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Abstract. Vibrating flip-flow screens provide an effective solution for the screening of 

highly viscous or fine materials. Apart from other factors, the vibration characteristics 

of the main and floating screen frames are largely responsible for the flip-flow screen’s 

sifting performance and its processing capacity. In this paper, the vibration 

characteristics of a vibrating flip-flow screen with linear and nonlinear springs are 

compared. Analytical results highlight that increasing the relative amplitude and 

avoiding undesirable resonances of the main and the floating screen frames can be 

realised to improve the screen’s performance. The materials on the screen panel have 

less an effect on the vibration characteristics of the vibrating flip-flow screen with 

nonlinear springs than using linear springs. Other design parameters which influence 

the performance of vibrating flip-flow screens are discussed.  

 

1. Introduction 

Dry screening of wet and fine materials is an on-going issue in processing minerals and ore 

such as gold, iron or coal. During traditional screening equipment frequency experience the 

problem of plugging, which is a blockage of the screen’s grid with debris [1-2]. Vibrating flip-

flow screens (VFFS) are used as machinery to tackle the problem of sifting the materials. A 

VFFS has elastic screen panels which are stretched and relaxed, thereby creating changing 

tension motion to efficiently sort loose materials. VFFS are widely used in screening processes 

of fine materials where it is superior to conventional vibrating screens [3-4]. 

Common influencing factors on the screening performance of VFFS include the rotational 

speed of the exciter, the inclination angle of the screen, the slack length of the screening panel 

among many other factors related to material itself. Derived from e.g. the rotational speed are 

the vibration characteristics of VFFS, which also largely affect the processing performance and 

capacity [5-6]. To achieve the best screen performance, an optimized design and control is 

required, which fundamentally needs an in-depth understanding of the vibrations. 
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Xiong [6] analysed the dynamics of a banana flip-flow screen with linear springs. However, 

in the actual situation, vibrating flip-flow screens with linear springs can’t work at the ideal 

working area as the change of the system’ natural frequency caused by material quantity 

(additional mass) or changing stiffness (pre-tension, tension). The need to design vibrating flip-

flow screens which are efficient over a broad band of forcing frequencies led to the study 

nonlinear characteristics – considering nonlinear stiffness. This however, requires developing 

an analytical procedure, to study the system’s steady state responses and stability behaviour 

which we are doing in the following.  

  

2. Analytical model  

The investigated VFFS is shown schematically in Fig.1(a). The main screen frame is supported 

by vibration isolation springs. The inserted floating screen frame is connected to the main 

screen frame by shear springs. Moreover, the VFFS is excited by an exciter shaft mounted to 

the main frame. The rotation of the eccentric blocks in the exciter causes a relative movement 

between the main and the floating frame, which harmonically slackens and stretches the screen 

panel.  

                                
Figure 1. (a) Schematic and the (b) mathematical model of a vibrating flip-flow screen.  

To investigate the dynamic of the vibrating flip-flow screen, a corresponding dynamic 

model is established, Fig.1(b). Here, m is the eccentric block mass of vibration exciter; m1 and 

m2 are the mass of main and floating screen frames respectively, r is the eccentricity; ω the 

angular velocity of m; k1, k'1 and c1 - stiffness and damping coefficient of the vibration isolation 

springs, k2, k'2 and c2 - stiffness and damping coefficients of the vibration shear spring. The x-

axis is along the screen panel, the y-axis is perpendicular to the screen panel. The co-ordinate 

x1 represents the displacement of the main screen fame’s mass m1 with respect to its foundation, 

while x2 stands for the relative displacement of the floating screen frame’s mass m2 with respect 

to the mass m1. The vibration of the vibrating flip-flow screen in y direction can be neglected, 

because that the main and floating screen frames will vibrate synchronously in y direction when 

VFFS works, which cause little effect on the performance of the VFFS. Therefore, in this paper, 

the dynamics of the VFFS is studied only considering x direction. The machine is excited by a 

harmonic forcing of the form 𝐹 = 𝐹0 cos 𝜔𝑡 (𝐹0 = 𝑚𝑟𝜔2). The non-linear springs restoring 

forces and governing equations are written as [7-8]: 

𝑓𝑖(𝑥𝑖) = 𝑘𝑖𝑥𝑖 + 𝑘𝑖
′𝑥𝑖

3, with         𝑖 = 1,2,  and                   (1) 

                (𝑚1 + 𝑚2)𝑥̈1 + 𝑚2𝑥̈2 + 𝑐1𝑥̇1 + 𝑘1𝑥1 + 𝑘1
′𝑥1

3 = 𝐹0 cos 𝜔𝑡 ; and          (2a) 

𝑚2𝑥̈1 + 𝑚2𝑥̈2 + 𝑐2𝑥̇2 + 𝑘2𝑥2 + 𝑘2
′𝑥2

3 = 0.                 (2b) 

Suppose that the characteristic length is described by 𝑥𝑐 = 𝐹0/𝑘1, then the displacements can 

be normalized using 𝑥𝑐 , 𝑦𝑖 = 𝑥𝑖/𝑥𝑐  and the following dimensionless parameters are 



introduced: 

𝜏 = 𝜔𝑡, 𝜇 = 𝑚2/𝑚1, 𝜔̅𝑖
2 = 𝑘𝑖/𝑚𝑖, 𝜔𝑖 = 𝜔̅𝑖/𝜔, η𝑖 = 𝜔𝑖

2, ζ𝑖 = 𝑐𝑖/2√𝑘𝑖𝑚𝑖, 𝜀𝑖 = 2ζ𝑖𝜔𝑖,  

δ = 𝜔2/𝜔1, Ω = 𝜔/ 𝜔̅1，𝛼̅1 = 𝑘1
′ 𝑘1𝑥𝑐

2/𝑚1
2𝜔4, 𝛼̅2 = 𝑘2

′ 𝑘2𝑥𝑐
2/𝑚1𝑚2𝜔4, 𝛼𝑖 = 𝛼̅𝑖Ω2, λ̅ = 𝐹0/

𝑚1𝜔̅1
2𝑥𝑐，and λ = λ̅𝜔1

2.  

Important here are the dimensionless parameters 𝛼̅1, 𝛼̅2 and 𝜇 as they represent non-linear 

stiffness and mass ratio of m2 and m1 which we are going to vary in the following. 

The equations of motion of the system can be put in matrix form: 

                         𝐌𝐘̈ + 𝐂𝐘̇ + 𝐊𝐘 = 𝐅,                               (3) 

with 

𝐘 = [
𝑦1

𝑦2
], 𝐌 = [

1 + 𝜇   𝜇
        𝜇   𝜇

], 𝐂 = [
𝜀1         0    

0     𝜇𝜀2
], 𝐊 = [

𝜂1 0
0 𝜂2

], 𝐅 =  [
λcos 𝜏 − 𝛼1𝑦1

3

−𝜇𝛼2𝑦2
3 ]. 

Applying the method of averaging [9-10] the steady state responses become of the form 

                             𝐘 = 𝐔cos𝜏 + sin 𝜏, and                       (4a) 

                       𝐘̇(𝝉) = −𝐔 sin 𝜏 + 𝐕cos𝜏                      (4b) 

with the time dependence of 𝐔 = [𝑢1(𝜏)，𝑢2(𝜏)]𝑇and 𝐕 = [𝑣1(𝜏)，𝑣2(𝜏)]𝑇being assumed 

to be “slow” and of higher order. Differentiating the Eq. (4a) with respect to the time 𝜏, we 

obtain                                             𝐘̇ = 𝐔̇cos𝜏 − 𝐔 sin 𝜏 + 𝐕̇ sin 𝜏 + 𝐕cos𝜏                (5) 

Substituting Eq. (4b) into Eq. (5), one finds: 

  𝐔̇cos𝜏 + 𝐕̇ sin 𝜏 = 0.                           (6) 

Also differentiating the Eq. (4b), we obtain  

𝐘̈ = −𝐔̇ sin 𝜏 − 𝐔cos𝜏 + 𝐕̇cos𝜏 − 𝐕 sin 𝜏 

Substituting the equations about 𝐘, 𝐘̇ and 𝐘̈ into Eq. (3), the resulting equation becomes  

             (𝐌𝐕̇ − 𝐌𝐔 + 𝐂𝐕 + 𝐊𝐔)cos𝜏 − (𝐌𝐔̇ + 𝐌𝐕 + 𝐂𝐔 − 𝐊𝐕) sin 𝜏 = 𝐅(𝒖, 𝒗, 𝝉)      (7) 

Then, multiplying Eq. (6) by the term M cos𝜏, Eq. (7) is multiplied by − sin 𝜏 and adding the 

two equations. The resulting equation is then integrated from 0 to 2𝜋 by assuming that 𝐔 and 

𝐕 remain constant. The final outcome of these manipulations is 

                 𝐌𝐔̇ =
1

2
(𝐊 − 𝐌)𝐕 −

1

2
𝐂𝐔 +

1

2
(

3

4
𝛼1𝑣1(𝑢1

2+𝑣1
2)

3

4
𝜇𝛼2𝑣2(𝑢2

2+𝑣2
2)

)                 (8) 

Similarly, multiplying Eqs. (6) and (7) by either M sin𝜏 or cos 𝜏, respectively; adding both 

equations and integrating it from 0 to 2𝜋, we obtain 

                   𝐌𝐕̇ =
1

2
(𝐌 − 𝐊)𝐕 −

1

2
𝐂𝐕 +

1

2
(

𝜆−
3

4
𝛼1𝑢1(𝑢1

2+𝑣1
2)

−
3

4
𝜇𝛼2𝑢2(𝑢2

2+𝑣2
2)

)              (9) 

Eqs. (8) and (9) represent a system of first order, ordinary differential equations. For periodic 

steady vibration, the conditions are provided as 

  𝐔̇ = 𝐕̇ = 𝟎.                             (10) 

Substituting conditions (10) into Eqs. (8) and (9)，a set of four coupled non-linear algebraic 

equations for 𝑢1, 𝑣1, 𝑢2 and 𝑣2 is obtained, 

(𝜂1 − 𝜇 − 1)𝑣1 − 𝜇𝑣2 − 𝜀1𝑢1 +
3

4
𝛼1𝑣1(𝑢1

2 + 𝑣1
2) = 0,          (11a)  

−𝜇𝑣1 + (𝜇𝜂2 − 𝜇)𝑣2 − 𝜇𝜀2𝑢2 +
3

4
𝜇𝛼2𝑣2(𝑢2

2 + 𝑣2
2) = 0,          (11b) 

(1 + 𝜇 − 𝜂1)𝑢1 − 𝜇𝑢2 − 𝜀1𝑣1 + λ −
3

4
𝛼1𝑢1(𝑢1

2 + 𝑣1
2) = 0, and     (11c) 

𝜇𝑢1 + (𝜇 − 𝜇𝜂2)𝑢2 − 𝜇𝜀2𝑣2 −
3

4
𝜇𝛼2𝑢2(𝑢2

2 + 𝑣2
2) = 0.          (11d) 



3. Numerical results and discussion 

In all calculations, the non-dimensionless frequency Ω is taken as the independent variable. 

𝑥1  and 𝑥2  denote the response amplitudes of the main screen frame and the relative 

displacement of main screen frame and floating screen frame. Both 𝑥1  and 𝑥2  can be 

expressed in terms of displacement and velocity using. 

𝑥𝑖 = 𝑥𝑐√𝑢𝑖
2 + 𝑣𝑖

2, with  𝑖 = 1,2                   (12a)                       

As spring stiffness and materials have greater effect on the performance of VFFS 

compared with other factors. Results are obtained by applying the above analysis, calculating 

the effect of nonlinear spring stiffness and the effect of the material on the steady state response 

of the system. 

3.1. The effect of non-linear stiffness on the steady state response. 

Several groups of parameters are tried out to discuss the vibration characteristics of the system; 

the selection of the relative parameters is taken by an industrial flip-flow screen (m1 = 4,482 kg, 

k1 = 756.7 kN/m). The steady state response of the main screen frame (x1) and relative 

displacement between the main and the floating screen frame (x2) are shown in Figs. 2(a) and 

2(b) considering different 𝛼̅1  and 𝛼̅2 , which represent nonlinear stiffness of isolation 

vibration springs and shear springs, respectively.  

  

Figure 2. Steady-state response of the system: (a) 𝑢 = 0.3, δ= 2, 𝛼̅2= 0, ζ1 = ζ2 = 0.1 (b) 

𝑢 = 0.3, δ = 2, 𝛼̅1= 0,  ζ1 = ζ2 = 0.1 

In Fig. 2(a), with the increase of the non-linear spring stiffness 𝛼̅1 from zero to 0.05 in the first 

order resonance region, the peak values of x1 and x2 both increase, and the corresponding Ω of 

peak value also increases. This will cause an undesirable vibration mode in case the VFFS 

begins to work. In Fig. 2(b), increasing the non-linear spring stiffness 𝛼̅2 from zero to 0.1 the 

peak value of x2 increases from 20.85 to 24.58, and the peak value of x1 remains almost constant. 

Because VFFS commonly work near the second resonance region, it needs to be tested whether 

the increase of 𝛼̅2 could be beneficial to the performance and processing capacity of materials. 

3.2. The effect of materials on vibration characteristic of the system. 

When the screening panel is loaded with material (2,045 kg) the mass-ratio changes from 𝜇 = 

0.3 to 𝜇 = 0.38. The steady state responses of the VFFS with linear (𝛼̅2 = 0) and nonlinear 

( 𝛼̅2 = 0.1 ) shear springs with and without material are shown in Figs. 3(a) and 3(b), 

respectively. In Fig. 3(a) it can be seen that the presence of materials has a large effect on the 

vibration characteristics of VFFS with linear shear spring; the large changes in x1 and x1 



influences the stability of the system and requires to be monitored. Fig. 3(b) shows that an 

additional loading of material, which acts on the screen has a rather small effect on the nonlinear 

vibration characteristics when it works near the resonance area hence non-linear characteristics 

of shear springs could be beneficial to the stability of the system. 

 

Figure. 3 Steady-state response of the system: (a) linear, and (b) nonlinear shear springs 

 

4. Conclusion 

Vibrating flip-flow screens can be effective solutions for the screening of highly viscous and fine 

materials. Our study employs an analytical procedure to determine the dynamic response of 

vibrating flip-flow screens by also considering their nonlinear shear spring characteristics. This 

analysis is applied to two cases, with the goal of identifying the effect of the system parameters on 

the steady-state responses. Results indicate that nonlinear springs in connection with properly 

system parameters would be beneficial for the vibrating flip-flow screens’ performance. However, 

while the application of nonlinear springs could show to be useful over a wider range of forcing 

frequencies, the extension to a larger frequency band also requires to study whether stability issue 

can arise. Further, a comparison with real experiments and an updated finite element model would 

be required in the future. 
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