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Abstract

We present a method for finding surface modes at interfaces between two-dimensional photonic

crystals (PCs), in which the surface modes are represented as superpositions of the PCs’ propagating

and evanescent Bloch modes. We derive an existence condition for surface modes at an air-PC

interface in terms of numerically-calculated PC impedance matrices, and use the condition to find

surface modes in the partial bandgap of a PC. We also derive a condition for modes of a three-layer

structure with two interfaces, and find both coupled surface modes and waveguide modes. We show

that some waveguide modes cross the band edge and become coupled surface modes.
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1



I. INTRODUCTION

Electromagnetic surface modes have long been studied for their rich and interesting

physics [1]. They are confined to an interface, in the sense that the field decays expo-

nentially away from the interface in both directions. The most widely studied example is the

surface plasmon or surface plasmon polariton, which arises at the interface between a metal

and a dielectric, but these have very short propagation lengths due to loss in the metal.

They have been experimentally demonstrated, [2] and may even be seen with the naked eye

if elastically scatted on the surface of a diffraction grating [3].

Surface states may also arise at the boundaries of two-dimensional photonic crystals

(PCs), which are defined as having a periodic variation in refractive index [4]. In this paper

“surface mode” refers to this variety of PC surface state, while “surface plasmon” refers

exclusively to a state at the interface between a metal and a dielectric. For a surface mode

at an interface between air and a PC, the field decays into the PC because of the PC’s

bandgap, and it decays on the air side of the interface due to an effect related to total

internal reflection. Since the entire structure may be made from lossless materials, surface

modes can have much longer propagation lengths than surface plasmons.

PC surface modes have been experimentally demonstrated [5–8], and have been found

by two general numerical approaches. The most common technique is to use a supercell [4]

and directly compute the modes. With the supercell approach, the PC cannot be infinitely

thick and so in principle there is always some coupling between surface modes on the front

and back of the PC. The other widely used technique involves separately finding the modes

of the two materials, and calculating the surface modes from these by matching them at

the interface [9–11]. This allows surface modes to be calculated for interfaces between semi-

infinite structures. We take the latter approach, expressing it in terms of PC impedances

[12], and generalize it to work also with structures that have a material of finite thickness

sandwiched between two semi-infinite media.

Surface plasmons may be found from the poles of the transmission coefficient or of the

reflection coefficient,

r12 =
Z2/Z1 − 1

Z2/Z1 + 1
, (1)
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where Z = E‖/H‖ is the wave impedance, with E‖ and H‖ the field components parallel to

the interface. So the condition for a surface mode to exist is that the denominator of Eq. (1)

vanishes. For TM polarization (H = H‖τ̂ with τ̂ parallel to the interface), for which surface

plasmons may exist at an air-metal interface, Zi = −k⊥i/ωεi and so by this condition surface

plasmons exist when
k⊥1

ε1
= −k⊥2

ε2
, (2)

where k⊥ is the component of the wave vector perpendicular to the interface.

In this paper we generalize the procedure for finding surface plasmons to apply to dielectric

PCs and their impedances. The procedure involves finding poles of the PC analog of Eq. (1),

which uses semi-analytically defined PC impedances that are generally matrices [13]. This

allows us to find a condition for the existence of a PC surface mode. Sec. II defines our

nomenclature and introduces the quantities needed to describe PCs, before the surface mode

existence condition is derived in Sec. III. This is then applied to give the dispersion relation of

a PC surface mode. In Sec. IV we derive a condition and give examples for the case with three

media and two interfaces, e.g. a strip of PC surrounded by air on either side. We conclude in

Sec. V by commenting on the usefulness of our method. Appendix A presents a convergence

analysis in a typical case, illustrating the accuracy and reliability of our technique.

II. BACKGROUND THEORY & NOMENCLATURE

We write the field in each PC in its basis of Bloch modes (including propagating and

evanescent modes); this is the natural basis in which to consider transmission and reflection

since each Bloch mode travels independently through its PC without scattering into other

modes. Our method for finding Bloch modes is based on the semianalytical least-squares

based method of Botten et al. [14], and is briefly outlined below. In its present form, the

method applies to 2D square or triangular lattice PCs with unit cells that are up-down

symmetric, which precludes the study of PCs with arbitrarily truncated unit cells. For

generality we treat all media as PCs (see Fig. 1)—for homogeneous dielectrics such as air, a

periodicity is imposed and the material’s Bloch modes are simply plane waves.

Our axes are chosen such that all PC interfaces are parallel to the x − z plane, and
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each PC’s refractive index varies periodically in the x− y plane. We assume that both the

PC structure and the EM field are invariant in the z direction; this is thus a 2D problem.

In any single simulation we consider one polarization, one frequency and one Bloch vector

component kx—the component parallel to the interface. Since the EM field components

parallel to a dielectric interface are continuous across it, fixing kx across all media ensures that

we have a closed set of Bloch modes under reflection and transmission at all PC interfaces.

A surface mode with propagation constant kx may therefore be represented in each medium

as a superposition of these Bloch modes.

We find the Bloch modes of each PC by diagonalizing the plane wave transfer matrix

[14], which in turn is found using the multipole method [15]. The transfer matrix may

alternatively be found with the finite element method (FEM) [16]. The dimension of the

plane wave transfer matrix is made sufficiently large that it includes all relevant plane waves,

which are the grating diffraction orders excited by the rows of holes comprising the PC. In this

paper’s examples, 5 plane wave orders were considered in each direction in each medium;

this means that the calculations typically include all relevant plane waves that decay in

amplitude across a PC’s unit cell by a factor of 106 or less. In the Appendix we give criteria

illustrating how the required number of plane waves is determined, and show that for our

calculations 5 plane wave orders are sufficient to determine surface modes accurately.

We partition the Bloch modes of each PC into modes that propagate or decay in the

forward (+y) direction and those that propagate or decay in the backward (−y) direction.

The field in a PC i is represented by a vector of forward Bloch mode amplitudes c+
i , and a

vector of backwards Bloch mode amplitudes c−i (Fig. 1).

At an interface between two PCs, each incident Bloch mode may be reflected and trans-

mitted into many modes. Reflection and transmission coefficients must therefore become

non-diagonal reflection and transmission matrices. In our previous work [12] we showed that

these may be written in terms of the impedance-like matrices Z1 and Z2 of PC 1 and PC 2,
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cf. Eq. (1):

T12 = (AT
12A12 + I)−12AT

12 (3a)

R12 = (A12A
T
12 + I)−1(A12A

T
12 − I) (3b)

T21 = (A12A
T
12 + I)−12A12 (3c)

R21 = (AT
12A12 + I)−1(I−AT

12A12), (3d)

where A12 = Z−1
1 Z2. These equations are exact at full rank, when all relevant plane waves

and Bloch modes are considered, and are otherwise least squares-style approximations. In

the Appendix we show that for the cases in this paper, 5 Bloch modes and 5 plane waves

are sufficient to obtain highly accurate results.

The impedance-like matrix Z is the crucial quantity that we use throughout the remain-

der of this paper to describe how light behaves in the PC. It is defined in terms of the PC’s

numerically-found Bloch modes, but once the Bloch modes are known, Eqs. (3) hold rigor-

ously at full rank and become least-squares approximations when the set of plane waves or

Bloch modes is truncated [12].

III. SINGLE INTERFACE SURFACE MODES

We derive a necessary and sufficient condition for the existence of a PC surface mode in

a similar way to how the surface plasmon condition Eq. (2) may be derived: we look for

poles of the reflection matrices. We work in the PCs’ Bloch bases, with notation as in Fig. 1.

Poles of matrices imply infinite eigenvalues; to avoid the ensuing numerical instabilities, we

instead calculate the inverse of these matrices and look for zero eigenvalues. The condition

for a surface mode, in this form, is then the pair of homogenous equations

R−1
12 c−1 = c+

1 = 0 (4a)

R−1
21 c+

2 = c−2 = 0. (4b)

Eqs. (4) constitute a necessary condition because a surface mode has zero incoming field

(i.e. c+
1 = 0 and c−2 = 0) and nonzero outgoing field (i.e. c−1 6= 0 and c+

2 6= 0), so R−1
12

and R−1
21 must be singular. Possible issues of degeneracy are resolved by studying the null
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space, for which the singular value decomposition is a useful tool. They also constitute a

sufficient condition because the null vectors of R−1
12 and R−1

21 are valid outgoing fields without

incoming fields, which is the definition of a surface mode.

c−1

c+
1 c+

2

PC 1 PC 2

c−2
y

x

FIG. 1: Schematic of a two PC interface, with incoming and outgoing Bloch vectors.

To find the source of the singularity, consider the expressions for R12 and R21 in Eqs. (3b)

and (3d). The impedance ratio A12A
T
12 does not have an infinite eigenvalue since that would

imply that one of the Bloch modes could not be normalized and had zero or an infinite field

associated with it. Therefore to satisfy Eqs. (4a) and (4b), (A12A
T
12+I) and (AT

12A12+I) must

have a zero eigenvalue. Looking again at Eq. (3), this implies that surface modes are tied to

poles of the reflection and transmission matrices in both directions. This is consistent with

the condition used by Enoch et al.[10], that of a pole in the scattering matrix determinant;

and the condition of Che and Li [11], that det(S11) = 0, where S11 is the submatrix of the

scattering matrix that maps c+
2 to c+

1 .

So in order to find the surface modes of a structure, we scan frequency and vary kx in

search of cases where (A12A
T
12 + I) has a zero eigenvalue. Thus by searching frequency-kx

space we construct the projected band structure of the interface. The eigenvector associated

with each zero eigenvalue is c−1 for the surface mode, as may be seen from Eq. (4a). And

from Eq. (4b) we see that the amplitudes of PC 2’s Bloch modes, c+
2 , is the eigenvector

corresponding to the zero eigenvalue of (AT
12A12 + I). Knowing the Bloch mode amplitudes

c−1 and c+
2 lets us find and plot the surface mode’s field.

We now apply this method to find the surface modes at the interface between air and a

semi-infinite PC. The PC has a triangular lattice of air holes of radius 0.25 d, with lattice

constant d, in a dielectric background with n = 2.86. We look for surface modes in the
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E = Ezẑ polarization; surface plasmons do not exist in this polarization since this would

require a medium with negative permeability.
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FIG. 2: (Color online) Projected band structure of surface modes at an air-PC interface. Only the

region below the light line is considered.

Surface modes only occur where there are no propagating modes in either material; since

one of the media is air, we only look for surface modes below the light line [4]. We scan over

frequency and kx for eigenvalues of (AT
12A12 + I) that have magnitudes below our accuracy

goal of 10−12, and find two surface modes in a partial band gap. The resulting projected

band structure is plotted in Fig. 2.
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FIG. 3: (Color online) Real and imaginary parts of the smallest eigenvalue of (AT
12A12 + I), for

d/λ = 0.3. Surface modes occur when this eigenvalue is exactly zero. The discontinuities in slope

occur where two or more eigenvalues have equal moduli.

The real and imaginary parts of the smallest eigenvalue ψ of (AT
12A12 + I) are plotted

in Fig. 3 for d/λ = 0.3. The surface mode is found where the real part crosses the x-axis;
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within the band gap Im(ψ) is essentially zero. This eigenvalue appears to have no physical

significance other than indicating whether (AT
12A12 +I) is singular. This result was obtained

considering 5 Bloch modes and 5 plane waves; a convergence analysis presented in Appendix

A shows that this approximation is highly accurate.
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FIG. 4: (Color online) Modulus of the E field for the surface mode at d/λ = 0.3 and kx = 0.959 π/d;

air is on the left of the vertical line, PC is on the right. Two horizontal cuts through (a) are shown

in (b); the x = 0 cut is along the lower edge of (a), and the x = 0.5 d cut bisects one of the three

PC holes nearest the interface. The x = 0 cut shows two exponential decay regimes in air, which

is evidence that one evanescent plane wave dominates near the interface, and another dominates

away from it.

The field in the PC (shown in Fig. 4) is essentially a superposition of the two most

slowly decaying Bloch modes; for d/λ = 0.3, the moduli of the Bloch amplitudes c+
2 are

0.43, 0.90, 4.4 × 10−3, 7.7 × 10−3, and 1.4 × 10−4, where the corresponding Bloch factors

(eigenvalues of the transfer matrix) have moduli 0.65, 0.64, 1.0 × 10−3, 7.9 × 10−4, and
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2.7× 10−6 respectively. Close to the interface, the second Bloch mode dominates, but deep

in the PC the first Bloch mode becomes responsible for most of the field, because it decays

slightly more slowly. Similarly, on the air side of the interface most of the field is due to

the two most slowly decaying plane waves; the transition region where the two plane waves

are of comparable amplitude and so interference is clearly visible in Fig. 4(b). The slowest

decaying plane wave has a decay length (to a factor 1/e amplitude) of 0.23
√

3/2 d.

Since the field on both sides of the interface is a superposition of two modes with different

decay factors, the field does not exponentially decay away from the interface, and so the

surface mode may not faithfully be approximated by a surface plasmon. In other words, this

PC’s behavior may not be reproduced by any uniform medium; no effective permittivity or

permeability that may be ascribed to the PC could predict this surface mode.

IV. DOUBLE INTERFACE SURFACE MODES

Another much-studied configuration in the surface plasmon literature is that of thin metal-

lic slabs in air (or another dielectric). Such structures can support surface plasmons on both

faces of the metallic slab, which couple [17]. These surface states are long-range or short-

range surface plasmons, depending on their symmetry. In this section we explore nonmetallic

PC analogs to long- and short-range surface plasmons; we consider structures with three me-

dia and two interfaces, either of which may or may not be capable of supporting a surface

mode.

Such structures have previously been studied by Enoch et al. [10], who investigated

a dielectric-PC-dielectric structure analogous to the dielectric-metal-dielectric structures on

which long- and short-range surface plasmons have been observed. Their PC region is fixed at

18 periods thick, so the coupling between interfaces is minimal. Choi et al. [18] investigated

a PC-air-PC structure. In our examples we consider an air-PC-air structure but the theory

developed is general and also applies to other structures, including PC waveguides.

The three media, which for generality we consider to be PCs, are arranged as in Fig. 5.

Λ+ = diag(µsf,i) and Λ− = diag(µ−sb,i ), where µf,i and µb,i are respectively PC 2’s forward

and backwards Bloch factors (eigenvalues), and s is PC 2’s width.
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Λ+c+
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FIG. 5: Schematic of a three PC (double interface) structure, with Bloch vectors c.

To find the condition for a surface mode, we set the incoming field vectors c+
1 and c−3 to

zero, and derive

c+
2 = R21Λ−c′

−
2 (5a)

c′
−
2 = R23Λ+c+

2 , (5b)

which leads to

(R21Λ−R23Λ+ − I) c+
2 = 0. (6)

This expression is closely related to the familiar waveguide phase condition; it is satisfied by

conventional waveguide modes. However it is also satisfied by surface modes, which decay

inside PC 2 away from the interfaces. For surface modes, the entries of the diagonal matrices

Λ+ and Λ− all have magnitude less than unity; this is balanced by reflection matrices that

increase field amplitude upon reflection.

In deriving Eq. (6), we neglected terms due to the incoming field vectors c+
1 and c−3 , which

both vanish for a surface mode. The more general form of Eq. (5a) is c+
2 = R21Λ−c′−2 +T12c

+
1 .

In Sec. III, we found surface modes occurring at poles of the reflection and transmission

matrices, i.e. modes where T12c
+
1 was nonzero even when c+

1 = 0. We now consider whether

the possibility of a pole in the transmission matrix can invalidate Eq. (5a).

As we saw in Sec. III, poles occur when c−1 lies in the null space of (A12A
T
12 + I). Con-

sidering the field at the PC 1-PC 2 interface, we may write

(A12A
T
12 + I)c−1 = (A12A

T
12 − I) c+

1 + 2A12 Λ−c′
−
2 , (7)

and see that if c−1 is in the null space of (A12A
T
12 +I), the necessary condition for a pole, then

(A12A
T
12 + I)c−1 = 0. Furthermore c+

1 = 0 for a surface mode, resulting in 2A12 Λ−c′−2 = 0.
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This implies that no field from the PC 2-PC 3 interface reaches the PC 1-PC 2 interface,

which is not physical. Therefore there can be no double interface surface modes when there

are poles in the transmission matrices, and Eq. (6) is both a sufficient and necessary condition

for a double interface surface mode.

Of particular interest is the symmetric case, where PC 1 and PC 3 are the same material.

Then R21 = R23 and we can factorize Eq. (6). We use the relation Λ− = eiπkxsdΛ+, where

s is the number of rows of holes in PC 2, to write

(R21Λ+e
iπkxsd/2 − I)(R21Λ+e

iπkxsd/2 + I) c+
2 = 0. (8)

Comparing this to Eq. (5), two solutions are apparent: an even solution, where c′−2 =

e−iπkxsd/2c+
2 , and an odd solution for which c′−2 = −e−iπkxsd/2c+

2 . Note that this phase shift

of ±e−iπkxsd/2 is measured between points separated by s lattice vectors, so for triangular

lattices these points have different x-values since that lattice vector is not parallel to the

y-axis.

We now apply this method to find the modes of a structure in which PC 1 and PC 3 are

vacuum, and PC 2 is the PC studied in Sec. III. We search for eigenvectors of R21Λ+e
iπkxsd/2

that have an eigenvalue ψ within an accuracy range 10−6 of ±1, for E = Ezẑ polarized light.

The modes found when PC 2 is three, five and six rows of holes thick are shown in Fig. 6.

The striking difference between the single interface surface modes of Sec. III and the

double interface modes in Fig. 6 is that the double interface modes cross the PC’s band

edge, as reported for the thick PC limit by Enoch et al. [10]. As previously discussed, single

interface surface modes cannot exist in band, as energy is inevitably radiated away [4]. When

a second interface is present, in band waveguide solutions arise for Eq. (6), in addition to

band gap surface mode solutions.

The character of a mode changes across the band edge: in the band gap, the field envelope

must decay towards the center of the PC slab, since all its constituent Bloch modes are

evanescent. In band, this restriction does not apply. Fig. 7 shows the field profile at two

points of an even mode from the air-5 period PC-air structure of Fig. 6(b). The difference

between the in band waveguide mode (Figs. 7(a) and 7(b)) and the band gap surface mode

(Figs. 7(c) and 7(d)) is readily apparent; the surface mode’s field unambiguously decays
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FIG. 6: (Color online) Projected band structure of surface modes (dark blue and mid-tone red)

of an air-PC-air structure with (a) three, (b) five and (c) six periods of PC. The projected band

structure of the surface modes at the corresponding air-PC interface is shown for reference in light

blue.
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towards the centre of the PC region, whereas the waveguide mode has large field along the

middle of the PC. There is a smooth transition between these two kinds of mode: near the

band edge, the waveguide mode adopts the shape of the surface mode. The moduli of the

elements of c+
2 for the waveguide/surface mode varies continuously, even across the band

edge, and likewise there is no sudden change in the field profile as the band edge is crossed.
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FIG. 7: (Color online) Field strength |E| for an even mode of an air-PC-air structure with five

periods of PC (see Fig. 6(b)): (a) and (b) at d/λ = 0.318, kx = 0.715 π/d, in the PC’s band; (c)

and (d) at d/λ = 0.299, kx = 0.927 π/d, in the PC band-gap.

The introduction of a second interface splits the single interface surface mode into an even

mode and an odd mode. As the thickness of PC 2 is increased, we see from Fig. 6 that these

modes’ dispersion relations converge, approaching that of the single interface surface mode.

This behavior makes physical sense, as the interfaces become increasingly decoupled as PC

2’s thickness increases. Furthermore as PC 2’s thickness increases, the magnitude of the

entries of Λ+ decrease exponentially. Since R−1
21 c+

2 = ±eiπkxsd/2Λ+c+
2 , as PC 2’s thickness
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becomes infinite, Λ+ → 0. Therefore R−1
21 must become singular, which is precisely the

condition for a single interface surface mode.

Unlike the PC-air-PC structure studied by Choi et al. [18], Fig. 6 shows that in our case

the lower frequency mode does not always have even parity. For our configuration, when the

PC is an even number of periods thick the lowest frequency surface mode is odd, and vice-

versa; we have checked this for PCs from 4 to 8 periods thick. This behaviour is equivalent

to that previously observed in coupled PC waveguides [19]. For thinner structures, in which

the interfaces are strongly coupled, the lower air-PC mode does not split into two surface

modes.

Numerically finding solutions to Eq. (8) is sometimes more difficult than the single-mode

case, because the eigenvalue ψ that must be minimized can vary strongly with frequency

and kx. For example, ψ(kx) is shown in Fig. 8 at d/λ = 0.305 for the 5 period thick PC

of Fig. 6(b). This function has several discontinuities and is less well-behaved than the

equivalent function for the single interface, shown in Fig. 3. The discontinuities occur where

the two smallest eigenvalues have equal magnitude. Discontinuities close to a zero can cause

a root-finder to miss valid solutions; this manifests as a gap in the dispersion relation and can

be avoided by instead searching for a zero determinant. This measure was necessary to obtain

certain points on the even mode dispersion relations in Fig. 6(c). Furthermore in Fig. 8 there

are cusps near kx = 0.76 π/d and kx = 0.82 π/d, where the number of propagating Bloch

modes changes. These anomalies are extremely localized—for the kx ' 0.76 π/d anomaly,

|ψ| < 10−5 over a domain of size ∆kx < 10−10 π/d—so the anomalies are of no practical

importance and are therefore ignored in Fig. 6.

The numerical issues in finding modes arise because in order to find a kx for a given

frequency (or vice versa) that supports a mode, a numerical search must be performed to

find a kx such that |ψ| = 0. To find a projected band structure like those in Fig. 6, we must

scan over frequency and kx, a 2D search. Supercell methods [4] require only a 1D search

because for each frequency, all appropriate kx may be found directly from a single FEM (or

other) computation. The downside to supercell methods is that coupling occurs between

supercells; the supercell must be made large to minimize this. In our method the outer

media are truly semi-infinite. Our Bloch mode method also provides additional insight into
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FIG. 8: (Color online) Real and imaginary parts of the smallest eigenvalue ψ of R21Λ+e
iπkxsd/2± I

at d/λ = 0.305 for the air-PC-air structure used in Fig. 6(b). The condition for a surface mode or

waveguide mode is ψ = 0. Discontinuities occur where two or more eigenvalues have equal moduli.

the field structure that supercell methods do not provide.

V. DISCUSSION AND CONCLUSION

In Sec. IV we generalize the principles from Sec. III to investigate modes that propagate

along a three-layer structure. The results given in Sec. IV are for an air-PC-air structure,

which was chosen so that in the partial band gap the surface modes are analogous to long

range surface plasmons. However the derived equations are quite general: Eq. (6) may

be used to find the modes of any three layer structure, and Eq. (8) may be applied to

any structure of the form PC 1-PC 2-PC 1, which includes many PC waveguides. Unlike

supercell methods, our approach allows the field of a waveguide mode to be expressed as

a superposition of Bloch modes in each of the structure’s constituent PCs. This allows a

deeper understanding of the waveguide mode and how it decays in the confining media.

The method developed in Sec. IV may be extended to treat structures with more than

three media; this simply requires further use of the transfer matrix method used in deriving

Eqs. (5) and (6). Such an approach could be used to find the modes of coupled PC wave-

guides, or of more complicated PC waveguide structures where the rows of holes nearest the

central guiding region have been modified.

In conclusion, we have developed a method of finding surface modes on two- and three-

layer structures. The condition for surface modes on a single interface is that the Bloch
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mode reflection matrix has an infinite eigenvalue, which is analogous to the condition for

a surface plasmon on an air-metal interface, and we provide an equivalent condition in

terms of PC impedances. Numerically, our PC impedance condition is more suitable than

the reflection matrix formulation, since we isolate the matrix which we have shown zero

eigenvalues corresponding to physically significant solutions. The analysis of an example

shows that a single surface mode may involve two Bloch modes with different decay rates on

each side of the interface.

The condition for surface and waveguide modes on a three-layer structure (Eq. (6)) is

similar to that for a dielectric waveguide. We find that some of the waveguide modes of an

air-PC-air structure cross the band edge and continue into the partial band gap, becoming

surface modes with mode profiles that decay towards the center of the PC region.
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Appendix A: Completeness and convergence

In Sec. II we noted that for the calculations in this paper we represent the field by 5 forward

and 5 backward propagating/decaying plane wave diffraction orders. We now explore the

validity of this truncation by presenting a convergence analysis for one data point of our

results.

As our method is based on that of Botten et al. [14], there are two fundamental ap-

proximations made in representing field in the PC: the countably infinite set of plane wave

grating diffraction orders is truncated to a finite size, and the set of Bloch modes found by

diagonalizing the plane wave transfer matrix is also truncated. The total set of Bloch modes

is complete [20], so without such truncations arbitrary fields in the PC could be exactly

represented as superpositions of Bloch modes. We have shown in previous work [13] that
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there is a minimum number of Bloch modes necessary to provide realistic results for PC

reflection coefficients, and that beyond this, convergence with increasing mode number is

very rapid. This feature carries over to the study of surface modes, given their close con-

nection to reflection matrices. In this Appendix we further investigate the effect of these

truncations on our results for the kx of a surface mode on an air-PC interface found at a

particular frequency. There are further numerical inaccuracies arising from the calculation

of plane wave scattering, but these are comprehensively treated elsewhere [21].

As mentioned in Sec. III, we consider the interface between air and a triangular lattice PC

with air holes of radius 0.25 d, where d is the lattice constant, and the background refractive

index is n = 2.86. The air-PC interface is in the y−z plane. Light is polarised with E = Ezẑ

and has frequency d/λ = 0.3.

We repeatedly apply a root finder to determine the kx for a surface mode, varying the

number of plane wave orders and the number of Bloch modes. Table I shows how the

calculated kx varies with these parameters. The results converge quickly as the size of the

Bloch basis increases. There is negligible difference (4.4×10−8) between the 5 plane wave and

Bloch mode calculation—the approximation used throughout this paper—and the 11 plane

wave and Bloch mode calculation. Since the Bloch modes are orthogonal and represented in

terms of plane wave orders, every calculation has more plane wave orders than Bloch modes.

When using a single Bloch mode, the surface mode is not found.

In Sec. III it was established that surface modes occur when (AT
12A12 + I) has a zero

eigenvalue. Table II gives the magnitude of the smallest eigenvalue associated with each kx

in Table I, as calculated with 11 Bloch modes and plane waves. It shows good convergence

thereby demonstrating that our work has a solid foundation.
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