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Abstract—Keyword search problem has been widely studied
to retrieve related substructures from graphs for a keyword set.
However, existing well-studied approaches aim at finding compact
trees/subgraphs containing the keywords, and ignore a critical
measure, density, to reflect how strongly and stablely the keyword
nodes are connected in the substructure. In this paper, we study
the problem of finding a cohesive subgraph containing the query
keywords based on the k-truss model, and formulate it as minimal
dense truss search problem, i.e., finding minimal subgraph with
maximum trussness covering the keywords. We first propose an
efficient algorithm to find the dense truss with the maximum
trussness containing keywords based on a novel hybrid KT-Index
(Keyword-Truss Index). Then, we develop a novel refinement
approach to extract the minimal dense truss based on the anti-
monotonicity property of k-truss. Experimental studies on real
datasets show the outperformance of our method.

I. INTRODUCTION

Keyword search, as a user-friendly query scheme, has been
widely used to retrieve useful information in various graph
data, such as knowledge graphs, information networks, social
networks, etc. Given a query consisting of a number of
keywords, the target of keyword search over a graph is to
find substructures in the graph related to the query keywords.

In recent decades, keyword search problem has been ex-
tensively studied [1], aiming to find minimal connected trees
(Steiner tree [2] and distinct root tree [3]) or subgraphs (r-
radius subgraph [4], community [5], and r-clique [6]) con-
taining the keywords. Besides, keyword search can also be
considered as a special case of partial topology query [7] [8]
where label propagation are utilized to find matched compo-
nents. However, these methods only focus on the compactness
of retrieved substructure, and fail to explore how densely these
keywords are connected, which is critical to reflect the stability
of the relationships between keywords in many applications,
e.g., forming a team such that team members are stably close
with each other so that the whole team can cooperate well.

In this paper, for the first time, we study the problem of
finding cohesive subgraphs that are highly dense and compact
for keyword queries based on k-truss model in which each
edge is contained in at least (k − 2) triangles. We illustrate
the differences between k-truss and existing keyword search
approaches by the following example.

Fig. 1(a) shows a co-authorship and citation graph G, where
the weight between an author and a paper is the author rank,
and the weight between two papers is the citation frequency.
For a query Q = {James,Green}, the top-3 connected trees

with weight 3, 4, and 5 respectively are identified by [2]
[3] as shown in Fig. 1(b). Fig. 1(c) shows the communities
identified by [5], which are multi-centered subgraphs with the
distance between a center node and each keyword node no
larger than a given threshold (e.g., 3). They are ranked based
on the minimum total edge weight from a center node to each
keyword node on the corresponding shortest path. The score
of community C1 with center node paper1 is 1 + 2 = 3. The
score of community C2 is 4 as it has two center nodes paper2
and paper3 with total weights 2 + 3 = 5 and 1 + 3 = 4,
respectively. In the r-clique model with diameter no larger than
r (e.g., r = 3) [6], T1 and T2 are returned, since only Steiner
trees of qualified r-cliques are finally extracted. All these
approaches output the substructure containing James Wilson
and John Green as the top-1 answer. However, James Wilson
and Jim Green coauthored more papers together with Jack
White, which implies a more stable and closer relationships.
Based on the truss model, they can be properly discovered in
the form of 4-truss (the dashed line area in Fig. 1(a)).

To attain highly dense and compact substructure for a
keyword query Q, a natural way is to find the subgraph
with maximum trussness and minimum size containing Q.
However, such problem is NP-hard and APX-hard, which can
be proved through the reduction of maximum clique problem
in a similar manner as the proof in [9]. Thus, in this paper we
study a relaxed version, called minimal dense truss search, i.e.,
find the subgraph with maximum trussness containing Q such
that it does not contain any subgraph with the same trussness
containing Q. Note that our model is different with the
closest truss model [9] with maximum trussness and minimum
diameter, as the diameter of a k-truss with n nodes is bounded
by b 2n−2k c while a k-truss with minimum diameter may have
an arbitrary large number of nodes. Moreover, closest truss
search is NP-hard [9], while minimal dense truss search can
be done in polynomial time.

Despite rich studies on community search, finding minimal
dense truss for keyword queries is nontrivial due to its inherent
difference from community search. Community search aims to
find maximal communities that maximize the truss value and
contain a set of query nodes, which can be done by local
search with proper indexes in O(|A|) time (A is the answer)
[10] [11]. The main difficulty of minimal dense truss search
for keyword queries is that, unlike community search where
the query nodes are given, the subset of nodes containing all
the keywords to be included in the dense truss is unknown in
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Fig. 1. A Motivating Example

advance, and therefore we do not know from which nodes to
start in the local search [10] [11]. One possible solution is that,
for a keyword query Q = {w1, w2, . . . , wl}, we explore all the
combinations of keyword nodes in S = V1 × V2 × · · · × Vl
to find the subgraph with maximum trussness, where Vi
is the node set containing wi. Such search space will be
inexhaustible for large real-world graphs due to the huge
number of combinations. Another difficulty is verifying the
minimality of a truss, which is also costly as we need to check
whether it contains any subgraph with the same trussness.

We tackle these difficulties by dividing the minimal dense
search problem into two subproblems. For the first subprob-
lem, we propose a top-down framework based on novel hybrid
graph indexing scheme KT-index to find the dense truss Gden

efficiently. For the second subproblem, we develop a novel
approach to extract minimal dense truss H covering Q from
Gden based on the anti-monotonic property of k-truss.

II. PROBLEM STATEMENT

Given a set of labels Σ, a simple undirected vertex labeled
graph is represented as G = (V,E, L), where V is the set of
vertices, E ⊆ V × V is the set of edges, and L is a labeling
function which assign each node a set of labels L(v) ⊂ Σ. We
use V (G) and E(G) to denote the set of vertices and the set of
edges of graph G respectively. For a vertex v ∈ V , we denote
the set of its neighboring vertices by N(v) = {u ∈ V |(u, v) ∈
E} and its degree by d(v) = |N(v)|. A triangle 4(u, v, w)
in G is a substructure such that (u, v), (v, w), (u,w) ∈ E.
Definition 2.1 (Edge Support). The support of an edge e =
(u, v) in graph G is the number of triangles in which e occurs,
defined as supG(e) = |{4(u, v, w)|w ∈ V (G)}|.
Definition 2.2 (Connected k-Truss). Given a graph G and an
integer k, a connected k-truss is a connected subgraph H ⊆ G,
such that ∀e ∈ E(H), supH(e) ≥ k − 2.

The trussness of a subgraph H ⊆ G is the minimum
support of all edges in H plus 2, defined as τ(H) =
mine∈E(H) supH(e) + 2. The trussness of an edge e ∈ E(G)
is the maximum trussness of subgraphs containing e, i.e.,
τ(e) = maxH⊆G∧e∈E(H) τ(H). The trussness of a vertex
v ∈ V (G) equals to the maximum trussness of its adjacent
edges, i.e., τ(v) = maxu∈N(v) τ(u, v).

For example, in Fig. 2, the edge support of (v2, v3) is 3 as
it is contained in 3 triangles 4(v1, v2, v3), 4(v2, v3, v4) and
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4(v2, v3, v5). Let H1 denote the subgraph induced by vertices
{v1, v2, v3, v4}. τ(H1) = 4 since the minimum support of
edges in H1 is 2. The trussness of edge (v2, v3) is 4 because
there is no other subgraph with higher trussness containing
(v2, v3). τ(v2) = 4 because the maximum trussness of its
adjacent edges (v2, v1), (v2, v3), (v2, v4) and (v2, v5) is 4.
Definition 2.3 (Dense Truss Over Keywords). Given a graph
G and a keyword set Q, a dense truss over Q is a connected
truss Gden ⊆ G that maximizes the trussness and contains Q.

Definition 2.4 (Minmal Dense Truss Over Keywords). Given
a graph G and a keyword set Q, the minimal dense truss over
Q is a dense truss Gden ⊆ G containing Q such that any
subgraph of Gden is not a dense truss containing Q.

For example, consider a query Q = {DB,ML}. H1 and
H2 in Fig. 2 are 4-truss and 3-truss containing Q. Clearly, H1

is a dense truss over Q. We also have another 4-truss induced
by {v1, v2, v3, v4, v5} containing Q, but it is not minimal. Thus
H1 is the minimal dense truss for the query Q.
Problem (Minimal Dense Truss Search by Keywords). Given
a graph G and a keyword set Q = {w1, w2, . . . , wl}, find the
minimal dense truss containing Q.

For simplicity, we consider the top-1 minimal dense truss
search for keywords and our approaches can be extended to
top-r version where the rank is based on the trussness.

III. OUR APPROACHES

In this section, we first propose a basic top-down algorithm
in Section III-A, then introduce the KT-index and the improved
algorithm in Section III-B, and finally introduce the details of
the refinement process in Section III-C.

A. Basic Top-down Search Framework

To avoid enumerating all the combinations of keyword
nodes in S = V1 × V2 × · · · × Vl, we propose a top-down
search framework by starting the search over the truss with
the largest trussness kmax in graph G. If it does not contain a



connected kmax-truss covering Q, we will gradually decrease
kmax until we find one. Such process can be accelerated by
utilizing the property of trussness for keywords as follows. For
a keyword wi, let Vi be the set of nodes containing wi. The
upper bound of the trussness for wi is defined as the maximum
trussness of nodes in Vi, i.e., τ ′(wi) = maxv∈Vi

τ(v).

Property 3.1. Given a graph G and a keyword set Q = {w1,
w2, . . . , wl}, for any truss H containing Q, we have τ(H) ≤
min1≤i≤l τ

′(wi).

The main steps of top-down search algorithm are as fol-
lows. First, we obtain the trussness of all edges and nodes
by truss decomposition [12]. Second, for each keyword wi,
we compute the node set Vi, and obtain the upper bound
of trussness by τ ′(wi) = maxv∈Vi

τ(v). Third, based on
above property, we start searching from kmax-truss where
kmax = min1≤i≤l τ

′(wi). Specifically, we extract Gkmax
=

{e ∈ G|τ(e) ≥ kmax} from G and check whether each
connected component Ci in Gkmax contains all the keywords.
If yes, we return the component containing Q with smallest
size; otherwise, we search (kmax−1)-truss and stop when we
find a connected truss Gden containing Q. Finally, we refine
Gden to obtain a minimal dense truss H .

The complexity of truss decomposition is O(|E|1.5) [12].
For a specific value of kmax, the process of computing the
connected components Gkmax

covering the keywords can be
done O(|E(Gkmax

)|) time. In the worst case, we need to check
all the possible values of kmax from min1≤i≤l τ

′(wi) to 2.
Due to the fact that τ(v) ≤

√
|E| for any v ∈ V [12], the

overall complexity of finding Gden is O(|E|1.5).

B. Improved Algorithm on KT-Index

1) Keyword-Truss Index (KT-Index): In the basic top-down
search framework, trussness computation for each edge is
primitive. Since it is independent with keyword queries, we
can complete such computation by truss decomposition [12]
offline before any query comes. Then, we build a hash table
to keep all the edges and their trussness.

Another time consuming part of basic top-down algorithm
is that we need to test many values of k s to find a k-
truss containing Q with the largest k, with time complexity
O(

√
|E|× |E|). To speed up the computation of this part, we

design KT-Index including two parts: truss index and keyword
index.
Truss Index. Truss index is a multi-layer structure, where
we index the information of all the connected k-truss in
the k-th layer. Suppose there are nk connected components
C1, C2, . . . , Cnk

in the k-th layer. We sort all the components
in the descending order of their size (number of nodes) and
assign each component an ID. For each component Ci, we
only store the node set V (Ci). Thus, we store the k-th layer in
the form of list (1, V (C1)), . . . , (i, V (Ci)), . . . , (nk, V (Cnk

)).
Keyword Index. In the keyword index, we first store a
inverted keyword list to keep the node IDs that contain each
keyword, i.e., for each wi, we store the keyword node set
Vi containing wi. Meanwhile we record the upper bound

Algorithm 1: Improved-KT Search

Input : A graph G, and a keyword query Q.
Output: A minimal dense subgraph.

1 kmax ← min1≤i≤l τ
′(wi);

2 kmin ← 3;
3 while kmax > kmin do
4 k ← b kmax+kmin

2
c;

5 for each keyword wi in Q do
6 SCi ← CIDk of wi;

7 CC ← ∩1≤i≤lSCi;
8 if CC 6= ∅ then
9 kmin ← k + 1;

10 else
11 kmax ← k − 1;

12 id← mincid∈CC cid;
13 Gden ← extract compoent Cid at the k-th layer from G;
14 H ← FindMinDenseTruss(Gden, Q);
15 return H;

of trussness τ ′(wi) for each keyword. Moreover, for each
keyword, we record the IDs of the component CIDk it occurs
in the k-th layer, in the form of (k,CIDk).

Obviously, the index size of KT-Index is O(|E|) and it can
be constructed in O(|E|1.5) time.

2) The Improved Algorithm: The search algorithm is shown
in Algorithm 1. To avoid the worst case of checking all the
value of kmax, we check each layer of truss index by a binary
search, which can be completed in log(kmax) iterations. In
the k-th layer, we obtain the set of component IDs CC that
contains all the keywords (lines 5-7). If CC is empty, we
will search layers with truss value smaller than current k;
otherwise, we will search layers with truss value larger than
current k. After we find the set of component IDs CC that
containing all the keywords, we select the component with
the minimum size as dense truss Gden. Then we extract the
minimal dense truss H containing Q from Gden by function
FindMinDenseTruss, which will be introduced in detail later.

Algorithm 1 needs O(log
√
|E|×ncmax) time to find Gden,

where ncmax is the maximum number of components among
all the layers in KT-Index. Note that the number of connected
components in each layer is far smaller than the node number,
which is usually at most hundreds for real-world graphs. Thus
our improved algorithm can identify Gden very efficiently.

C. Minimal Dense Truss Extraction

Now, we move to the subproblem of extracting minimal
dense truss from Gden. Before going into the details of
function FindMinDenseTruss(Gden, Q) aforementioned in Al-
gorithm 1, we will first give the anti-monotonic property of
k-truss, to provide essential guidelines for refinement.

Property 3.2. Given a connected k-truss H, a node v ∈ V (H)
and set of its adjacent edges Ev = {(u, v) ∈ E(H)}, if graph
Gv = (V (H)\{v}, E(H)\Ev) does not contain a connected
k-truss, there does not exists a subgraph H ′ ⊆ H such that
G′v = (V (H ′)\{v}, E(H ′)\Ev) contains a connected k-truss.



Algorithm 2: FindMinDenseTruss

Input : A dense truss Gden, and a keyword query Q.
Output: A minimal dense subgraph.

1 k ← τ(Gden);
2 Svis ← ∅;
3 while V (Gden) \ Svis 6= ∅ do
4 select a node v from V (Gden) \ Svis;
5 G′ ← FindKTruss(Gden, Q, k, v);
6 if G′ 6= empty then
7 Gden ← G′;

8 Svis ← Svis ∪ {v};
9 return Gden;

This property show that when we refine Gden by deleting
nodes, each node v in Gden only needs to be checked once. If
deleting v will result in a subgraph that contains no connected
k-truss containing Q, we will keep v and will not check it
again in the following deletions.

Algorithm FindMinDenseTruss. Based on above property, we
give the process of FindMinDenseTruss in Algorithm 2. The
main idea is every time we randomly pick one node v in graph
Gden to check whether deleting node v and its adjacent edges
will still lead to a connected k-truss G′ containing Q (lines
4-5). If yes, we update Gden by G′ (lines 6-7); otherwise, we
check the next node. We use the set Svis to keep the set of
nodes having been checked to avoid repeated examinations.

Function FindKTruss(Gden, Q, k, S) is used to check the
existence of a connected k-truss containing Q after deleting a
set of nodes S and their adjacent edges from Gden. First, we
use Edel to maintain the set of edges to be deleted from the
graph. Then we gradually delete each edge (u, v) ∈ Edel and
check whether it will result in new edges that violate the edge
support constraint for a k-truss. If yes, we will continually
add these edges into Edel. Such process stops when Edel =
∅. Then we remove isolated nodes from Gden. If there is a
connected component G′ containing Q, we will return G′ as
a k-truss; otherwise, we return ∅.

The time complexity of Algorithm 2 is O(t × (α − k) ×
|E(Gden)|) where t ≤ |V (H)| is the number of iterations, k is
the trussness of Gden, and α ≤

√
|E(Gden)|) is the arboricity

of Gden (minimum number of spanning forests needed to
cover all the edges in Gden).

IV. PERFORMANCE STUDIES

We implemented the following two algorithms for com-
parison: Basic (Basic top-down search framework), and KT
(Improved algorithm Alg. 1). Function FindMinDenseTruss
in these two algorithms is implemented as Alg. 2. All the
algorithms are implemented in C++, and run on a PC with
3.60GHz CPU and 8GB memory.
Datasets and Queries. We use two real datasets popularly
used in previous keyword search works [13]: DBpedia1 and
YAGO2. We use 6 query templates designed in [13], consisting

1http://dbpedia.com/
2https://www.mpi-inf.mpg.de/yago

TABLE I
RUNNING TIME COMPARISON (SEC)

Dataset Alg. Q1 Q2 Q3 Q4 Q5 Q6

DBpedia Basic 2594.7 1099.8 2845.1 2488.7 2015.4 1963.5
KT 4.8 0.5 5.9 9.5 7.0 3.5

YAGO Basic 1559.0 1005.7 2963.5 2845.2 2777.6 1359.8
KT 1.8 0.3 6.9 2.5 5.5 1.3

of type keywords and value keywords. Since each value
keyword is associated with one node representing an entity,
to generalize the query, we replace the value keywords (e.g.,
AmericanMusicAwards) with its type (e.g., TelevisionShow).
Refer to [13] for details of the datasets and queries.

Experimental Results. Table I shows the running time for all
the queries. We can see that KT can answer the query in a
few seconds while Basic needs thousands of seconds, which
validates the efficiency of our improved search algorithm.

V. CONCLUSION

In this paper, we study the minimal dense truss search
problem for keyword queries based on the k-truss model. We
develop an efficient approach based on hybrid index KT-index
and a novel refinment scheme to solve this problem.
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