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Abstract—User engagement and tie strength are fundamental
and important components in social networks. The model of k-
truss not only captures actively engaged users, but also ensures
strong tie strength among these users. It motivates us to utilize
the model of k-truss in preventing network unraveling, which
simultaneously considers both of the basic components. In this
paper, we propose and investigate the anchored k-truss problem
to reinforce a network by anchoring critical users who can
significantly stop the unraveling. We prove the problem is NP-
hard for k ≥ 4. A fast edge deletion order based algorithm,
named AKT, is proposed with efficient candidate exploration
and pruning techniques based on the order. Comprehensive
experiments on 10 real-life graphs demonstrate the effectiveness
of our model and the efficiency of our methods.

I. INTRODUCTION

The leave of users can be serious for a social network,
which not only brings down user engagement level, but also
weakens the strength of user ties. Furthermore, the cascade of
user departure may even lead to the death of a social network,
such as Friendster which had over 115 million users at early
21st century [8], [22]. For the stability and activity of a social
network, it is worthwhile to give the users some incentives to
reinforce the network. Particularly, we need to consider both
user engagement and tie strength in finding the target users,
since the two elements are defining in social networks [4],
[17], [19], [26], [28], [29].

Seidman [20] introduces the k-core model which is defined
as a maximal subgraph where each vertex has at least k
neighbors in the subgraph. A lot of studies show that the large
number of friends in a community for a user can ensure active
engagement of this user [4], [5], [17]. However, the simple
definition of k-core corresponds to promiscuous subgraphs,
and thus the k-core is considered as “seedbeds, within which
cohesive subsets can precipitate out” [20]. Consider the fact
that the social ties (i.e., edges) have different strength in real
social networks, Cohen [6] introduces the k-truss model which
is a maximal subgraph where each edge is contained in at
least k − 2 triangles in the subgraph. It is effective to use
the number of triangles containing an edge to estimate the
strength of the edge [12], [19], [23], [33]. The k-truss is
essentially an enhanced subgraph of (k-1)-core, since a user
in the k-truss community also has at least k−1 friends within
the community. By considering both user engagement and tie
strength, the k-truss model not only ensures strong tie strength
among users, but also captures users with high engagement.
A social network tends to be a k-truss community with the

Fig. 1. Motivation Example

removing of weak ties and the leaving of weakly engaged
users. Consequently, it is promising to utilize the model of
k-truss in modeling network unraveling.

The objective of this paper is to reinforce the social net-
works by giving incentives to some users so that they will
keep engaged together with their relatively strong ties. Since
the budget of social networking sites is limited, we need to find
the users who have the greatest power to enlarge the finally
engaged communities. Specifically, we propose and investigate
the problem of anchored k-truss, which is to retain (anchor)
a number b of users (anchors) in the network such that the
resulting k-truss community has the largest number of users.

Example 1. Suppose there is a project group where each
member is modeled as a vertex and a friendship between
two members is modeled as an edge. The number of com-
mon friends in the group between two friends represents
the strength of their relationship. In Figure 1, we model 12
initial members and their relationship as a network. In k-truss
computation, the weak friendships, i.e., the edges involving
in fewer than k − 2 triangles, are removed. The 4-truss of
the network contains u4, u5,...,u8. Note that the deletion of
edges reduces triangles which may incur the deletion of other
edges. Correspondingly, the 3-core of the network contains
u2, u4, u5,..., u8. To reinforce the network, we may persuade
(anchor) the members u1 and u3 to keep engaged through
additional incentives, such as salary bonus or rewards. Thus
the edges incident to u1 and u3 can exist in the k-truss as
long as involving in at least one triangle in the k-truss. As a
result, u2 will also remain engaged since the corresponding
edges now involve in enough triangles in the k-truss. That
is, by anchoring u1 and u3, the anchored 4-truss contains
u1, u2, ..., u8. Note that this anchored 4-truss has 8 vertices
which is the maximum one among any two anchored vertices.



Towards the k-core model, the maximum anchored 3-core with
two anchored vertices (here the anchors always exist in the
anchored k-core) has 10 vertices which contains u2, u4, u5, ...,
u12. The maximum anchored 4-truss and 3-core both contain
unique (unshared) vertices inside them, which demonstrates
that the anchored k-truss and anchored k-core models are
inherently different. The maximum anchored 4-truss is tighter
than the maximum anchored 3-core in the example.

Challenges. To the best of our knowledge, we are the first
to study the anchored k-truss problem to reinforce social
networks. We prove the problem is NP-hard when k ≥ 4.
Later in the paper, we will show that the study of anchored
k-truss problem is meaningless when k ≤ 3 since in this
case, anchoring any vertices will not bring any extra vertices
into the anchored k-truss. Thus, the anchored k-truss problem
is essentially NP-hard for each k value. Although computing
the k-truss is PTIME, all the possible combinations of the b
anchors make the problem NP-hard. To avoid enumerating all
possible anchor sets with size b, we adopt a greedy strategy
to find a best anchor in each iteration. As demonstrated in
our empirical study, a straightforward implementation of the
greedy algorithm for our problem is very time consuming, due
to the large number of candidate anchors. Since anchoring
a vertex in k-truss may also enlarge the k-truss, the initial
candidate anchors are all the vertices in the graph.

Bhawalkar, Kleinberg et al. [4] introduce the problem of
anchored k-core to prevent network unraveling. Zhang et
al. [30] propose an efficient algorithm to solve the problem.
Nevertheless, the anchored k-core model only considers the
perspective of user engagement and thus cannot solve our
anchored k-truss problem, as shown in the following two
aspects. (1) From the technical perspective, these two problems
are inherently different. The techniques for anchored k-core
problem [30] are based on vertex deletion order, while the
anchored k-truss problem is defined against edges and trian-
gles. Consequently, the pruning rules, early termination and
other techniques developed in [30] cannot be applied in the
anchored k-truss problem. (2) From the semantic perspective,
the model of k-truss can estimate the strength [19] of an edge
by counting the number of triangles; nevertheless, the model
of k-core treats each edge equally, which ignores the fact that
the edges in social communities possess unequal strength and
produce different influence [7], [9], [24].

Our Solution. A straightforward consideration is whether we
can enforce the vertex deletion order in a structure to facilitate
the anchored k-truss computation, i.e., order the vertices by the
time they become isolated or have insufficient degrees in the
k-truss computation. Unfortunately, it is useless because the
vertex deletion order and the inherent support relation among
vertices in k-truss computation are based on the edge deletion
order. Consequently, we design an auxiliary structure L based
on edges, named edge layers, which divides a small set of
edges by layers. Based on the well-designed structure, we
develop corresponding efficient techniques.

The existence of anchor vertices may retain more triangles
in the k-truss subgraph. Then some new vertices may survive

in the k-truss, which are named followers in this paper. The
number of followers is regarded as the gain of the anchoring
action. In our greedy method, we focus on finding the best
anchor in each iteration, i.e., the vertex with the largest number
of followers on current graph. We have an observation that
when considering only one anchor, all followers come from
the (k-1)-hull, i.e., the vertices in (k-1)-truss but not in k-truss.
We put the vertices and edges in the triangles, which contain
an edge in (k-1)-hull, into L and order the edges by layers.

Then, we only need to consider the vertices in L as the
candidate anchors, which significantly reduces the number of
candidate anchors for the computation of followers. Besides,
the follower computation can be restricted to a small part
in L according to our strict search rules, which significantly
reduces the search space. Furthermore, we also develop early
termination and candidate anchor pruning techniques based on
the edge layer structure to eliminate non-promising candidates.
All of these techniques form the final algorithm, named AKT,
which can efficiently identify the best anchors for the problem.

Contributions. Our principal contributions are the followings.

• We propose and investigate the anchored k-truss problem
which simultaneously considers user engagement and
tie strength in network structure to reinforce the social
networks. We prove the problem is NP-hard and non-
submodular when k ≥ 4.

• We introduce a novel edge layer structure L, which
divides a small set of edges by layers. The structure
also contains all the endpoints of the edges inside it.
Then only the vertices in L need to be considered as
candidate anchors, and we can efficiently find a best
anchor. The follower computation is also restricted on
L, which significantly reduces the search space.

• We develop an efficient algorithm, named AKT, based
on the well-organized structure L, such that AKT can
compute the followers for the candidate anchor in a layer-
by-layer paradigm. With the concept of triangle hold path,
we only need to explore a very small portion of the
edges in L. Together with early termination and pruning
techniques, we further reduce the number of anchor
and follower candidates, which significantly enhances
performance of the algorithm.

• Our comprehensive experiments on 10 real-life networks
demonstrate the model effectiveness and algorithm ef-
ficiency. For instance, AKT can further preserve 1184
vertices in k-truss by anchoring 20 vertices in the Orkut
network. Regarding the running time, our AKT algorithms
outperform the baselines by orders of magnitude.

II. PRELIMINARIES

In this section, we first give some necessary notations and
introduce the k-truss. Then, we formally define the anchored
k-truss problem and show its hardness.

A. Problem Definition

We consider an unweighted and undirected graph G =
(V,E), where V (resp. E) represents the set of vertices (resp.
edges) in G. We denote n = |V |, m = |E| and assume m > n.



TABLE I
SUMMARY OF NOTATIONS

Notation Definition
G an unweighted and undirected graph
u, v, x a vertex in the graph
e an edge in the graph
n, m the number of vertices and edges in G
A a set of anchor vertices
NB(u,G) the set of adjacent vertices of u in G
deg(u,G) the number of adjacent vertices of u in G
sup(e,G) the number of triangles each contains e in G
Gx; GA the graph G anchored by x; A
Ck(G); Tk(G) the k-core of G; the k-truss of G
Tk(GA) the anchored k-truss with A in G
Hk(G); H+

k (G) k-hull of G; k-hull+ of G
L the edge layers of G
Ls

0 the edge set of L in G (with s+ 1 layers)

Li; L
j
i the edges on i-th layer of L;

⋃
i≤k≤j Lk

l(e) the layer index of the edge e in L
F (x) (F (A)) the followers of an anchor x (A)
CF (x) the candidate followers of an anchor x
s+(e) support upper bound of e in Tk(Gx)
V (e,G) the vertex set where each vertex is incident

to e in G
V (S,G) the union set of V (e,G) for each e ∈ S
V�(e,G) the set of vertices where each vertex from a

containing-e-triangle in G, and each vertex
is not incident to e

V�(S,G) the union set of V�(e,G) for every e ∈ S
E(u,G) the edge set where each edge is incident to

u and is in G
E(S,G) the union set of E(u,G) for each u ∈ S

NB(u,G) is the set of adjacent vertices of u in G. Let S
denote a subgraph of G. We use deg(u, S), the degree of u
in S, to represent the number of adjacent vertices of u in S.
A triangle is a cycle of length 3 in the graph. A containing-e-
triangle is a triangle which contains e. We use sup(e, S), the
support of e in S, to represent the number of containing-e-
triangles in S. We say a vertex u is incident to an edge e, or
e is incident to u, if u is one of the endpoints of e. When the
context is clear, we omit the the second parameter in notations,
such as sup(e) for sup(e,G). The notations are summarized
in Table I.

Definition 1. k-core. Given a graph G, a subgraph S is
the k-core of G, denoted by Ck(G), if (i) S satisfies degree
constraint, i.e., deg(u, S) ≥ k for every u ∈ S; and (ii) S is
maximal, i.e., any subgraph S′ ⊃ S is not a k-core.

Besides k-core [20], the model of k-truss [6] is also a widely
studied subgraph model in social networks.

Definition 2. k-truss. Given a graph G, a subgraph S is the
k-truss of G, denoted by Tk(G), if (i) sup(e, S) ≥ k − 2 for
every edge e ∈ S; (ii) deg(u, S) ≥ k − 1 for every vertex
u ∈ S; (iii) S is maximal, i.e., any subgraph S′ ⊃ S is not a
k-truss; and (iv) S is non-trivial, i.e., no isolated vertex in S.

Note that we have Tk(G) ⊆ Ck−1(G) and Tk(G) ⊆
Tk−1(G). As shown in Algorithm 1, we firstly compute (k-
1)-core Ck−1(G) of a graph G, then recursively remove every
edge whose support is less than k− 2. We can get the k-truss

Algorithm 1: ComputeTruss(G, k)
Input : G : a social network, k : support constraint
Output : Tk(G)
while exists u ∈ G with deg(u,G) < k − 1 do1

G:= G \ {u ∪ E(u,G)};2

while exists an edge e ∈ G with sup(e,G) < k − 2 do3
G:= G \ {e};4

Delete isolated vertices in G;5
return G6

after removing isolated vertices. In real-life applications, the
value of k is determined by users based on their requirement
for cohesiveness, or learned according to ground-truth com-
munities. We define k-hull and k-hull+ as follows.

Definition 3. k-hull and k-hull+. Given a graph G, the k-hull
of G is denoted by Hk(G), and Hk(G) = Tk(G) \ Tk+1(G);
the k-hull+ of G is denoted by H+

k (G), and H+
k (G) =

Hk(G) ∪ V (Hk(G), G).

The only difference between k-hull and k-hull+ is that
k-hull+ further contains some vertices in k-truss which are
incident to an edge in k-hull and these vertices do not exist
in k-hull. The edges in k-hull and k-hull+ are the same.

In the problem for k-truss, once a vertex x in G is anchored,
it is always retained in k-truss. For every edge e which is
incident to x (e is called an anchor edge), e is retained in k-
truss (denoted by T ) if sup(e, T ) > 0. This definition avoids
keeping those relatively isolated vertices in anchored k-truss
such as the anchor x’s neighbors who are only adjacent to x.

Definition 4. anchored k-truss. Given a graph G and a vertex
set A ⊆ G, the anchored k-truss, denoted by Tk(GA), is the
corresponding k-truss of G with vertices in A anchored.

The computation of anchored k-truss is the same with the
computation of k-truss except that (1) for anchor edges, we
delete them if and only if their supports are less than one; and
(2) we delete every vertex whose degree is less than k− 1. In
addition to the vertices in Tk(G), more vertices (i.e., followers,
denoted by F(A,G)) might be retained in the Tk(GA) due to
the contagious nature of the k-truss computation. Formally,
we have F(A,G) = the vertices in Tk(GA) \ Tk(G).

Problem Statement. Given a graph G, a support constraint k
and a budget b, the anchored k-truss problem aims to find a
set A of b vertices in G such that the size of anchored k-truss,
Tk(GA), is maximized; that is, F(A,G) is maximized.

B. Problem Complexity
Theorem 1. Given a graph G, the anchored k-truss problem
is NP-hard when k ≥ 4.

Proof: When k ≤ 2, the k-truss of G is the graph G.
When k = 3, an edge exists in k-truss if its support is at least
1, thus no followers exist for anchoring any vertex according
to the definition of anchor in Section II-A. When k > 3, we
reduce the anchored k-truss problem to the maximum coverage
problem [15]; that is, finding at most b sets to cover the largest
number of elements, where b is a given budget. We consider
an arbitrary instance of maximum coverage problem with c



Fig. 2. Construction Example for NP-hardness Proof, k = 4

sets T1, T2, ..., Tc and d elements {e1, e2, ..., ed} = ∪1≤i≤cTi.
Then we construct a corresponding instance of the anchored
k-truss problem in a graph G as follows.

There are two sets of vertices in G, denoted by ∪1≤i≤cMi

(M in short) and ∪1≤j≤dNj (N in short). Each subset Mi(1 ≤
i ≤ c) contains k vertices, i.e., M = {vi,p | 1 ≤ p ≤ k},
and forms a k-clique, i.e, every vertex pair has an edge. Each
subset Nj(1 ≤ j ≤ d) contains k + 4 vertices, i.e., Nj =
{uj,p | 1 ≤ p ≤ k+4}. Particularly, the vertex set {uj,p | 1 ≤
p ≤ k} forms a lack-one-edge clique, i.e., there is an edge
between each pair of vertices in the set, except for vertices uj,2

and uj,k. Besides, the vertex set {uj,p | 2 ≤ p ≤ k−1 or k+
1 ≤ p ≤ k+2} and {uj,p | 3 ≤ p ≤ k or k+3 ≤ p ≤ k+4}
form a k-clique, respectively. For each set Ti(1 ≤ i ≤ c) and
each element ej(1 ≤ j ≤ d), if ej ∈ Ti, we add 1 edge from
vi,1 to uj,1, uj,2 and uj,k, respectively.

With the construction, we ensure that for any i and j (1 ≤
i ≤ c, 1 ≤ j ≤ d) (i) there is no edge between vi,1 and
{uj,p | 3 ≤ p ≤ k − 1 or k + 1 ≤ p ≤ k + 4}, thus the
supports of e(vi,1, uj,1), e(vi,1, uj,2) and e(vi,1, uj,k) are 2, 1
and 1, respectively; (ii) there is no edge between uj,2 and uj,k,
thus the support of e(uj,1, uj,2) in N is k − 3 because there
are only k − 3 common neighbors {uj,p | 3 ≤ p ≤ k − 1}.
Similarly, the support of e(uj,1, uj,k) in N is k − 3 for the
same common neighbors with e(uj,1, uj,2); (iii) for each edge
e(uj,1, uj,q)(3 ≤ q ≤ k−1), its support in G is k−2 because
there are only k − 2 common neighbors {uj,p | 2 ≤ p <
q or q < p ≤ k}; (iv) all the supports of other edges are at
least k − 2 because they belong to at least 1 k-clique.

By doing this, we ensure that (i) the k-truss of G consists
of ∪1≤i≤cMi, {uj,p | 2 ≤ p ≤ k + 4 and 1 ≤ j ≤ d}
and corresponding edges; (ii) if ej ∈ Ti and vi,1 is anchored,
we have and only have uj,1 as its follower in Tk(GA); (iii)
anchoring a vertex in G \ {vi,1 | 1 ≤ i ≤ c} cannot have
any followers. Consequently, the optimal solution of anchored
k-truss problem corresponds to optimal solution of the maxi-
mum coverage problem which is NP-hard. Consequently, the
anchored k-truss problem is NP-hard for k ≥ 4.

Theorem 2. Let f(A) = |F(A)|. We have f is monotone but
not submodular when k ≥ 4.

(a) k = 4 (b) k = 5

Fig. 3. Examples for Non-submodular

Proof: When k ≤ 3, no followers (besides the anchors)
exist for anchoring any vertex in G. When k ≥ 4, suppose
there is a set A′ ⊇ A. For every vertex u in F(A), u will
still exist in the anchored k-truss Tk(G

′
A), because anchoring

more vertices in A′ \A cannot decrease the supports of E(u)
and the degree of u. Thus f(A′) ≥ f(A) and f is monotone.
For two arbitrary anchor sets A and B, if f is submodular, it
must hold that f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B). We
show that the inequality does not hold using counterexamples.
As Figure 3 shows, we firstly construct a graph G consisting
of two vertices v1, v2 and the induced subgraph of N1 in the
proof of Theorem 1, here N1 = {ui | 1 ≤ i ≤ k + 4}. After
adding edges from v1 to u1 and u2, and edges from v2 to u1

and uk, the construction of G is completed. Suppose A = {v1}
and B = {v2}, we have F(A ∪ B) = {u1}, F(A ∩ B) =
F(A) = F(B) = ∅, so the inequation does not hold and thus
f is not submodular.

Note that there is no need to discuss the problem when
k ≤ 3 since no followers (besides the anchors themselves)
can be produced.

III. SOLUTION

Due to the non-submodular property on the anchored k-truss
problem, it is unpromising to estimate or predict the anchoring
result of multiple anchors. In a basic exact solution, we have to
exhaustively compute the anchored k-truss on every possible
set A with size b. The time complexity of O(

(
n
b

)
m3/2) is

cost-prohibitive. Besides, considering the NP-hardness of the
problem, we adopt a greedy heuristic which iteratively finds
the best anchor, i.e., the vertex with the largest number of
followers in each iteration. Although the greedy algorithm
does not have submodular property, our experiments show that
the resulting numbers of followers are similar with the optimal
result on available small settings, and are much larger than the
results of other methods under all the settings.

As shown in Algorithm 2, we compute the number of
followers (Line 4) for each vertex in the graph (Line 3). Note
that a vertex u in k-truss is also a candidate anchor because
anchoring u may have followers. Specifically, some non-k-
truss edges of u may be anchored and support other vertices
to survive in the anchored k-truss. The time complexity is
O(bn × m3/2), where n is the number of candidate anchors
in each iteration and m is the number of edges in follower
computation, i.e., k-truss computation. However, this greedy
algorithm is still unscalable on large datasets, which motivates
us to significantly improve the following aspects: (1) the
number of candidate anchors in each iteration (Line 3); and
(2) the computation cost of finding followers (Line 4).



Algorithm 2: GreedyAKT(G, k, b)
Input : G : a social network, k : support constraint,

b : number of anchor vertices
Output : A : the set of anchor vertices
A := ∅; i := 0;1
while i < b do2

for each u ∈ G \A do3
Compute F (A ∪ u, G);4

u∗ ← the best anchor vertex in this iteration;5
A := A ∪ u∗; i := i+ 1;6

return A7

To address the above issues, we firstly propose a novel
structure called edge layers. For ease of understanding, we
discuss the problem on the first iteration of the greedy algo-
rithm (i.e., A = ∅ and i = 0) in the rest of the paper. The
following techniques can be directly applied to any iteration
of the greedy algorithm when we substitute the k-truss with
the anchored k-truss (Section III-E).

A. The Edge Layers

The deletion order of non-k-truss edges in Algorithm 1
is not unique because there may exist multiple edges with
insufficient supports to delete. We say a deletion order of edges
in k-truss computation is valid if (1) every edge in the order
violates the support constraint at the time it is deleted; and (2)
all the remaining edges satisfy the support constraint when the
computation terminates. Theorem 3 shows any valid order can
leads to the same k-truss.

Theorem 3. Algorithm 1 always returns the same Tk(G) w.r.t
any valid deletion order of non-k-truss edges.

Proof: Suppose there are two different valid deletion
orders, O1 and O2, leading to two different k-trusses T1

and T2, respectively. Let M = T1 \ T2 and M �= ∅. This
implies that all edges in M are discarded in the access order
O2. Suppose e1 is the first removed edge in M , we have
sup(e1,M∪T2) ≥ k−2 because sup(e1, T1) ≥ k−2 and none
of the edges in T2 or M are removed when e1 is accessed.
This implies O2 is not a valid order. Consequently, the theorem
holds.

Theorem 3 motivates us that we can utilize the inner
property in a specific order to compute the anchored k-truss.
An edge layer structure L mainly based on k-hull+ is proposed
to facilitate computation. L consists of s+ 1 layers of edges,
{L0, L1, . . ., Ls} (i.e., Ls

0) where s is the largest layer number,
and corresponding vertices which is incident to at least one
edge in Ls

0. The pseudo-code is shown in Algorithm 3. We
first compute Tk−1(G) at Line 1, then start to peel the (k-1)-
hull by removing all edges not satisfying the support constraint
at the same time (Lines 2 and 6), which are kept in the same
layer (Line 4). When the peeling process terminates, we have
i = s, the edge set of L is Ls

0 which is same to the edge set
of Hk−1(G), and N = Tk(G) after removing isolated vertices
in N . Then we put the edges (excluding the ones in Tk−1(G))
between common neighbors of endpoints and the endpoints,
for every edge in Hk−1(G), to L0 as the layer 0 (Line 7).

Algorithm 3: ProduceLayers(G, k)
Input : G : a social network, k : support constraint
Output : the edge set of edge layers, i.e., Ls

0

N := Tk−1(G); i := 0;1
P := {e | sup(e,N) < k − 2 & e ∈ N};2
while P �= ∅ do3

i := i+ 1; Li := P ;4
N := N \ P ;5
P := {e | sup(e,N) < k − 2 & e ∈ N};6

L0 := {(u, v) | u ∈ V�(e,G) & v ∈ V (e,G) & (u, v) /∈7
Tk−1(G), for each e ∈ Ls

1};
return Li

08

The time complexity of Algorithm 3 is O(m3/2). Although
we need to update the edge layers in each iteration of the
greedy algorithm, the cost is dominated by the large number of
follower computations. We use Lj

i (i < j) to denote the edges
between layer i and layer j (inclusive), and l(e) to denote the
layer index of an edge e in L.

Definition 5. Edge Layers: L. Given a graph G and a
support constraint k, the edge set of L is Ls

0, the output of
Algorithm 3; that is, Ls

0 = {e | e ∈ Hk−1(G)} ∪ {(u, v) | u ∈
V�(e,G) & v ∈ V (e,G) & (u, v) /∈ Tk−1(G), for each e ∈
Ls
1}. The full set L further contains the corresponding vertices,

i.e., L = Ls
0 ∪ H+

k−1(G) ∪ {V�(Hk−1(G), G) \Tk−1(G)}.

Example 2. In Figure 4 with k = 4, we have 3-truss T3

which is the whole graph except vertex v12 and edge (v11, v12),
and the 4-truss T4 induced by {v5, v6, v7, v8, v9}. According
to Algorithm 3, we firstly label 1 to the edges in T3 whose
supports are less than k − 2. After removing these edges,
new edges with insufficient supports are produced and labeled.
Recursively, we label every edge in L as the figure shows. Note
that there is no L0 edges when k = 4, and L also contains
the endpoints of each edge in Ls

0.

B. Candidate Anchors and Followers

The following theorem shows that the follower computation
can be done on a small set, because only the vertices in
Hk−1(G) can become followers of an anchor.

Theorem 4. Given a graph G and its (k-1)-hull Hk−1(G),
if a vertex x is anchored, all of its followers except x come
from (k-1)-hull; that is, u ∈ F (x,G) implies u ∈ Hk−1(G)
or u = x.

Proof: Let E∗ be all the edges in G\Tk−1(G), We firstly
prove that the edges in E∗ \ E(x,G) will still be deleted in
computing Tk(Gx). Let O be the deletion order of edges in
computing Tk−1(G), the support of each edge is less than
k − 3 when it is to be deleted in the order of O. Then in the
computation of Tk(Gx), we still follow the order O. Because
anchoring x can only increase the support of an edge in E∗ \
E(x,G) by at most 1, the support of every edge in O is less
than k−2 when it is visited (i.e., deleted). Consequently, all the
edges in E∗ \E(x,G) cannot exist in Tk(Gx). After deleting
E∗\E(x,G), all the vertices in G\{Tk−1(G)∪x∪NB(x,G)}
are also deleted since they are isolated. For every vertex u in
(G \ Tk−1(G)) ∩NB(x,G), the anchor edge e(u, x) will be
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deleted, because all of its adjacent non-anchor edges have been
deleted and thus the support of e(u, x) is 0. So the vertices in
(G \ Tk−1(G)) ∩NB(x,G) are deleted, which means all the
vertices in G \ {Tk−1(G) ∪ x} are deleted. Since a vertex in
Tk(G) cannot be a follower, all the followers (except x itself)
of x are from Tk−1(G) \ Tk(G), i.e., Hk−1(G).

We can also significantly reduce candidate anchors, because
an anchor outside of L is unpromising.

Theorem 5. Given a graph G, if an anchored vertex x has at
least one follower besides x, x is from L; that is, |F (x,G) \
{x}| > 0 implies that x ∈ L.

Proof: According to the proof of Theorem 4, we can only
save some Hk−1(G)∪E(x,G) edges in Tk(Gx). Suppose the
vertex x has at least one follower besides itself, x should
involve in at least one triangle which contains an edge in
Hk−1(G), i.e., x ∈ V�(Hk−1(G), G) or x ∈ H+

k−1(G);
otherwise, we cannot save any edges outside Tk(G) into
Tk(Gx). If the anchor x ∈ Tk(G), there is at least one
edge in E(x,Hk−1(G)), which implies x ∈ H+

k−1(G). So we

have x ∈ H+
k−1(G) ∪ {V�(Hk−1(G), G) \ Tk(G)}. Because

Tk−1(G) \ Tk(G) ⊆ H+
k−1(G), we have x ∈ H+

k−1(G) ∪
{V�(Hk−1(G), G) \ Tk−1(G)}, i.e., x ∈ L.

Example 3. In Figure 4 with k = 4, we label every edge e in
Ls
0 with its layer index l(e). Note that L also contains all the

endpoints of the labeled edges. According to Theorem 4, only
vertices in T3 \ T4 = {v1, v2, v3, v4, v10, v11} and the anchor
itself can be followers of an anchor. By Theorem 5, if a vertex
x has at least one follower besides x, x comes from L.

C. Efficiently Finding Candidate Followers
In this section, we define the candidate follower set for

anchoring a vertex based on the edge layers. We prove that the
candidate follower set is adequate for computing the followers
of an anchor. We first introduce the concept of a triangle hold
path, and show how to find the candidate followers of an
anchor x, denoted by CF (x).

If the vertex x is anchored, every edge in E(x,L) imme-
diately becomes a candidate edge for Tk(GA). Note that an
anchor edge e ∈ E(x,G) \ E(x,L) cannot exist in Tk(Gx).

Definition 6. Strong Triangle Hold. We say there is a strong
triangle hold from an edge e1 to another edge e2 if there
is a triangle {e1, e2, e3} in L such that l(e1) < l(e2) and
l(e1) < l(e3).

Note that l(e) is the layer index of the edge e ∈ L.
The triangle hold is called strong because the edge e2 can
immediately be a candidate edge in Tk(Gx), once e1 became
a candidate edge in Tk(Gx).

Definition 7. Weak Triangle Hold. We say there is a weak
triangle hold from an edge e1 to another edge e2 if there
is a triangle {e1, e2, e3} in L such that l(e1) < l(e2) and
l(e1) = l(e3).

The triangle hold is called weak because the edge e2
becomes a candidate edge in Tk(Gx) if and only if e1 and
e3 both became candidate edges in Tk(Gx). In above two
definitions, we also say e1 triangle holds e2 or e2 is triangle
held by e1, if e2 can become a candidate edge by e1.

Definition 8. Triangle Hold Path. We say there is a tri-
angle hold path from a given anchor vertex x to a vertex
u ∈ Hk−1(G) (i.e., x� u) if there is an edge ex ∈ E(x,L),
an edge eu ∈ E(u,L) and an edge set E such that each
edge in E ∪ {ex, eu} is triangle held by at least one edge in
E ∪ {ex, eu}.

Theorem 6. If a vertex u ∈ Hk−1(G) is a follower of the
anchor x, there is a triangle hold path x� u if x �= u.

Proof: Let Ex denote the anchor edges of x in L, i.e.,
Ex = E(x,L). We can use Line 1 to 6 of Algorithm 3 to
compute the anchored k-truss Tk(Gx) as long as (i) N :=
L∪Tk−1(G) at line 1; (ii) for each anchor edge ex ∈ Ex, we
only push ex into P when sup(ex, N) < 1 at Line 2 and 6; and
(iii) all isolated vertices are deleted in N . Finally, Tk(Gx) is
exactly N . In the computation of Tk(G) (without any anchors),
all edges in Ls

0 are removed in Algorithm 3, while some
of the edges may survive the computation of Tk(Gx) (with
anchoring x). The followers of x are the vertices which are
incident to a survived edge and do not exist in Tk(G). Let
i denote the minimum layer index of an edge in Ex (i.e,
i = min{l(e) | e ∈ Ex}). In the computation of Tk(Gx),
we use the same edge accessing order in computing Tk(G).
For an edge e1 ∈ Li−1

0 , when e1 is accessed, the support of e1
is less than k−2 because the support at current time is exactly
the same as e1 is accessed in the computation of Tk(G). So all
edges in Li−1

0 are still deleted in computing Tk(Gx). Then,
when edges in Li−1

0 have been deleted and no edges in Li

have been deleted, for every edge e2 ∈ Li \Ex, the support of
e2 is less than k−2 because the support at current time is the
same as in the computation of Tk(G). Consequently, all edges
in Li

1 \Ex cannot be candidate edges and are deleted. At this
point, only edges which are triangle held by an edge in Ex

become candidate edges and clearly they have triangle hold
paths. For a candidate edge e3, only its triangle held edges in
Ls
j+1 (j = l(e3)) become candidate edges because e3 cannot

save other edges in computing Tk(Gx), i.e., the supports of
other edges cannot increase with the existence of e3 when the
edges are accessed. Consequently, the candidate spread from x
is strictly a top-down search through Ex’s triangle held edges
and candidate edges’ triangle held edges, which constitute
triangle hold paths. For an edge e4 without any triangle hold
paths, when non-candidate edges in Lp−1

0 (p = l(e4)) have



been deleted and no edge in Lp has been deleted, the support
of e4 is less than k−2 because it is same as e4 is accessed in
computing Tk(G). A follower of x must be incident to at least
one candidate edge in computing Tk(Gx). So there is always
a triangle hold path from x to u if x �= u.

The candidate follower set CF (x) consists of vertices where
each vertex u has at least one triangle hold path from x and
u ∈ Hk−1(G). According to the proof of Theorem 6, we can
generate CF (x) by finding candidate edges (these edges may
survive in Tk(Gx)) which is to iteratively activate the triangle
held edges by candidate edges and anchor edges.

Example 4. In Figure 4 with k = 4, we label every edge e
in Ls

0 with its layer index l(e). If the vertex v2 is anchored,
all the edges in E(v2) become candidate edges. There is a
strong triangle hold from (v2, v1) to (v1, v3), so the latter
becomes a candidate edge. For the edge (v3, v6), there is a
triangle �v2,v3,v6 with two weak triangle holds. Since (v2, v3)
and (v2, v6) are already candidate edges, (v3, v6) becomes a
candidate edge. No other edges can become candidate edges
and we only need to compute the anchored k-truss on the
candidate edges with the original k-truss.

D. Finding Followers with Early Termination

To find the true followers of an anchor x, we need to
conduct k-truss computation on the subgraph induced by
CF (x)∪Tk(G)∪{x}. To further speed up the follower finding
procedure, we introduce an early termination technique in
generating CF (x) to directly retrieve the true followers.

Layer-by-Layer Search. In the search of finding candidate
edges, each edge has three status. We say an edge in L
is unexplored if it has not been checked with the support
constraint in our layer-by-layer traversal. An edge in L is
survived if it has survived the support check, otherwise it
becomes discarded. For a given anchor, a discarded edge will
never be involved in the following computation, and a survived
edge may become discarded later due to the deletion cascade.
Note that some edges are implicitly marked as discarded since
they are not involved in any triangle hold paths from x, and
will never be explored.

For an edge e ∈ L, the triangles containing e can be
divided into six disjoint sets �s,s, �s,u, �s,t, �u,u, �u,t,
�t,t where we use subscripts s, u and t to represent that
an edge is survived, unexplored and in Tk(G), respectively.
For example, �s,u represents the triangle set where each
containing a survived edge, an unexplored edge and e. We use
s+(e) = |�s,s| + |�s,u| + |�s,t| + |�u,u| + |�u,t| + |�t,t|
to denote the upper bound of sup(e, Tk(Gx)). The following
theorem indicates that we can safely exclude a candidate
edge e if its support upper bound is insufficient. The removal
of an edge may invoke the deletion of other edges, where
details are described in Algorithm 4. When the shrink function
terminates, all of the edge supports and edges affected by the
removal of e will be correctly updated.

Theorem 7. For an edge e ∈ L, e cannot exist in Tk(Gx) if
one of the following conditions is satisfied: (i) e ∈ E(x) and
s+(e) < 1; (ii) e /∈ E(x) and s+(e) < k − 2.

Proof: Since the edges in G \ {L ∪ Tk(G)} cannot exist
in Tk(Gx), we only need to consider triangles in L∪Tk(G) to
compute the support upper bound of the edge e. Since discard-
ed edges cannot provide triangle hold to any edge, the six dis-
joint triangle sets are adequate for computing sup(e, Tk(Gx)).
So s+(e) is a correct upper bound of sup(e, Tk(Gx)).

Example 5. In Figure 4 with k = 4, if the vertex v2 is
anchored, all the edges in E(v2) become candidate edges and
is marked unexplored. Without the support check, (v1, v3) can
become a candidate edge. However, according to Theorem 7,
(v1, v3) cannot become a candidate edge and is marked
discarded because s+((v1, v3)) = 1 < 2. The same holds for
(v3, v6). Note that some edges are implicitly marked discarded
such as (v1, v4). Thus no edges outside Tk(G) can survive in
Tk(Gv2).

Finding Followers. Algorithm 5 lists the pseudo-code of the
follower computation for a chosen anchor x. A min heap H
is used to keep the candidate edges, and the key of an edge
e is l(e) with ties broken by the edges’ IDs. In this way, we
explore the candidate edges in a layer-by-layer fashion and it
is easy to check whether an edge e has been explored based on
its ID and layer index l(e). For each popped edge e, Line 6
computes its support upper bound s+(u). If e survives the
support check, e will be set to survived (Line 8) and the edges
triangle held by e in lower layers (i.e., unexplored candidate
edges) will be pushed into H if they are not already in H
(Lines 9-10). Otherwise, e is set to discarded and the early
termination process is invoked (Lines 12-13). The deletion
may be cascaded and some survived edges may be set to
discarded during the process. When the algorithm terminates,
the vertices which are incident to at least one survived edge
are the followers of x. The time complexity of the algorithm
is O(|�|) because each triangle is accessed at most six times:
to push candidate edges into H , compute upper bounds and
compute the cascades of the deletion.

Algorithm Correctness. We show the deletion of the edges
in Algorithm 5 has a valid order O for the computation of
Tk(Gx). An edge e may be implicitly deleted when e never
becomes a candidate edge, i.e., (1) no triangle hold paths
(without early termination) exist for e; or (2) some edges
on e’s triangle hold paths (without early termination) are
discarded, thus no triangle hold paths exist when applying
early termination. According to Theorem 6, we can safely
discard such edge e. An edge e may also be explicitly deleted
in O if (3) u is set discarded at Line 12 because it fails
the support check when it is popped; or (4) s+(u) becomes
insufficient due to the deletions of the other edges (Line 6 of
Algorithm 4). Because s+(u) is correctly computed (Line 6)
and maintained (Algorithm 4), e does not satisfy the support
constraint when e is deleted in cases (3) and (4). Let M
denote the remaining edges when Algorithm 5 terminates.
As all of the edge in L have been explored explicitly or
implicitly, we have s+(u) = sup(e,M ∪ Tk(G)) ≥ k − 2,
for every vertex e ∈ M . Consequently, none of the edges in
M ∪Tk(G) can be discarded. As such, O is a valid order and
Tk(Gx) = V (M) ∪M ∪ Tk(G).



Algorithm 4: ShrinkEdge(e)
Input : e : the edge for support check
for each survived edge e0 which forms a triangle with e1
and a non-discarded edge do

s+(e0) := s+(e0)− 1;2
T ← v If s+(e0) < 1 and e0 ∈ E(x);3
T ← v If s+(e0) < k − 2 and e0 /∈ E(x);4

for each e1 ∈ T do5
e1 is set discarded;6
ShrinkEdge(e1);7

Algorithm 5: FindFollowers(x, L)
Input : x : the anchor; L : edge layers
Output : F : the followers of x
H := ∅; F := ∅ //H is a min heap, key is layer index;1
for each e ∈ E(x,L) do2

H.push(e) ;3

while H �= ∅ do4
e0 ← H.pop();5
Compute s+(e0);6
if s+(e0) ≥ k − 2 or (s+(e0) ≥ 1 and e ∈ E(x,L)) then7

e0 is set survived;8
for each e1 triangle held by e0 and e1 /∈ H do9

H.push(e1);10

else11
e0 is set discarded ;12
ShrinkEdge(e0);13

for each survived edge e do14
F := F ∪ V (e) ;15

return F \ Tk(G)16

E. The AKT Algorithm

In the procedure of finding the best anchor, we do not need
to compute the followers of a vertex u if u is found to be
a follower of another vertex x, because the followers of u is
always less than the followers of x if u ∈ F(x). Suppose u ∈
F(x), u will be preserved in k-truss if x is anchored. For every
vertex v in F(u), v will be preserved if x is anchored, because
u will be preserved and anchoring x cannot decrease the edge
supports. So F(u) ⊆ F(x). Since x ∈ F(x) \ F(u), we have
F(u) ⊂ F(x). So all the followers produced during finding
the best anchor can be excluded from candidate anchors.

Algorithm 6 illustrates the details of AKT which finds the
best anchor for a graph G (i.e., b = 1). Particularly, we
firstly apply Algorithm 3 to compute the edge layers of G
(Line 1). Initially, the candidate anchor set T is set to L
according to Theorem 5. Then we sequentially access vertices
in T based on their degrees in Tk−1(G) in decreasing order,
and compute their followers by Algorithm 5. According to
the follower-based pruning, Line 6 excludes the followers of
current accessed vertex from T . We continuously maintain
the current best anchor with the largest number of followers
(denoted by λ) seen so far. We have the best anchor when the
algorithm terminates.

To handle general cases where b > 1, our AKT algorithm can
easily fit within the greedy algorithm (Replacing Lines 3-4 of
Algorithm 2) to find the best vertex in each iteration. The only

Algorithm 6: AKT(G, k)
Input : G : a social network, k : support constraint
Output : the best anchor vertex
Compute edge layers L (Algorithm 3);1
T ← L (Theorem 5); λ := 0;2
for each vertex x ∈ T with decreasing order of3
deg(x, Tk−1(G)) do
F(x)← FindFollowers(x, L) (Algorithm 5);4
if F(x) �= ∅ then5

T := T \ F(x);6

if |F(x)| > λ then7
λ := |F(x)|;8

return the best anchor9

difference is that we need to enforce that the support constraint
for each anchor edge in previous iterations to be only 1 and
L is computed from anchored (k-1)-truss. Note that in order
to avoid computing Tk−1(GA) (Line 1 of Algorithm 3) from
scratch in each iteration, we firstly maintain Ck−2(GA) since
it should be a supergraph of Tk−1(GA). Moreover, if the (k-
1)-truss consists of a set of disconnected subgraphs, we can
avoid the re-computation of the followers of a subgraph in the
next iteration unless there is a new anchor in this subgraph.
The time complexity of the algorithm remains O(bn×m3/2).
Nevertheless, our empirical study shows we can significantly
improve performance of the straightforward implementation
(Algorithm 2) by orders of magnitude, due to the much smaller
number of candidate anchors and the much more efficient
follower computation.

Algorithm Correctness. (1) For the anchored k-truss problem
with b = 1 on graph G, we get the correct result immediately
based on the correctness of proposed techniques. (2) Assume
the algorithm is correct when b = i, i ∈ N+ and returns
the anchor set A. (3) Consider the problem with b = i + 1,
now the k-truss of G is Tk(GA) since we have sup(e,GA)
satisfies support constraint for any e ∈ Tk(GA) and Tk(GA)
is maximal. Then the (k-1)-truss is updated correctly by
maintaining the Ck−2(GA). Thus, we get the updated edge
layers L correctly by Algorithm 3. Since all the techniques
are based on L, after running AKT on G with b = 1 again,
we get the correct result A∪ {x} for the case of b = i+1 on
G. Note that in the (k-1)-truss N of G, for every connected
subgraph S with S ⊂ N and x /∈ S, S remains the same after
anchoring x, thus, the previous result of anchoring any vertex
in S can be reused.

F. Directed Graphs
We show that AKT can be applied to solve the anchored

k-truss problem on directed graphs. Firstly, the truss on a
directed graph can be defined as either cycle truss or flow
truss [25]. For each model, the support of an edge in the
graph is the number of cycle triangles or flow triangles which
contain the edge. Then AKT can be directly applied on the
directed graph where the only difference is that the support
value is updated based on the dynamic of cycle triangles or
flow triangles. In other words, a directed graph is regarded
as an undirected graph where the triangles are defined as the
cycle triangles or flow triangles in the directed graph.



TABLE II
STATISTICS OF DATASETS

Dataset Nodes Edges davg kmax

Facebook 4,039 88,234 43.7 97
Brightkite 58,228 194,090 6.7 42
Gowalla 196,591 456,830 4.7 23
Amazon 334,863 925,872 5.5 7
Yelp 552,339 1,781,908 6.5 73
YouTube 1,134,890 2,987,624 5.3 19
DBLP 1,566,919 6,461,300 8.3 119
Pokec 1,632,803 8,320,605 10.2 20
LiveJournal 3,997,962 34,681,189 17.4 352
Orkut 3,072,441 117,185,083 76.3 78

IV. EXPERIMENTAL EVALUATION

This section evaluates the effectiveness and efficiency of all
techniques through comprehensive experiments.

A. Experimental Setting

Datasets. Ten real-life networks are deployed in our ex-
periments and we assume all vertices in each network are
initially engaged. The original data of Yelp is download-
ed from https://www.yelp.com.au/dataset challenge, DBLP is
from http://dblp.uni-trier.de/ and the others are from http:
//snap.stanford.edu/. In DBLP, we consider each author as a
vertex and there is an edge for a pair of authors if they have
at least one co-authored paper. In other datasets, there are
existing vertices and edges. Table II shows the statistics of the
10 datasets, listed in increasing order of their edge numbers.

Algorithms. To the best of our knowledge, no existing work
investigates the anchored k-truss problem. Towards the effec-
tiveness, we tested 7 algorithms (Rand, Rand+, Deg, Sup,
Exact, OLAK and AKT) to produce different b anchors to
show the number of followers, statistical results and case
studies. We also implement and evaluate the algorithms to
assess our techniques incrementally, from a naive algorithm
(Naive) through to the final advanced algorithm (AKT). One
baseline algorithm (BaselineM) based on truss maintenance
is also evaluated. Table III shows the summary for algorithms.

Parameters. We conduct experiments under different settings
by varying the support constraint k and the budget for the an-
chors b. According to the characteristics of different datasets,
the default values of k are 6 for Amazon, 40 for Orkut and 15
for other datasets, respectively. The default value of b is 20.

All programs are implemented in standard C++ and com-
piled with G++ in Linux. All experiments are performed
on Intel Xeon 2.3GHz CPU and Redhat Linux System. The
running time is set as INF if it exceeds 105 seconds.

B. Effectiveness of AKT

We conducted a series of experiments to evaluate the
number of followers and some statistical results. Case studies
are also depicted to show real-world examples.

Comparing Follower Numbers. Figure 5 compares the num-
ber of followers w.r.t 20 anchors identified by AKT with
that of two random approaches (Rand, Rand+), one degree
based approach (Deg) and one triangle number based approach
(Sup), with default k. We report the average number of

TABLE III
SUMMARY OF ALGORITHMS

Algorithm Description
Rand randomly chooses b anchors from G
Rand+ randomly chooses b anchors from L
Deg chooses the b vertices from L, with the largest

degrees in L, as the anchors
Sup chooses the b vertices from L, with the largest

vertex supports in L, as the anchors. The vertex
support of u in L is defined by the number of
containing-u-triangles in L

Exact identifies the optimal solution by exhaustively
searching all possible combinations of b anchors
by Algorithm 5

OLAK the algorithm in [30] to find b best anchors for the
anchored k-core problem

Naive computes a k-truss on G for each candidate anchor
u ∈ G to find the best anchor in each iteration of
Algorithm 2

BaselineT computes a k-truss on G for each candidate anchor
x in L (Theorem 5)

BaselineM applies the state-of-the-art truss maintenance algo-
rithm [34] to compute followers for each candidate
anchor in BaselineT

BLT+C computes a k-truss on {x}∪Tk−1(G) (Theorem 4)
for each candidate anchor x in BaselineT

AKT finds followers from CF (x) through layer-by-
layer search on L (Theorem 6 and 7) for each
candidate anchor x in BaselineT, i.e., arrives
at Algorithm 6

followers for 500 independent tests in two random methods.
The resulting numbers for other methods are always unique
because we choose the anchors with the largest degree in
Deg, with largest vertex support in Sup and find the best
anchors in AKT. In Figure 5(a), the numbers of followers
from Rand and Rand+ are always near 20, because there
are usually no followers (except the anchors) and the anchors
outside of k-truss are also regarded as followers. Rand+ does
not necessarily have more followers than Rand because the
chosen anchors by Rand+ are more likely from the k-truss and
not counted as followers. In Figure 5, Deg and Sup basically
outperform Rand and Rand+, but they are still significantly
outperformed by AKT. Sup is beaten by Rand+ in Pokec
because a vertex involved in large number of triangles does not
necessarily have a large number of followers. Deg may also
fail in some cases such as in LiveJournal. Figures 5(b)-
(e) show the numbers of followers achieved by AKT are
significantly larger than other algorithms when k and b vary.

We also compare the performance of AKT with Exact,
which identifies the optimal solution by exhaustively searching
two relatively small datasets. Figure 6 shows that the numbers
of followers from AKT are comparable with Exact. We can
see that Exact is cost-prohibitive and AKT is very efficient.

Comparing k-Core and k-Truss. In Figure 7, we report
the global clustering coefficient and modularity values on the
induced subgraphs of some representative vertices in each
DBLP dataset with different time stamp. In DBLP with Year
X, an author exists if he/she has one or more publications
before Year X, and each edge between two authors represents
there is one or more publications before Year X from the two
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Fig. 6. Greedy vs Exact

authors. To fairly compare the two models, we find a vertex set
consisting of 10% vertices in the graph which have the largest
core numbers for k-core model (resp. truss numbers for k-
truss model). These two set of vertices are the user groups with
high user engagement according to k-core and k-truss models,
respectively. The figures show both clustering coefficient and
modularity are significantly higher on the vertices from truss.
The margins become larger as time goes by, which indicates
k-truss becomes more effective on current social networks.

Comparing Anchoring Gain. In Figure 8, we report the
anchoring gain in the result of OLAK for the anchored k-core
problem and the result of the proposed AKT algorithm. For
a given budget b, we consider the increase percentage of the
original non-anchored subgraph as the engagement gain, i.e.,
the number of followers divided by the number of vertices
in the k-core or k-truss. Because the (k-1)-core is always a
supergraph of k-truss, the value of k in Figure 8 is the input
value for AKT, and the input for OLAK is k−1 correspondingly.
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Fig. 8. Engagement Gain of Anchoring

We can see the anchored k-truss can better enlarge the original
subgraph under the same anchoring budget, e.g., when b = 20,
the anchored 15-truss by AKT on Orkut has 1184 followers
while the anchored 14-core by OLAK only has 217 followers.
It shows our anchored k-truss model effectively increase the
volume of social communities with a limited anchoring budget.

Case Studies. Figure 9(a) depicts the anchored k-truss in the
result of AKT on Yelp with k = 10 and b = 1. When
the best anchor “Theresa” alone is anchored, there are 15
followers (including “Theresa”). It is interesting that only 7 of
them are neighbors of “Theresa”, and the others are supported
indirectly. We can see that the anchors and followers saved in
the anchored k-truss have strong connections to the original
k-truss, and among themselves, while they are excluded by the
network unraveling. Figure 9(b) shows the result of OLAK for
the anchored k-core problem on Yelp with k = 9 and b = 1.
“Shawn” is the best anchor returned by OLAK. We can see
the connection among followers is fairly weak, which means
the anchored k-core preserves some relatively unstable users
compared with the anchored k-truss model. The followers in
Figure 9(a) themselves form a cohesive sub-group which is
worthwhile and reasonable to be preserved by the anchor.
Besides, since the k-truss represents tighter social groups, the
k-truss and anchored k-truss present better effectiveness on
modeling social communities and the anchoring, respectively.

C. Efficiency of AKT

We conduct comprehensive experiments to evaluate the
efficiency of proposed techniques and algorithms.

Reducing Candidate Anchors. Figure 10 reports the sizes of
G, edge layers L and (k-1)-hull Hk−1(G) on two networks
Brightkite and DBLP. Recall that Naive needs to check
all vertices in G because anchoring vertices in Tk(G) can
also have followers, and the other algorithms (BaselineT,
BLT+C and AKT) only consider the vertices from L as
candidate anchors (Theorem 5). We also report the size of
Hk−1(G), which bounds the size of the candidate followers



(a) Anchored k-truss, k=10, b=1 (b) Anchored k-core, k=9, b=1

Fig. 9. Case Studies on Yelp
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Fig. 10. Reducing Candidate Anchors and Followers

by Theorem 4. As expected, the sizes of L and Hk−1(G) drop
with the growth of k. The candidate size reductions from G
to L and Hk−1(G) are significant for every k value, which
validates the effectiveness of Theorem 4 and 5.

Pruning Candidate Followers. Figure 11 demonstrates the
effectiveness of the pruning techniques which help us to
further eliminate non-promising candidate followers which
cannot exist in the anchored k-truss. Four algorithms are
evaluated by the running time on four networks with different
b or k. We report that each pruning technique significantly
reduces the running time, especially the triangle hold path
based layer-by-layer search in AKT (Theorem 6 and 7).

Effect of k and b. Figure 11 also studies the impact of k
and b on five algorithms. AKT significantly outperforms the
two baseline algorithms under all settings. We terminate the
algorithms when the running time exceeds 105 seconds. We
observe that the size of edge layers has a great impact on the
running time of AKT, which makes the margin between BLT+C
and AKT vary from about 5 times to 100 times. The OLAK al-
gorithm outperforms AKT due to the computation efficiency of
k-core. However, with the consideration of tie strength, the k-
truss and anchored k-truss model show superior effectiveness
on modeling social communities and their anchoring.

Different Datasets. Figure 12 reports the performance of
four algorithms on 10 networks. The datasets are ordered by
the number of edges. Not surprisingly, the performance of
BaselineT is poor and can only finish computation on 3
networks within 105 seconds. The running time is not strictly
increasing with the order of datasets because the truss number
distribution is quite different on all datasets. We can see that
although BaselineM outperforms BaselineT, it is still
significantly beaten by AKT. OLAK is faster than AKT by
utilizing the k-core model while ignores the tie strength in
modeling social communities and the anchoring action. The
margin between OLAK and AKT is similar to the margin
between k-core and k-truss computations. It further validates
the effectiveness of proposed techniques.

BaselineT BaselineM BLT+C AKT OLAK

10-2
10-1
100
101
102
103
104

1 5 10 15 20 25

Ti
m

e 
C

os
t (

se
c)

b

(a) Brightkite, k=15

100

101

102

103

104

INF

 15  20  25  30  35  40

Ti
m

e 
C

os
t (

se
c)

k

(b) DBLP, b=20

Fig. 11. Running Time with Different k and b

10-1
100
101
102
103
104
105

Facebook
Brightkite

Gowalla
Amazon

Yelp YouTube
DBLP

Pokec
LiveJournal

Orkut

Ti
m

e 
C

os
t (

se
c)

BaselineT BaselineM AKT OLAK

Fig. 12. Running Time on Different Datasets

V. RELATED WORK

Various cohesive subgraph models are proposed in the liter-
ature to accommodate different scenarios, such as clique [16],
k-plex [21], k-core [20] and k-truss [6], and so on. Among
these subgraph models, k-core and k-truss are the widely
studied models with polynomial computation time.

Seidman [20] proposes the k-core model which is a maximal
subgraph where each vertex has at least k neighbors in the
subgraph. The k-core has a wide spectrum of applications
such as social contagion [26], community detection [32],
event detection [18], network defence [31] and so on. The
degeneration property of k-core can be used to quantify
engagement dynamics in social networks [17]. Considering
only the user engagement, Bhawalkar et al. [4] propose the
problem of anchored k-core to prevent network unraveling.
Zhang et al. [30] present an efficient algorithm to solve the
anchored k-core problem by utilizing the vertex deletion order
in k-core computation. However, the techniques in [30] cannot
be applied to solve the anchored k-truss problem because the
k-truss computation is inherently based on edges and triangles.
Besides, k-core treats each edge equally and ignores the fact
that the social ties have different strength and influence.

Further considering the strength of ties, Cohen [6] proposes
the model of k-truss which is a maximal subgraph where
every edge exists in at least k − 2 triangles in the subgraph.
There are significant studies on the model of k-truss while
none of them utilizes k-truss to reinforce network structure.
Wang and Cheng [27] present the in-memory truss decom-
position algorithm with a time complexity to O(m3/2) and
study the I/O efficient truss decomposition. Huang et al. [14]
extend the model of k-truss to probabilistic graphs. Shao et
al. [23] study the k-truss detection problem on distributed
systems and propose an efficient parallel algorithm. Zhao and
Tung [33] use the k-truss to capture the cohesion in social
interactions and propose a visualization system based on k-
truss. Huang et al. [12] study the k-truss based community



model which further requires edge connectivity inside the
community. Recently, Akbas and Zhao [1] propose a truss-
equivalence based index to speed up the search of the truss
based community. Huang and Lakshmanan [13] study the
attributed k-truss community search where the largest attribute
relevance score is satisfied. For the fact that k-truss is an
enhanced version of (k-1)-core, the k-truss model not only
ensures the strong tie strength among users but also captures
users with high engagement inside the community.

Evaluating the activity of user engagement is crucial for
social networking sites to improve user stickiness and avoid
the collapse of network. Garcia et al. [8] study the decline
of Friendster, which was popular at early 21st century. Seki
and Nakamura [22] explain that the mechanism in the collapse
of Friendster by use of an individual-level model. Ugander et
al. [26] emphasize that the neighborhood structure hypothesis
has formed the underpinning of essentially all current social
contagion models. They find that the contagion is tightly
controlled by the number of friends in current subgraph, like
k-core or k-truss, rather than by the actual number of friends
in the graph. Tie strength, introduced by Granovetter [11],
is a fundamental social network characteristic and has been
well studied in sociology communities. Recently, many social
network researchers show that the strength of ties is a tenable
theory on social networks nowadays, such as Facebook and
Twitter [3], [10], [33]. Most existing methods for strong tie
detection are based on structural information, especially on
triangles, following the ideas from sociology [7], [9], [19],
[24]. Aral and Walker [2] show that high edge embeddedness
increases user influence in a large scale experiment.

VI. CONCLUSION

In this paper, we propose and investigate the problem of
anchored k-truss to reinforce social networks considering both
user engagement and tie strength. The problem aims to anchor
a set of vertices in a network such that the size of the resulting
k-truss is maximized. We prove the problem is NP-hard when
k ≥ 4. Then we develop an efficient greedy algorithm, named
AKT, based on the edge layer structure which divides a small
set of edges by layers. Extensive experiments on 10 real-
life networks show that we can efficiently find the tightly-
connected users whose participation is critical for reinforcing
networks. The advanced AKT algorithm always outperforms
two baseline algorithms by orders of magnitude.
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