparison of the TL corresponding to each geometry. As it can be 

seen, the impact of the cross section shape is significant and it is well captured by 

the proposed numerical methodology. The triangular configuration achieves 

higher attenuation values in practically the whole frequency range under study. In 

addition, for the particular geometries under study, the elliptical and the triangular 

configurations shift the attenuation peak to lower frequencies, which can be 

desirable for some practical silencer applications.  

 

Figure 9. TL of silencer with different cross section geometry: +++, case III, circular; —, 

case XV, elliptical; ooo, case XVI, triangular. 

 

5. CONCLUSIONS 

A numerical model based on the mode matching technique has been presented in 

this work to assess the acoustic behaviour of silencers with arbitrary cross section 

containing granular material. The approach proposed in this work has been shown 

to provide accurate predictions of the attenuation performance while reducing the 

Ly

d

Ra

Rt

60º 60º
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computation time of a full 3D FE calculation. The model for the granular material 

has also been proved to be accurate enough from a practical point of view, 

although some discrepancies may appear as the amount of spheres within the 

chamber increases. In addition, decreasing the sphere size and increasing the 

amount of granular material lead to an improvement of the attenuation delivered 

by the silencer. In particular, for small granule diameters and a fully filled chamber, 

the silencer shows a similar acoustic performance compared to a fibrous 

dissipative configuration. With the material model under consideration, the 

silencer attenuation is higher when the granular material porosity is smaller, the 

latter depending on the sphere packing arrangement. Finally, the validity of the 

technique developed for analysing arbitrary cross sections has been proved. The 

corresponding geometry has been shown to have a considerable influence on the 

TL. Among the particular configurations under study (with the same transversal 

area), the triangular configuration has provided the best attenuation in almost all 

the frequency range. 
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Figure 1. Scheme of silencer with granular material. 
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Figure 2. a) Picture of the prototype; b) TL of a silencer partially filled with granular material, case I: +++, experimental measurement; —, mode 

matching method; - - -, Comsol Multiphysics®. 
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Figure 3. a) Picture of the prototype; b) TL of a silencer partially filled with granular material, case II: +++, experimental measurement; —, mode 

matching method; - - -, Comsol Multiphysics®. 
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Figure 4. a) Relative error (%) between the TL obtained with the mode matching method and Comsol Multiphysics®; b) Computation time for: xxx, 

case III; ooo, case IV; +++, case V. 
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Figure 5. TL of a silencer for different diameters of spherical granules: +++, case III; —, case V; ooo, case VI; - - -, case VII. 
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Figure 6. TL of a silencer with different fillings of granular material with 0.001 m in diameter: +++, case III; - - -, case VIII; ooo, case IX; xxx, case X; —, 

Owens-Corning fibre. 
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Figure 7. TL for different distribution and sizes of spheres: +++, case III; —, case XI; - - -, case XII; xxx, case V; ···, case XIII; ooo, case XIV. 

 

Figure 7



Lx

Ly

d

Rt

 

 

                                                               a) 
 

                                                   b) 

 

 

Figure 8. Cross section: a) elliptical chamber; b) triangular chamber with rounded corners. 
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Figure 9. TL of silencer with different cross section geometry: +++, case III, circular; —, case XV, elliptical; ooo, case XVI, triangular. 
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Case 
Granular 

diameter (m) 

Volume filling of the 

chamber (%) 

Chamber cross 

section shape 
Porosity (%) 

I 0.006 25 Circular 39.9 

II 0.006 37.5 Circular 39.9 

III 0.001 100 Circular 39.9 

IV 0.003 100 Circular 39.9 

V 0.006 100 Circular 39.9 

VI 0.002 100 Circular 39.9 

VII 0.004 100 Circular 39.9 

VIII 0.001 25 Circular 39.9 

IX 0.001 50 Circular 39.9 

X 0.001 75 Circular 39.9 

XI 0.001 100 Circular 42 

XII 0.001 100 Circular 47.6 

XIII 0.006 100 Circular 42 

XIV 0.006 100 Circular 47.6 

XV 0.001 100 Elliptical 39.9 

XVI 0.001 100 Triangular 39.9 

 

 

Table 1. Silencer configurations containing spherical granular material. 
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