
Efficient Computing of Radius-Bounded k-Cores

Kai Wang†, Xin Cao†, Xuemin Lin†, Wenjie Zhang†, Lu Qin‡

†University of New South Wales, ‡University of Technology Sydney
kai.wang@unsw.edu.au, xin.cao@unsw.edu.au, lxue@cse.unsw.edu.au, wenjie.zhang@unsw.edu.au, lu.qin@uts.edu.au

Abstract—Driven by real-life applications in geo-social net-
works, in this paper, we investigate the problem of computing the
radius-bounded k-cores (RB-k-cores) that aims to find cohesive
subgraphs satisfying both social and spatial constraints on large
geo-social networks. In particular, we use k-core to ensure
the social cohesiveness and we use a radius-bounded circle to
restrict the locations of users in a RB-k-core. We explore several
algorithmic paradigms to compute RB-k-cores, including a triple-
vertex-based paradigm, a binary-vertex-based paradigm, and a
paradigm utilizing the concept of rotating circles. The rotating-
circle-based paradigm is further enhanced with several pruning
techniques to achieve better efficiency. The experimental studies
conducted on both real and synthetic datasets demonstrate that
our proposed rotating-circle-based algorithms can compute all
RB-k-cores very efficiently. Moreover, it can also be used to
compute the minimum-circle-bounded k-core and significantly
outperforms the existing techniques for computing the minimum-
circle-bounded k-core.

I. INTRODUCTION

With the wide availability of wireless communication tech-
niques and GPS-equipped mobile devices (e.g., smart phones
and tablets), people now can easily access the internet. This
leads to the emergence of the geo-social networks, such
as Twitter and Foursquare, where the social networks are
combined with users’ geo-spatial information. Consequently,
retrieving subgraphs with high cohesiveness in geo-spatial
social networks has become a popular research topic in recent
years [1, 2, 3].

In this paper, we study the problem of efficiently computing
radius-bounded cohesive subgraphs in a geo-spatial social
network G (or geo-social network in short). That is, given
a vertex q in a geo-social network G and a radius r, find
all cohesive subgraphs g of G such that g contains q and all
vertices in g fall into a circle with the radius r. There are
many types of cohesive graphs in the literature [4, 5, 6]. While
our proposed framework works generally for various cohesive
subgraphs such as k-truss [5] and clique [6], in this paper we
present our work restricted to a specific cohesive subgraph k-
core [4] where each vertex has at least k neighbours.

Applications. The problem of computing radius-bounded k-
cores, namely RB-k-cores, can have many real real-life ap-
plications. Indeed, in applications such as Facebook, Twitter,
and Google+, personalized event recommendation is a very
important part. Specifically, Events-For-You is a valuable part
of Facebook, which can recommend events to users based on
their personal locations and social relationships. Nevertheless,
the current technology cannot provide a service of Events-
For-You based on users’ arbitrary requests. For example, the
Events-For-You based on the following request by Leo cannot
be accommodated by the current technology. In this example,
Leo wants to hold a party (an Events-For-You activity) to play

Adam

Leo

Paul

Roy

Ken

Taylor

Bob

Frank

John

Mark

Jim

Bill

Lee

2km

Figure 1: A geo-social network

board games (e.g., Monopoly, Uno, Risk, etc.) by gathering a
group of people who are not living far away (say, bounded by
a circle with radius r) and each of whom has many friends in
the group (say, at least k friends). Figure 1 shows such a geo-
social network where vertices represent users, edges represent
friendships, and locations represent the home locations of
users. If we set r = 3 and k = 3, there are two RB-k-cores
recommended to Leo as illustrated by the shadow area, i.e.,
{Leo, Ken, Jim, Adam} and {Leo, Bill, Frank, Bob, Lee}.
This is a typical example of computing RB-k-cores.

Moreover, as studied in [3, 7], people with close social
relationships tend to purchase in places that are also physi-
cally close. For this application, in a geo-social network, the
locations of users represent places. To boost sales figures,
advertisement messages can be sent to the RB-k-core of
customers. For instance, if we want to promote an item A, the
system can advertise A to the RB-k-core members (customers)
using the query point (customers) who purchased A.

Existing Studies. There exist several studies over community
retrieval in geo-social networks, but they are all different from
our RB-k-cores problem. In the literature, various models
including k-core [4], k-truss [5], and clique [6] have been
studied to retrieval cohesive subgraphs without considering
the spatial information of users. Thus, these models are not
applicable to RB-k-cores. For example, in Figure 1, Mark
will be added into the community formed by {Leo, Ken,
Adam, Jim} if we use the model k-core for k = 3 though
Mark is far away from the other users. On the other hand,
[8, 9] found a group of spatial objects without considering
the network information, and thus they also cannot solve our
problem RB-k-cores. In Figure 1, Roy will be added into
the community formed by {Leo, Ken, Jim, Adam} using
spatial information (bounded by a circle) only but the network
connections between Roy and the other people are very weak.

The most closely related works can be found in [1, 2, 3]

that consider both the social constraint (network structure) and
the spatial constraint in retrieving communities. In particular,
they all use k-core to ensure the social (graph) cohesiveness
of communities in a network. [1] studied the community
detection problem which uses pairwise similarity (distance)
between each pair of vertices to ensure the spatial cohesiveness
of communities while computing the maximum k-core or
all maximal k-cores. Our experimental results in Section VI
demonstrated that our problem is inherently different from
the problem in [1]; that is, the generated results are very
different. Moreover, our problem RB-k-cores is PTIME, while
the problem in [1] is NP-hard. Zhu et al. in [2] studied the
problem of finding the maximum k-core in a given rectangle
containing a query vertex. [2] also studied the problem of
finding the k-core with exact (or no less than) c vertices such
that the longest distance from these vertices to q is minimized.
These problems in [2] are also different from ours. Fang et al.
in [3] studied the problem of computing the k-core containing
the query vertex covered by the smallest circle. While the
problem in [3] is different from our problem RB-k-cores, as
a byproduct our techniques can be applied to the problem in
[3] and can achieve a speed-up around twice.

Challenges. The main challenge of efficiently computing RB-
k-cores is twofold.

1) The location of the radius-bounded circle of a RB-
k-core is unknown. Therefore, it is a challenge to
efficiently enumerate such circles.

2) During the process of finding RB-k-cores, it is time-
consuming to construct and verify the candidate sub-
graphs individually. Therefore, it is important to reuse
intermediate computation results and explore possible
cost sharing which is challenging.

Contributions. We explore three paradigms to compute the
RB-k-cores in this paper. The first paradigm is triple-vertex-
based algorithm (TriV) inspired by [3]. It proposes to firstly
generate all candidate circles containing q, secondly check the
corresponding radius to verify the given radius bound, and then
compute the maximum k-core for the vertices in each candi-
date circle. To avoid generating too many candidate circles or
missing results, TriV generates two types of candidate circles:
1) determined by any three vertices in G (see O2 in Figure
2(a)), and 2) determined by the two vertices u1 and u2 (see
O1 in Figure 2(a)); that is, using the distance of u1 and u2
as the diameter of O1 and the centroid of the line u1 and
u2 as the center of O1. Note that, it is necessary to consider
the circles determined by two vertices, e.g., in Figure 2(a), if
we set q = u1, r = r1, and k = 2, the RB-k-core contains
{u1, u2, u3} will be missed if only considering the circle (O2)
determined by three vertices because of r2 > r1.

In TriV, we need to generate O(n3) candidate circles. To
reduce the number of candidate circles, we propose the binary-
vertex-based algorithm (BinV). In BinV, we effectively use the
given parameter r and only generate the circles with r as the
radius such that the circle arc passes a pair of vertices in G
(for every pair). Generally, for each pair of vertices, we have
at most two such circles (see O1 and O2 in Figure 2(b)). This
guarantees to generate O(n2) candidate circles and reduces
O(n3) candidate circles in TriV to O(n2).

We can observe that there are many reusable intermediate
computation results in the process of finding RB-k-cores. The

(a) Circles in TriV

(b) Circles in BinV

(c) RotC Algorithm

O2
O1

r1

r2

c1

c2

O2O1

…
…

…

n

Fix one vertex
u1

u2

u3
1

Figure 2: Illustrating proposed algorithms

third paradigm is to share computation costs among the com-
putation of RB-k-cores. To effectively share the computation,
we design the rotating-circle-based algorithm (RotC) so that
the computation in BinV can be shared among the “adjacent”
circles. Specifically, as shown in Figure 2(c), we fix a vertex
u for each vertex in G then check the remaining vertices v
such that for each pair u and v, we use BinV to generate the
two circles with radius r (maybe degenerate to one if r is half
of the distance between u and v). Then, we will share the
computation among the adjacent circles.

Our principal contributions are summarized as follows.

• We proposed the model of RB-k-core and developed a
novel paradigm to compute RB-k-cores with the aim
to share computation.

• We proposed several new optimization techniques to
speed up the computation.

• Extending our algorithms to the problem in [3] can
achieve a speed-up around twice.

• We conducted comprehensive experiments on real
geo-social networks to evaluate our algorithms.

Organization. The rest of the paper is organized as follows.
Section II presents the preliminaries. Section III and section IV
introduce the solutions based on TriV and BinV, respectively.
Techniques based on rotating circles are presented in Sec-
tion V. Section VI reports extensive experiments. Section VII
reviews the related work. Section VIII concludes the paper.

II. PROBLEM DEFINITION

In this section, we formally introduce the fundamental con-
cepts and definitions. Mathematical notations used throughout
this paper are summarized in Table I.

Notation Definition
G a geo-social graph

degG(v) the degree of vertex v in G
u, v vertices in the geo-social graph
d(u, v) the Euclidean distance between u and v
O(c, γ) a circle centered at c with radius γ
g(c, α) a square centered at c with side length α
X,S a set of vertices
G(S) an induced subgraph of G formed from a set of vertices S

Wγ(u, v) a set of binary-vertex-bounded circles with radius γ
R the result RB-k-core set

Table I: The summary of notations

Our problem is defined over a geo-social graph G(V,E),
where V (G) denotes the vertex set, and E(G) denotes the

edge set. The vertices represent the social network users and
the edges represent their relationships in geo-social networks.
Each vertex v ∈ V (G) has a location (v.x, v.y) which
denotes the position of v along x- and y-axis in a two-
dimensional space and the vertices are static in our problem.
The Euclidean distance between u and v is denoted as d(u, v).
We denote the set of neighbors of each vertex v in G by
NG(v) = {u ∈ V (G) | (v, u) ∈ E(G)} and the degree of
vertex v by degG(v) = |NG(v)|. We denote a circle centered at
c with radius γ as O(c, γ). Given a set of vertices S ⊆ V (G),
we use G(S) to denote an induced subgraph of G formed from
S such that G(S) = (S, {(u, v) ∈ E(G) | u, v ∈ S}).

Before formally defining the problem, we first introduce
the following critical concepts to describe the social constraint
and the spatial constraint.

Definition 1 (k-Core [4]). Given a graph G and a positive
integer k, the k-core of graph G denoted as Hk is the maximal
subgraph of G, where degHk(v) ≥ k, for each v ∈ V (Hk).

Based on the k-core concept, we ensure the social con-
straint by restricting the minimal degree of vertices in a RB-
k-core. Note that our proposed solutions can be easily adapted
to other cohesive structure concepts (e.g., k-truss [5], clique
[6]) which can be used to define the social constraint from
different perspectives.

Definition 2 (Minimum Covering Circle (MCC)). Given a
set of vertices S, the minimum covering circle of S is the circle
which encloses all the vertices v ∈ S with the smallest radius.
We call the vertices which lie on the boundary of a MCC the
boundary vertices.

After introducing k-core and MCC, we are ready to define
the RB-k-core as below.

Definition 3 (Radius-Bounded k-Core). Given a geo-social
graph G(V,E), a vertex q ∈ V (G), a positive integer k and a
query radius r, a subgraph of G denoted by Grk is a Radius-
Bounded k-Core, if it satisfies the following constraints:

1) Connectivity constraint. Grk ⊆ G is connected and
contains q;

2) Social constraint. ∀v ∈ V (Grk), degGrk(v) ≥ k;
3) Spatial constraint. The MCC of V (Grk) has a radius

r′ ≤ r;
4) Maximality constraint. There exists no another RB-

k-core G′rk ⊇ Grk satisfying (1), (2), and (3).

Problem Statement: Given a geo-social graph G(V,E), a
vertex q ∈ V (G), a positive integer k, and a query radius r,
our RB-k-core search problem aims to return all RB-k-cores
in G.

Given a geo-social graph G, a query vertex q, and a query
radius r, according to the spatial constraint in Definition 3,
apparently, if the distance between a vertex v and the query
vertex q is larger than 2r, v cannot be included in any RB-
k-cores. We call such vertices faraway vertices and we can
first remove all these vertices from the given graph G. Given
a positive integer k, we can also safely remove all the vertices
which are not in the k-core of G containing q because of
the social constraint in Definition 3. We use Gk to denote a
connected subgraph of G which is a k-core containing q and
for each vertex v in Gk, d(q, v) ≤ 2r. We use n = |V (Gk)| to

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

B

C

D
H

F

Q

J

E

A

I

(a) Original geo-social graph G

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

B

C

D

H

F

Q

J

E S2

S1

(b) Candidate geo-social graph Gk

Figure 3: An example of geo-social network

represent the number of vertices and m = |E(Gk)| to represent
the number of edges of Gk in the following sections.

Example 1. Consider a geo-social graph G in Figure 3(a).
Suppose Q is the query vertex, given k = 2 and r = 1, we
want to find all RB-k-cores from this geo-social graph. We
can safely remove vertex A because d(A,Q) > 2r = 2 and
vertex I because I is not in the 2-core of G. Then we can
obtain the candidate geo-social subgraph Gk which is shown
in Figure 3(b). As a result, we can find two RB-k-cores G(S1)
and G(S2), where S1 = {Q,C, J} and S2 = {Q,D,E, F}.

III. TRIPLE-VERTEX-BASED ALGORITHM

In this section, we introduce the triple-vertex-based algo-
rithm (TriV) which is designed based on the Exact algorithm
in [3]. This algorithm lies on the following lemma.

Lemma 1. [10] Given a set S(|S| ≥ 2) of vertices, the MCC
of S can be determined by at most three vertices in S which lie
on the boundary of the circle. If it is determined by only two
vertices, then the line segment connecting those two vertices
must be a diameter of the circle. If it is determined by three
vertices, then the triangle consisting of those three vertices is
not obtuse.

By Lemma 1, the MCC of a RB-k-core should have two or
three vertices lying on its boundary, which are called boundary
vertices. Thus, we can enumerate all candidate triple-vertex-
combinations and binary-vertex-combinations, then check the
subgraph enclosed by the circle fixed by the enumerated
boundary vertices to see whether it is a RB-k-core. The details
of TriV are shown in Algorithm 1.

Given a geo-social graph G, a query vertex q and pa-
rameters k and r, we first remove all the faraway vertices
in V (G). Then, we do a core decomposition in G using
existing algorithms (e.g., [11]), and find the connected k-core
Gk of G containing q. After obtaining Gk, we enumerate all
candidate triple-vertex-combinations in V (Gk) and compute
the corresponding MCC O(c, γ) (lines 2-8). If γ is smaller than
r, we obtain a set of vertices X = {v ∈ Gk | d(v, c) ≤ r}
and construct an induced connected subgraph G(X) ⊆ Gk
formed from X . If there exists a k-core G(X)k containing q
in G(X) and it satisfies the maximality constraint (for each
G′ ∈ R, G′ + G(X)k), we put G(X)k into the result set R
(lines 9-12). We next enumerate all candidate binary-vertex-
combinations in V (Gk) to verify the circles which use the
distance between the two vertices as the diameter. The veri-
fication process is similar with the triple-vertex-combination
cases (lines 13-19). Finally, we obtain all RB-k-cores in R.

Remark. Utilizing the spatial constraint and the maximality
constraint, we skip the verification of a triple/binary-vertex-
combination if it satisfies one of the following conditions: (1)

Algorithm 1: ALGORITHM TriV

Input: G(V,E): the input graph; q: the query vertex; k, r :
constraint perimeters

Output: R: a set of RB-k-cores
1 initialize R ← ∅
2 Gk ← the k-core of G containing q after removing faraway

vertices
3 foreach node v ∈ V (Gk) do
4 foreach node u ∈ V (Gk) do
5 if u 6= v ∧ d(u, v) ≤ 2r then
6 foreach node w ∈ V (Gk) do
7 if w 6= u ∧ d(w, u) ≤ 2r ∧ w 6=

v ∧ d(w, v) ≤ 2r then
8 compute MCC O(c, γ) of {u, v, w}
9 if γ ≤ r then

10 X ← vertices enclosed in O(c, γ)
11 construct G(X) from X
12 if exists a Grk in G(X) then
13 R.update(Grk)

14 γ = d(u,v)
2

;
15 compute MCC O(c, γ) of {u, v}
16 X ← vertices enclosed in O(c, γ)
17 construct G(X) from X
18 if exists a Grk in G(X) then
19 R.update(Grk)

20 return R

The distance between any pair of vertices in it is larger than 2r.
(2) The radius of its MCC is larger than r. (3) The candidate
vertices enclosed by its MCC are all enclosed by the MCC of
a candidate RB-k-core in the result set R.

Theorem 1. The time complexity of TriV is O(n3 · (n+m)).

Proof. In Algorithm 1, we need to verify all candidate triple-
vertex- and binary-vertex-combinations. For the triple-vertex-
combinations, there are three for-loops which cost O(n3) to
enumerate all the candidate circles. And we need O(n) time
cost to construct the induced subgraph G(X) and O(m) time
cost to verify the existence of the k-core in G(X). Hence,
verifying the triple-vertex-combinations takes O(n3 · (n +
m)). Similarly, verifying the binary-vertex-combinations takes
O(n2·(n+m)). In total, the time cost of TriV is O(n3·(n+m)).
�

IV. BINARY-VERTEX-BASED ALGORITHM

The major issue of TriV is that we need to verify O(n3 +
n2) candidate subgraphs based on all triple-vertex- and binary-
vertex-combinations. In this section, we introduce a binary-
vertex-based algorithm which only needs to verify O(n2)
candidate subgraphs to solve the RB-k-core search problem.

Based on the definition of RB-k-core, given a query radius
r, an obvious observation is that for each RB-k-core in a geo-
social graph G, it should be enclosed in at least one circle with
radius r. A straightforward approach to find all RB-k-cores is
verifying all the circles with radius r in the two-dimensional
space. Obviously, there are too many circles with radius r
sharing the same RB-k-core in this approach. In other words,
for each RB-k-core, we just need to ensure that there is at
least one circle with radius r enclosing it is checked. This can
decrease the number of candidate circles significantly. Before
introducing the algorithm, we give the definition of the binary-
vertex-bounded circle as below.

Definition 4 (Binary-Vertex-Bounded Circle). Given two
vertices u and v, we call all circles having u and v lying on the
boundary the binary-vertex-bounded circles. A set of binary-
vertex-bounded circles with radius γ which takes u and v as
bounded vertices is denoted as Wγ(u, v).

Lemma 2. [12] Given two vertices u and v and a radius r
(r ≥ d(u, v)), we have:

|Wr(u, v)| =
{
1, iff. d(u, v) = 2r,

2, iff. d(u, v) < 2r.
(1)

Lemma 3. Given a geo-social graph G(V,E), a vertex q ∈
V (G), a positive integer k, and a query radius r, for each RB-
k-core Grk, all the vertices in V (Grk) should be enclosed in
at least one binary-vertex-bounded circle with radius r which
takes u and v as the boundary vertices where u, v ∈ V (Gk).

Proof. By Definition 3, for a RB-k-core Grk in Gk, the MCC
O(c, γ) of Grk should have γ ≤ r. (1) If γ = r, by Lemma
1, there should exist at least two vertices on the boundary
of O(c, γ), and thus Lemma 3 holds. (2) If γ < r, we take
Figure 4 as an example to explain the proof process. We can
choose any vertex v which lies on the boundary of O(c, γ),
and draw a circle O1(c1, r) which internally tangents with
O(c, γ) at vertex v. Apparently, O1(c1, r) can enclose all the
vertices of V (Grk) (enclosed in O(c, γ)). Then we can always
rotate O1(c1, r) anticlockwise and stop at the position (i.e.,
O2(c2, r)) when O1(c1, r) first meets a vertex u in O(c, γ).
Because during this process all vertices of V (Grk) are always
in the intersection of two circles, O2(c2, r), a binary-vertex-
bounded circle which takes u and v as the boundary vertices,
encloses all vertices of V (Grk), and thus Lemma 3 holds. �

v

u

O1(c1,r)

O(c, γ)

O2(c2,r)

Figure 4: Illustrating Lemma 3
By Lemma 2, two vertices can bound one/two circles with

a given radius r. Based on Lemma 3, we can get all the
RB-k-cores in G by verifying all the binary-vertex-bounded
circles bounded by vertices in V (G) with radius r. Hence,
a more efficient algorithm BinV can be designed by verifying
O(n2) candidate subgraphs constructed from the corresponding
binary-vertex-bounded circles, rather than O(n3) candidate
subgraphs as in TriV. We introduce the algorithm BinV which
is shown in Algorithm 2.

We first obtain the k-core Gk of G containing q after
removing all the faraway vertices in V (G) (line 2). Then
we enumerate all candidate binary-vertex-combinations with
their distance d ≤ 2r in V (Gk) as boundary vertices. For
each binary-vertex-combination {u, v}, we compute Wr(u, v)
which contains one or two binary-vertex-bounded circles
bounded by u and v (lines 3-6). For each binary-vertex-
bounded circle O(c, r) ∈ Wr(u, v), we obtain a set of vertices
X = {x ∈ Gk | d(x, c) ≤ r} and construct a candidate
subgraph G(X) which is an induced subgraph of Gk formed
from X . We then do a core decomposition to G(X) and verify
whether there exists a RB-k-core. If there exists, we put the

Algorithm 2: ALGORITHM BinV

Input: G(V,E): the input graph; q: the query vertex; k, r :
constraint perimeters

Output: R: a set of RB-k-cores
1 initialize R ← ∅
2 Gk ← the k-core of G containing q after removing faraway

vertices
3 foreach node v ∈ V (Gk) do
4 foreach node u ∈ V (Gk) do
5 if u 6= v ∧ d(u, v) ≤ 2r then
6 compute Wr(u, v) using {u, v} and r
7 foreach O(c, r) ∈ Wr(u, v) do
8 X ← vertices enclosed in O(c, r)
9 construct G(X) from X

10 if exists a Grk in G(X) then
11 R.update(Grk)

12 return R

RB-k-core into the result set R (lines 7-11). Finally, we can
get all the RB-k-cores in R.

Remark. Utilizing the spatial constraint and the maximal-
ity constraint, we skip the verification of a binary-vertex-
combination if it satisfies one of the following conditions. (1)
The distance between the two vertices is larger than 2r. (2)
The candidate vertices enclosed by its derived binary-vertex-
bounded circle are all enclosed by the MCC of a candidate
RB-k-core in the result set R.

Theorem 2. The time complexity of BinV is O(n2 · (n+m)).

Proof. In Algorithm 2, we need to verify all the binary-vertex-
bounded circles generated from candidate binary-vertex-
combinations. There are two for-loops which cost O(n2) to
enumerate all candidate binary-vertex-bounded circles in total.
In addition, we need O(n) time cost to construct the induced
subgraph G(X) and O(m) time cost to find the k-core of
G(X). Therefor, the total time cost of BinV is O(n2 ·(n+m)).
�

V. ROTATING-CIRCLE-BASED ALGORITHMS

Although the BinV algorithm improves TriV a lot by
reducing the number of candidate subgraphs, it is still not
efficient enough. Reviewing the process of BinV, we can
observe that for each binary-vertex-combination, the corre-
sponding candidate subgraph G(X) is constructed and verified
individually. There are O(n2) candidate graphs need to be
constructed and each of the verification process takes O(m)
time. This motivates us to develop a better algorithm which can
reduce the construction and verification cost of these candidate
subgraphs.

In this section, we first present the rotating-circle-based
algorithm (RotC) which improves the BinV algorithm by
exploring possible cost sharing in the subgraph construction
and verification process. Next, we employ some non-trivial
pruning techniques to improve the RotC algorithm and propose
the optimized rotating-circle-based algorithm (RotC+).

A. Algorithm RotC

Reviewing Lemma 3, we can find all the RB-k-cores in a
geo-social graph G by verifying all the candidate subgraphs
constructed from corresponding binary-vertex-bounded circles.
Considering Example 1, Figure 5(a) is a screenshot of all

the binary-vertex-bounded circles which take F as one of
the boundary vertices. In the BinV algorithm, we need to
verify the candidate graphs enclosed by these binary-vertex-
bounded circles one by one. Now we consider putting these
binary-vertex-bounded circles into a polar coordinate system
using F as the pole, and sorting these binary-vertex-bounded
circles according to their centers’ polar angles. Figure 5(b)
shows the centers of binary-vertex-bounded circles in the polar
coordinate system, and we can obtain a list of sorted circles
L = {O1, O2, O3, O4, O5}. Specifically, in Figure 5(c), O2

and O3 are two adjacent binary-vertex-bounded circles. We
denote the vertex sets which O2 and O3 enclosed as X2

and X3, respectively. We can observe that for these two
induced subgraphs G(X2) and G(X3) where their binary-
vertex-bounded circles adjacent to each other, V (G(X2)) is
only one vertex (vertex q) difference from V (G(X3)). Based
on this observation, we devise a novel algorithm which shares
the construction and verification cost for these candidate sub-
graphs.

In the construction step, we can construct the candi-
date graphs incrementally after sorting all the binary-vertex-
bounded circles. In the verification process, the degree of ver-
tices are easy to maintain dynamically because the difference
of enclosed vertices between adjacent binary-vertex-bounded
circles is only one vertex. We can divide the binary-vertex-
bounded circles into two groups, entering circles and leaving
circles. An entering circle denoted as Oenter(c, γ) is a circle
which brings a new vertex in and a leaving circle Oleave(c, γ)
is a circle which takes an existing vertex out. For example in
Figure 5(d), Oenter(c1, r) is an entering circles which brings
vertex D in and Oleave(c4, r) is a leaving circle which takes
D out of the candidate graph. So for an entering circle, we
can avoid recomputing the degree of enclosed vertices when
checking the k-core in a binary-vertex-bounded circle. For a
leaving circle, we can just maintain the degree of vertices and
avoid the computation of checking the k-core because there
cannot exist a new k-core while a vertex leaves. We present the
detailed rotating-circle-based algorithm (RotC) in Algorithm 3.

In RotC, we do a core decomposition and obtain the k-
core Gk of G containing q after removing all the faraway
vertices in V (G) (line 2). After that, for each vertex v in
V (Gk), we set it as the pole in a polar coordinate system
P . For each pole v, we generate a candidate vertex set
Y = {u ∈ V (Gk) | d(u, v) ≤ 2r}. Then we combine v with
other candidate vertices in Y and construct the corresponding
binary-vertex-bounded circles based on Lemma 3 and record
whether it is an entering circle or a leaving circle for each
binary-vertex-bounded circle (lines 3-7). Then, we sort all
the binary-vertex-bounded circles in ascending order of their
centers’ polar angles in P (line 8). After sorting, for each
binary-vertex-bounded circle O(c, r), we compute a set X
which contains all the vertices enclosed in O and maintain the
degrees of these vertices (lines 9-12). Note that, we just need to
insert/remove different vertices between O and its precedent
binary-vertex-bounded circle, and the degrees of vertices in
X can be updated correspondingly. If O(c, r) is an entering
circle, we need to construct a candidate graph G(X) which
is an induced subgraph of Gk formed from X (lines 13-14).
After that, we verify whether there exists a k-core containing
q in G(X). Because the degrees of vertices in X is already
maintained, in some cases such as degG(X)(q) < k, we can
just skip doing a core decomposition in G(X). Otherwise, if

0

1

2

3

4

1 2 3 4 5 6 7

F

Q

DE O1

O4
O2

O3

O5

(a) Circle rotating process

F

c1

c2
c3c4

c5

(b) A polar system using F as pole

0

1

2

3

4

1 2 3 4 5 6 7

D

Q

F

E

O2

O3

(c) Circle rotating from O2 to O3

0

1

2

3

4

1 2 3 4 5 6 7

F

Q

DE

Oleave(c4,r)

Oenter(c1,r)

(d) Entering and leaving circles

Figure 5: An example of Rotating-Circle-Based Algorithm (using vertex F as the pivot)

Algorithm 3: ALGORITHM RotC

Input: G(V,E): the input graph; q: the query vertex; k, r :
constraint perimeters

Output: R: a set of RB-k-cores
1 initialize R ← ∅
2 Gk ← the k-core of G containing q after removing faraway

vertices
3 foreach node v ∈ V (Gk) do
4 C ← ∅
5 foreach node u ∈ V (Gk) do
6 if u 6= v ∧ d(u, v) ≤ 2r then
7 compute Wr(u, v) using {u, v} and r
8 put circles in Wr(u, v) into C
9 sort C in ascending order of centers’ polar angles

10 foreach O(c, r) ∈ C do
11 X ← a set of vertices enclosed in O(c, r)
12 maintain the degree of vertices in X
13 if O(c, r) is an entering circle then
14 construct G(X) from X
15 if exists a Grk in G(X) then
16 R.update(Grk)

17 return R

a k-core exists and it satisfies the maximality property, we put
the k-core into the result set R (lines 15-16). Finally, we will
get all the RB-k-cores in R.

Example 2. Considering the geo-social graph in Example 1,
suppose Q is the query vertex, r = 1 and k = 3, Figure 5
is an example of the RotC algorithm when it takes vertex F
as the pole. As shown in Figure 5(a), we first get a set of
five binary-vertex-bounded circles which take F as boundary
vertex. Then we sort these circles in ascending order of their
centers’ polar angles as shown in Figure 5(b) and get a list of
sorted circles L = {O1, O2, O3, O4, O5}. After that, we start
the rotating process from the first circle O1 and get an induced
subgraph G(X1) from X1 = {D,F}. Because there is no k-
core containing q in G(X1), we keep the rotating process and
find that there is also no k-core containing q in G(X2) where
X2 = {D,E, F}. After rotating to O3, we can obtain a k-
core in G(X3) where X3 = {D,F,E,Q}. And there is no
other result in O3 and O4. So after verifying all the binary-
vertex-bounded circles, we can get a candidate result set R =
{G(X)} where X = {D,F,E,Q}.
Theorem 3. The time complexity of RotC is O(n2 · (log n +
m′)), where m′ � m.

Proof. In Algorithm 3, We first need to enumerate all the
candidate vertices as poles, so there is one for-loop which costs
O(n). For each pole v, we combine it with the other vertices
and generate all the binary-vertex-bounded circles which takes
v as one of the boundary vertices. This process also costs

O(n). Then we need to take O(n log n) to sort these circles
in ascending order of their centers’ polar angles. After that,
the construction of the induced subgraph G(X) will only cost
O(1) because the incremental maintenance of X . The degree
of vertices also calculated incrementally and in some cases,
the verification process just costs O(1), so in average, finding
the k-core of G(X) costs O(m′) where m′ � m. The total
time cost of RotC is O(n2 · (log n+m′)). �

B. Algorithm RotC+

We continue to introduce the optimized rotating-circle-
based algorithm (RotC+) which improves RotC significantly
by utilizing some non-trivial pruning techniques. Specifically,
we develop two types of pruning techniques, the grouping-
based pre-process and the in-process pruning rules. In the pre-
process part, we develop a grouping-based algorithm to reduce
the number of candidate vertices. In the in-process part, we
employ some critical pruning rules to optimize the rotating-
circle-based algorithm.

Pre-Process Pruning. Firstly, we introduce the grouping-
based pre-process pruning technique and it is based on the
following lemma 4.

Lemma 4. Given a geo-social graph G(V,E), a vertex q ∈
V (G), a positive integer k and a query radius r, for each
RB-k-core Grk in G, the center point c of the MCC O(c, γ) of
V (Grk) should satisfy d(c, q) ≤ r.

Proof. By Definition 3, for a RB-k-core Grk, the MCC O(c, γ)
of Grk should enclose q and satisfy γ ≤ r. Hence we have
d(c, q) ≤ r and we complete the proof. �

q

r
g(c,τ) τ

(a) Grouping O(q, r) with τ = 2

α

g(c,α)
r+

2

2
α

O(c, r+
2

2
α)

O(c’, r)

(b) Verifying a group g(c, α)

Figure 6: An example of grouping-based pre-process
Lemma 4 illustrates that all the centers of MCCs of RB-k-

cores are in the circle O(q, r). Apparently, the circle O(q, r)
can be partitioned into four groups which are squares with size
r×r. Similarly, the group with size r×r can also be partitioned
into 4 smaller groups with size r

2×
r
2 . Hence, given a grouping

parameter τ , as shown in Figure 6(a), we can partition the
circle from 4 groups with size r×r to 4

⌈
r
τ

⌉2
groups with size

τ×τ iteratively. In each iteration, we halve the group size and
prune the groups which do not need further verification. For

Procedure 1: GROUPING-BASED PRE-PROCESS
Input: G(V,E): the input graph; q: the query vertex; k, r:

constraint perimeters; τ : grouping perimeter; R:
candidate result set

Output: Gk: a graph
1 α← r; Y ← g(q, 2r)
2 Gk ← the k-core of G containing q after removing faraway

vertices
3 while α ≥ τ do
4 foreach group g(c, 2α) ∈ Y do
5 partition g(c, 2α) into four groups with size α× α

and put then into Yc
6 Y ← ∅;S ← ∅
7 foreach group g(c, α) ∈ Yc do
8 construct graph G(X) using X which contains

vertices enclosed in O(c, r +
√
2
2
α)

9 if exists a Grk in G(X) then
10 R.update(Grk)
11 else if exists a k-core G(X)k in G(X) then
12 Y .insert(g)
13 put vertices in V (G(X)k) into S
14 foreach node v ∈ V (Gk) do
15 if v /∈ S then
16 remove vertex v from V (Gk)
17 α = α/2
18 return Gk

example, in Figure 6(a), if we set τ = r
2 , the pre-process will

run 2 iterations in total and in each iteration, we need to verify
at most 4 and 16 groups with size = r and r

2 , respectively.

We proceed to present the verification process of a given
group of vertices denoted as g(c, α), where c is the center point
and α is the side length. As shown in Figure 6(b), because the
longest distance between c and the other points in g(c, α) is√

2
2 α, we can use the circle O(c, r +

√
2
2 α) to enclose all the

circles with radius r and centered at a point in g(c, α). In
other words, for each circle O(c′, r) which centers at g(c, α)
as shown in Figure 6(b), O(c, r+

√
2
2 α) can enclose it. Then we

can construct a induced subgraph G(X) of G using X which
contains all the vertices enclosed in the circle O(c, r+

√
2
2 α).If

there exists no k-core containing q in G(X), we can prune the
whole group g(c, α). Otherwise, if the MCC O(c′, α′) of the
k-core G(X)k containing q has the radius α′ ≤ r, we can
mark G(X)k as a candidate result and prune the whole group
g(c, α), because G(X)k is the only result that can be found
using the vertices in g(c, α). Otherwise, if the MCC O(c′, α′)
of G(X)k has the radius α′ > r, the RB-k-cores obtained from
g(c, α) are subsets of G(X)k, and thus we add the vertices in
G(X)k into a candidate vertex set and do further check for
the group g(c, α).

We show the pre-processing in Procedure 1. We first put
the largest group g(q, 2r) into Y and compute the k-core Gk of
G containing q after removing all the faraway vertices (lines
1-2). For each group in Y , we partition it into four smaller
groups and put them into Yc (lines 3-5). After that, we empty
Y and S. For each group g(c, α) in Yc, we check the induced
subgraph formed from the vertices in O(c, r +

√
2
2 α) and put

g(c, α) into Y if it needs further checking. Furthermore, we
put the vertices which need further checking into S (lines 7-
13). Next, we prune the vertices not in S from V (Gk) (lines
14- 16). Then we halve α and check whether α ≥ τ (line 17).
If α < τ , we return the graph Gk after pruning.

In-Process Pruning. We next review the rotating-circle-based
algorithm and introduce two in-process pruning rules.

Pruning Rule 1: Overall Checking. Reviewing the pro-
cess of the RotC algorithm, we choose a vertex v from
V (Gk) as the pole and generate a candidate vertex set S =
{u ∈ V (Gk) | d(u, v) ≤ 2r}. Then we construct an induced
subgraph G(S) using vertices in S and compute the k-core
G(S)k of G(S) containing q. If G(S)k doesn’t exist or the
vertices in V (G(S)k) are all enclosed in the MCC of a
candidate RB-k-core in R, we can prune the pole v.

Pruning Rule 2: Circle Filtering. In the RotC algorithm,
after choosing the pole v and corresponding candidate vertices,
we combine v with all candidate vertices and generate the
binary-vertex-bounded circles. Firstly, we can prune all the
circles which exclude the query vertex q. After that, because
there is only one vertex difference between two adjacent
circles, we can compute the vertex difference between a circle
and its precedent. We divide the circles into two groups,
the entering circles and leaving circles, respectively. For each
entering circle, we record the vertex it brings in and for each
leaving circle, we record the vertex it moves out.

For the group of entering circles, we sort them in ascending
order of their centers’ polar angles and put them into a list
Lenter. Then for each entering circle Oenter in Lenter, we
compute a vertex set V(Oenter) which contains all the vertices
bringing from the entering circles appear before Oenter in
Lenter. This can be done by incrementally adding the vertices
bringing from the first entering circle to the last entering circle
and the time complexity is O(Lenter). It is obvious that the
number of vertices in V(Oenter) monotonously increase with
the index of Oenter in Lenter. Thus, we can use binary search
to find the first entering circle O′enter in Lenter such that
we can construct a k-core from V(O′enter) containing q. The
circles appear before O′enter can be safely discarded because
they cannot contain a RB-k-core. Similarly, for all the leaving
circles, we sort in descending order of their centers’ polar
angles and put them into Lleave. In the same way, we can find
the first leaving circle O′leave such that we can construct a k-
core from V(O′leave) containing q and discard all the circles
before O′leave in Lleave. In this way, we can reduce the number
of binary-vertex-bounded circles which need to be verified in
the next stage.

Algorithm 4 shows the optimized rotating-circle-based al-
gorithm (RotC+). We first initialize the result set R and do
the grouping-based pre-process (lines 1-2). After that, for each
vertex v in V (Gk), we set it as the pole in a polar coordinate
system P . For each pole v, we generate a candidate vertices set
S = {u ∈ V (Gk) | d(u, v) ≤ 2r}. We generate binary-vertex-
bounded circles using the combinations between v and all
candidate vertices in S (lines 3-9) and record whether it is
an entering circle or a leaving circle. Then we apply pruning
rule 1 to do a overall checking for the graph constructed from
S (lines 10-11). Next, we sort all the binary-vertex-bounded
circles in ascending order of their centers’ polar angles in P .
After sorting, we use pruning rule 2 to reduce the number
of circles in C (lines 12-13). Then for each binary-vertex-
bounded circle O(c, r) ∈ C, we compute a set X which
contains all the vertices enclosed in O(c, r) and maintain
the degrees of these vertices. If O(c, r) is an entering circle,
we construct a candidate graph G(X) which is an induced
subgraph of Gk formed from X (lines 14-18). After that, if

Algorithm 4: ALGORITHM RotC+

Input: G(V,E): the input graph; q: the query vertex; k, r:
constraint perimeters; τ : grouping perimeter

Output: R: a set of RB-k-cores
1 initialize R ← ∅
2 Gk ← PreProcess(G, q, k, r, τ,R)
3 foreach node v ∈ V (Gk) do
4 C ← ∅; S ← ∅
5 foreach node u ∈ V (Gk) do
6 if u 6= v ∧ d(u, v) ≤ 2r then
7 put u into S
8 compute Wr(u, v) using {u, v} and r
9 put circles in Wr(u, v) into C

10 if OverallChecking(S) = false then
11 continue . Pruning Rule 1
12 sort C in ascending order of centers’ polar angles
13 employ circle filtering to C . Pruning Rule 2
14 foreach O(c, r) ∈ C do
15 X ← a set of vertices enclosed in O(c, r)
16 maintain the degree of vertices in X
17 if O(c, r) is an entering circle then
18 construct G(X) from X
19 if exists a Grk in G(X) then
20 R.update(Grk)

21 return R

there exists a RB-k-core in G(X), we put it into the result set
R (lines 19-20). Finally, we can get all the RB-k-cores in R.

Theorem 4. The time complexity of RotC+ is O(
⌈
r
τ

⌉2 ·m ·
(log(

⌈
r
τ

⌉
)+1)+|F |·m+|F1|·log |F1|·(|F1|+m)+|F1|·|F2|·

m′), where F denote the candidate vertex set after pre-process
pruning (|F | < n), F1 is the vertex set obtained from F after
the overall checking, F2 is the set of circles need to be verified
(|F2| < n), and m′ is the average time cost of verifying the
existence of a k-core (m′ � m).

Proof. The RotC+ algorithm consists of four phases: (1) In
the grouping-based pre-process, it needs to run (log(

⌈
r
τ

⌉
)+1)

iterations and for each iteration, at most O(
⌈
r
τ

⌉2
) groups are

verified and the verification takes O(m) for each group. In
total, the pre-process costs O(

⌈
r
τ

⌉2 ·m · (log(⌈ rτ ⌉) + 1)). (2)
We denote the candidate vertex set after pre-process pruning
as F where |F | < n. The overall checking in pruning
rule 1 will cost O(m) for each vertex in F . (3) After the
overall checking, some vertices will be pruned, and we put
the remaining vertices into F1. for each vertex in F1, we need
to use O(|F1| · log |F1|) time cost to sort the binary-vertex-
bounded circles and O(log(|F1| ·m) time cost to do the circle
filtering pruning. (4) Finally, for each vertex in F1, we put
the binary-vertex-bounded circles still need to be verified into
F2 (|F2| < n) and the average time of verifying the existence
of k-core costs O(m′) where m′ � m. In total, The time
complexity of the RotC+ algorithm is O(

⌈
r
τ

⌉2 ·m·(log(⌈ rτ ⌉)+
1)+ |F | ·m+ |F1| · log |F1| · (|F1|+m)+ |F1| · |F2| ·m′). �

VI. EXPERIMENTS

In this section, we report the evaluation of the effectiveness
of our model and the efficiency of our algorithms.

A. Experiments Setting

Algorithms. To our best knowledge, there is no existing works
that can solve the problem of finding RB-k-cores in geo-
social graphs. In the experimental study, we implement and

evaluate four algorithms: The triple-vertex-based algorithm
TriV in Section III, the binary-vertex-based algorithm BinV in
Section IV, the rotating-circle-based algorithm RotC in Section
V, and the optimized rotating-circle-based algorithm (RotC+)
in Section V.

In addition, we extend our RotC+ algorithm to solve
the SAC (spatial-aware community) search problem proposed
in [3]. Given a query vertex q and a parameter k, a SAC is
a connected k-core containing q enclosed in a circle with the
minimum radius. If there exists a connected k-core containing
q enclosed in a circle with a given radius r, our algorithms
can always find it out. Thus, the minimum radius can be found
by employing the binary search strategy using our algorithms.
Given q, r, and k, if there exists no RB-k-core in a geo-social
network, the radius of the SAC’s MCC must be larger than r,
and we need to increase r in the subsequent search. Otherwise,
if we find a RB-k-core Grk, by definition we know that the
MCC of V (Grk) has a radius no larger than r, and thus r is
an upper bound of the radius of the SAC’s MCC, and we can
decrease r in the subsequent search. We use our best algorithm
RotC+ in the binary search process to find SACs.

The algorithms are implemented in C++ and the ex-
periments are run on a Linux server with Intel Xeon E5-
2687W(3.4GHz, 8 Cores) processor and 64GB main memory.
We randomly select 200 query vertices and report the average
result for these queries. We terminate an algorithm if the
running time is more than three hours.

Dataset |V | |E| davg
Brightkite 51,406 197,167 7.67
Gowalla 107,092 456,830 8.53
Flickr 214,698 2,096,306 19.5

Foursquare 2,127,093 8,640,352 8.12
Synthetic 4,000,000 40,000,000 20

Table II: Summary of Datasets
Datasets. We use four real datasets in our experiments includ-
ing Brightkite, Gowalla, Flickr, and Foursquare.
In the four datasets, we consider each user associated with
a geo-location coordinate (latitude and longitude) as a vertex
and the friendship between two users is represented by an
edge. Helmert transformation [13] is adopted to transform
geo-location coordinates of vertices to Cartesian coordinates.
The original data of Brightkite and Gowalla was down-
loaded from http://snap.stanford.edu/. The geo-locations are
extracted from the check-in data recorded by the Brighkite
and Gowalla services, and the friendship network is obtained
using the public API of the two services. The Flickr dataset
is downloaded from https://www.flickr.com/. In Flickr, the
photos taken by users are associated with geo-locations. We
use the location where a user takes the most number of
photos as his geo-coordinate. The social graph is constructed
using the friendship information in Flickr. The Foursquare
dataset [14] is downloaded from https://archive.org/ which
contains the data extracted from the Foursquare application.
Each user in Foursquare has a unique id and a geo-
location. The social graph represents the user relationships of
the Foursqure users. Because of the limitation of space, we
only show the comparison of the performance on Gowalla
(the most commonly used dataset among the four datasets) and
Foursqaure (the largest dataset among the four datasets) in
some of our experiments. Table II shows the number of vertices
(|V |), number of edges (|E|) and average degree (davg) of
vertices in these four datasets.

http://snap.stanford.edu/
https://www.flickr.com/
https://archive.org/

Parameter Range Default
k 4,7,10,13,16 4
r 1,5,10,20,40 5
n 20%,40%,60%,80%,100% 100%
τ r, r

2
, r
4
, r
8
, r
16

r
4

Table III: Summary of Parameters
We also conduct experiments on a synthetic dataset

Synthetic. We first generate a non-spatial graph using a
well-known graph generator GTGraph downloaded from http:
//www.cse.psu.edu/∼kxm85/software/GTgraph/. The distri-
bution of the degrees in the graph follows a power-law distribu-
tion which is often used in the study of social networks. After
generating the graph, we generate the locations of the vertices
randomly in a square with size [0, 300]km ×[0, 300]km.

Parameters. The experiments are conducted using different
settings on 4 parameters: k (the minimum degree), r (the
maximal radius), τ (the parameter used in the pre-process of
RotC+), and n (the percentage of vertices). Table III shows
the ranges and default values of these parameters. We vary
k from 4 to 16 and set 4 as the default value. We vary r
from 1km to 40km and set r to 5km by default. When varying
the graph size, we randomly sample 20% to 100% vertices of
the original graphs, and construct the induced subgraphs using
these vertices. The parameter n is varied from 20% to 100%
which represents the percentage of the vertices we use in each
dataset. The parameter τ is varied from r to r

16 which controls
the number of iterations of the pre-processing in RotC+.

B. Effectiveness

In this section, we first conduct two case studies on
Gowalla and Flickr to show the effectiveness of our RB-
k-core model. Then we do a comparison with the (k,r)-core
model to show the difference between our RB-k-core model
and the (k,r)-core model.

Figure 7: Case study on Gowalla (q=1396, k=3, r=0.76km)
Case study. We present two case studies to show the result
of RB-k-core search on Gowalla and Flickr in Figure 7
and Figure 8, respectively. The query vertices are marked
by question mark symbols. Under setting q=1396, k = 4
and r = 0.76km on Gowalla, we can get two RB-k-cores
containing q as shown in Figure 7. We mark the vertices and
the MCC of these two RB-k-cores in black color and grey
color, respectively. We can see that, the social constraint and
the spatial constraint both contribute to the construction of
these two RB-k-cores. For example, if the social constraint is
ignored, the black vertices enclosed by the grey circle will be
included in the grey RB-k-core. On the other hand, all the
vertices in Figure 7 will be united into one community if the

Figure 8: Case study on Flickr (q=111419, k=3, r=1.67km)
radius constraint is not being considered. Figure 8 shows the
result of RB-k-core search on Flickr using q = 111419, k
= 3 and r = 1.67km are there are also two communities can
be retrieved. Using the same q and k, the SAC search (i.e., a
similar model in [3]) will provide the communities with black
color as shown in Figure 7 and Figure 8. The radius of the
black circles are 0.74km and 1.67km in Figure 7 and Figure 8,
respectively. Comparing with the SAC search, in Figure 7,
our RB-k-core search can give users more options by slightly
increasing the minimum radius (i.e., from 0.74km to 0.76km)
for the same q and k. In Figure 8, the RB-k-core search is
able to provide users more than one selection for the same q,
k, and minimum r.

Comparison with (k,r)-core [1]. We conduct experiments
on Gowalla to show the difference between our RB-k-core
model and the (k,r)-core model. A (k,r)-core is defined as a
k-core where the distance between each pair of vertices is
no more than r. Zhang et al. [1] only solve a community
detection problem which enumerates all the (k,r)-cores without
considering the query vertices. We consider the (k,r)-core
search problem based on the (k,r)-core enumeration problem
by adding a query vertex q. We compare the result of our RB-
k-core search problem and the (k,r)-core search problem to
show the model difference.

The query results of the two problems are two sets of k-
cores. We use the set-similarity proposed in [15] to measure
the similarity of the results, described as below. This measure
first defines a similarity function to compute the similarity
between two elements x and y (i.e., vertex sets of k-cores
in our problem). Given a similarity threshold β, the similarity
function φβ is defined as:

φβ(x, y) =

{ |x∩y|
|x∪y| , if |x∩y||x∪y| ≥ β,
0, if |x∩y||x∪y| < β.

(2)

Given two sets R and S and a similarity function φβ , the
set-similarity of this measure is defined as:

similarφβ (R,S) =
|R∩̃φβS|

|R|+ |S| − |R∩̃φβS|
(3)

Using φβ , a bipartite graph H can be constructed between
R and S. In H, vertices represent the elements in R or S
and edges are weighted using the similarity function φβ . Then
we employ the maximum weighted bipartite matching [16]
algorithm to get the maximum matching of H and sum up the
weights of the edges in the maximum matching as the value
|R∩̃φβS|. Then, we can get the similarity between R and S
by equation 3.

http://www.cse.psu.edu/~kxm85/software/GTgraph/
http://www.cse.psu.edu/~kxm85/software/GTgraph/

0

0.2

0.4

0.6

0.8

1.0

1 5 10 20 40

S
im

ila
rit

y

r

β=0.80
β=0.85
β=0.90

(a) Gowalla, varying r

0

0.2

0.4

0.6

0.8

1.0

4 7 10 13 16

S
im

ila
rit

y

k

β=0.80
β=0.85
β=0.90

(b) Gowalla, varying k

Figure 9: Comparision with (k,r)-core
The experimental results are as shown in Figure 9. We

vary r and k on Gowalla in Figure 9(a) and Figure 9(b),
respectively, and we fix the other parameters as the default
value. We randomly select 200 query vertices from the result
of the (k,r)-core enumeration problem and report the average
result for these vertices. Note that, given a radius r, the largest
distance between two vertices in a RB-k-core is 2r, so we set
the similarity threshold to 2r in the (k,r)-core search problem
because it considers the pair-wise similarity. In Figure 9, we
study the impact of β and show the corresponding similarity
between the results of RB-k-core search and (k,r)-core search.
We can observe that the similarities are smaller with a larger
β in both Figures 9(a) and 9(b), since more elements are
considered as similar. The most important observation is that
the similarities are all less than 0.65 even we set the β to 0.8
which is a very small threshold to measure the similarity of
two vertex sets. This demonstrates that our RB-k-core model
differs from the (k,r)-core model, because (k,r)-core uses the
pairwise similarity. Such a strong spatial constraint makes the
problem NP-hard, but it is not necessary for many applications,
especially in community search problems.

C. Efficiency

In this section, we first evaluate the efficiency of the
proposed four algorithms. Then we evaluate the effect of the
pruning techniques and the parameter τ used in the RotC+

algorithm. Finally, we extend our RotC+ algorithm to solve
the SAC search problem [3] and compare the performance.

10-1

100

101

102

103

INF

Brightkite Gowalla Flickr Foursquare Synthetic

T
im

e
C

os
t (

se
c)

Datasets

TriV BinV RotC RotC+

Figure 10: Effect of different datasets
Evaluating the performance of all algorithms on dif-
ferent datasets. In Figure 10, we show the performance
of our RB-k-core search algorithms on five datasets. We
set k as default and r to 1km, 5km, 10km, 20km, 40km
on Brightkite, Gowalla, Flickr, Foursquare and
Synthetic, respectively, and we fix the other parameters
as the default value. We can observe that BinV is efficient
than TriV on Brightkite, Gowalla, and Flickr. The
algorithms RotC and RotC+ using the rotating circle strategy
are more efficient than TriV and BinV on the three datasets
because RotC and RotC+ can compute the RB-k-cores in
an incremental manner, which significantly reduces the com-
putation cost. On Foursquare and Synthetic, we can
see that only RotC+ is able to return the results within the
timeout threshold. Foursquare is much larger than the first

three datasets, and there exist many candidate vertices that
need to be processed. On Synthetic, both the size and the
density of vertices is much larger than the other datasets, and
thus the candidate circles contain many vertices (as shown in
Table IV). In summary, Figure 10 demonstrates the efficiency
of our RotC+ algorithm because it significantly outperforms
the other three algorithms on all datasets.

10-1

100

101

102

103

104

4 7 10 13 16

T
im

e
C

os
t (

se
c)

k

TriV
BinV
RotC
RotC+

(a) Gowalla, varying k

100

101

102

103

INF

4 7 10 13 16

T
im

e
C

os
t (

se
c)

k

TriV
BinV
RotC
RotC+

(b) Foursquare, varying k

Figure 11: Effect of k
Evaluating the effect of k. Figure 11 evaluates the effect of
k for four algorithms on Gowalla and Foursquare. We
vary k from 4 to 16 and fix the other parameters as the default
value. In Figure 11(a), we can observe that the time cost of all
four algorithms drops when k increases because the number
of vertices in the k-core of the original graph (selected as
candidate vertices) decreases. Similar trends can be observed
in Figure 11(b). As expected, RotC and RotC+ significantly
outperform TriV and BinV on both datasets because of using
the rotating circle technique. For example, on both datasets,
RotC is about one order of magnitude faster than TriV and
BinV and RotC+ is at least two orders of magnitude faster
than TriV and BinV.

10-2

10-1

100

101

102

103

20% 40% 60% 80% 100%

T
im

e
C

os
t (

se
c)

n

TriV
BinV
RotC
RotC+

(a) Gowalla, varying n

10-1

100

101

102

103

INF

20% 40% 60% 80% 100%
T

im
e

C
os

t (
se

c)

n

TriV
BinV
RotC
RotC+

(b) Foursquare, varying n

Figure 12: Effect of graph size
Scalability. (1) Evaluating the effect of graph size. Figure 12
studies the scalability of four algorithms by varying the graph
size from 20% to 100% in all datasets. We can observe that, on
Gowalla, all these four algorithms scale almost linearly and
the computation cost of them all increases when the percentage
of vertices increases. In Figure 12(a), we can see that TriV
and BinV can only get the result when n = 20% in the given
timeout threshold while RotC and RotC+ have similar trends
with that in Figure 12(a) on Foursquare. As discussed
before, RotC+ is more efficient than the other three algorithms.

10-2

10-1

100

101

102

103

INF

1 5 10 20 40

T
im

e
C

os
t (

se
c)

r

TriV
BinV
RotC
RotC+

(a) Gowalla, varying r

100

101

102

103

INF

1 5 10 20 40

T
im

e
C

os
t (

se
c)

r

TriV
BinV
RotC
RotC+

(b) Foursquare, varying r

Figure 13: Effect of r
(2) Evaluating the effect of r. Figure 13 studies the effect

XXXXXXXDataset
r

1km 5km 10km 20km 40km

Brightkite 6,168 18,526 24,542 39,919 50,089
Gowalla 302 1,111 1,523 1,937 2,352
Flickr 20 85 142 269 631

Foursquare 20,413 36,230 40,386 57,522 73,901
Synthetic 619 15,953 62,596 234,890 819,045

Table IV: The number of vertices in each 2r circle

of r on Gowalla and Foursquare. Table IV reports the
average number of vertices in each 2r circle on each dataset.
We vary r from 1km to 40km and fix the other parameters
as the default value. In Figures 11(a) and 11(b), the time cost
increases as r becomes larger because the number of vertices
in circle O(q, 2r) grows when r increases. We can also see
that, on Gowalla, both RotC and RotC+ are several orders of
magnitude faster than TriV and BinV. On Foursquare, TriV
and BinV can only compute the result when r = 1km and RotC
can get the results when r is no more than 10km in a reasonable
time period. As expected, the RotC+ algorithm significant
outperforms the other three algorithms on Foursquare and
the time cost is stable when r is large on both datasets.

10-1

100

101

102

103

1 5 10 20 40

T
im

e
C

os
t (

se
c)

r

RotC
RotC-IP
RotC+

(a) Gowalla, varying r

100

101

102

103

4 7 10 13 16

T
im

e
C

os
t (

se
c)

k

RotC
RotC-IP
RotC+

(b) Foursquare, varying k

Figure 14: Effect of Pruning Rules
Evaluating the pruning techniques. We evaluate the effi-
ciency of our pre-process and in-process pruning techniques
on Gowalla and Foursquare in Figure 14. On Gowalla,
we vary r from 1km to 40km and fix the other parameters.
On Foursquare, we vary k from 4 to 16 and fix the
other parameters. The RotC-IP represents the RotC algorithm
with in-process pruning techniques. Then by employing the
grouping-based pre-process pruning techniques, we get the
RotC+ algorithm. In Figure 14(a) and Figure 14(b), we can
see that, the in-process pruning technique significantly reduces
the computation cost while the pre-process pruning technique
also enhances the performance of our RotC+ algorithm.

10-1

100

101

102

103

INF

r r/2 r/4 r/8 r/16

T
im

e
C

os
t (

se
c)

τ

r=1
r=5
r=10
r=20
r=40

(a) Gowalla, varying τ

10-1

100

101

102

103

104

INF

r r/2 r/4 r/8 r/16

T
im

e
C

os
t (

se
c)

τ

r=1
r=5

r=10
r=20

r=40

(b) Foursquare, varying τ

Figure 15: Effect of τ
Evaluating the effect of τ . Figure 15 studies the effect
of τ which is a parameter used in the grouping-based pre-
processing in RotC+. Because the value of τ is related to r, we
set r to 1km, 5km, 10km, 20km, and 40km on both Gowalla
and Foursquare. As discussed before, as τ increases, the
time cost of pre-processing increases and the number of
candidate vertices decreases. We can observe that, the running
time is not very sensitive with τ when τ is relatively large on
the two datasets. The time cost starts to increase from τ = r

4 in
most cases, because the number of vertices that can be pruned

increase slowly and the time cost of pre-processing begins to
dominate the cost of RotC+. Hence we set τ = r

4 in our
experiments on all datasets.

101

102

103

104

10-6 10-5 10-4 10-3 10-2

T
im

e
C

os
t (

se
c)

ε

SAC-RotC+

SAC-Exact+

(a) Gowalla, varying ε

400

800

1200

1600

10-6 10-5 10-4 10-3 10-2

T
im

e
C

os
t (

se
c)

ε

SAC-RotC+

SAC-Exact+

(b) Foursquare, varying ε

Figure 16: Extend to solve SAC search problem
Extend to solve the SAC search problem [3]. As discussed
before, the SAC search problem can be solved by slightly
modifying our RotC+ algorithm using binary search. In Figure
16, we study the performance of the SAC-RotC+ algorithm
which is extended from RotC+ to solve the SAC search
problem, and we compare its performance with the state-of-
the-art exact algorithm SAC-Exact+ proposed in [3]. Fang
et al. [3] implemented the SAC-Exact+ algorithm in JAVA,
while we implement the SAC-Exact+ algorithm in C++ for
the fairness of comparison.

The SAC-Exact+ algorithm includes two phases. Firstly, it
conducts the quad-tree-based vertex pruning phase which can
reduce the number of potential vertices. Next, in the second
phase, it conducts a triple-vertex-based algorithm which is
similar with the TriV algorithm in this paper. In the RB-k-core
search problem, we have analyzed that the triple-vertex-based
algorithm is time-consuming and it can be improved by the
rotating circle strategy to incrementally compute the result. We
can do the same thing in the SAC search problem. In our SAC-
RotC+ algorithm, we also conduct the vertex pruning phase,
but we adopt the rotating-circle-based algorithm in the second
phase. Note that, the in-process pruning technique in RotC+

can also be applied in SAC-RotC+, but the pre-process pruning
technique cannot be used because of the model difference.

We vary the parameter ε which controls the number of
iterations in the vertex pruning phase, and the number of
iterations decreases with the increase of ε. From Figure 16(a)
and Figure 16(b), we can observe that the time cost of SAC-
RotC+ and SAC-Exact+ is almost the same when ε is very
small because the cost of processing the vertex pruning phase
dominates the cost in the second phase. On Foursquare,
SAC-RotC+ outperforms SAC-Exact+ when ε is larger than
10−3. Also, on Gowalla, SAC-RotC+ is about one order
of magnitude faster than SAC-Exact+ when ε is larger than
10−4. This is because the time cost on the second phase
begins to dominate the first phase when ε is large, and our
SAC-RotC+ algorithm computes the result in an incremental
manner which significantly outperforms the triple-vertex-based
algorithm in the second phase. Comparing the minimal time
cost of the two algorithms on both datasets in our experiments,
we can conclude that SAC-RotC+ can achieve a speed-up
around twice.

VII. RELATED WORK

Community retrieval has been widely studied and used
in many applications such as location-aware marketing [7],
influence analysis [17], and event recommendation [18].

Prior works studied various models such as k-core [4], k-
truss [5], and clique [6] to retrieve communities based on users’

social connections. In the studies of k-core, efficient algorithms
have been proposed in [11, 19] for core decomposition. Huang
et al. [20] proposed algorithms to compute the community
based on k-truss and various algorithms for clique computation
have been studied such as in [21, 22].

Based on these models, existing works considering social
cohesiveness of users can be categorized into two types,
i.e, community detection [23, 24] and community search
[25, 26, 27, 28, 29]. In the studies of the community detection
problem, Lee et al. [23] proposed a model (k,d)-core which
uses k to control the edge density and d to control the
number of common neighbours of two vertices of an edge.
Cai et al. [24] studied the concept of community profiling
based on community detection to describe the profile of a
community using published contents and diffusion links of
users. Different from community detection, a query user is
given in the community search problem. Several studies have
been proposed to retrieve communities containing the query
vertex in an online manner. For example, Sozio et al. [25]
proposed algorithms to find a community for a set of given
query vertices. The local search strategy was proposed by
Cui et al. [26] to evaluate the core number of vertices in
communities. Li et al. [27] studied the influential community
search problem based on the weighted graphs to capture the
influence of communities. In addition, some works [28, 29]
studied the community search problem on attributed graphs
which use a set of keywords as the attributes. However, the
geo-locations of users were not considered in these works.

In spatial databases, several works studied the group ob-
jects retrieval problem based on users’ spatial locations such
as [8, 9, 30] and [31]. Guo et al. [8] studied the spatial
keyword query which retrieves a group of objects close to
each other and cover a set of keywords together. Wu et al. [9]
adapted the densest subgraph model to the spatial community
search problem on dual networks. The work [30] proposed
localitySeach which retrieves top-k sets of spatial web objects
by integrating spatial distance, textual relevance, and a “co-
locality” measure into one ranking function. The work [31]
focused on context-aware search over social media data. It
analysed the data-centric challenges in temporal, spatial, and
spatio-temporal contexts. These proposals did not consider the
social connections of users, and thus they are different from
our problem.

Recently, some works studied the community retrieval
problem [1, 2, 3, 9, 32] considering both the spatial and social
features. The works [1, 32] solving the community detection
problem mainly focused on analyzing and understanding the
complexity networks rather than online community search. The
most closely related work in [2] is that Zhu et al. studied
finding a community within a given rectangle. Their study is
different from our work because what we consider is restricting
the size of community spatially instead of within a given
rectangle. Fang et al. [3] proposed both exact and approximate
algorithms to find a community covered by the smallest circle
for a given query vertex. In their work, the radius of circle is
not given by users and only one community covered by the
smallest circle is returned to users, and thus it cannot provide
more options for users as done by our work.

VIII. CONCLUSION

In this paper, we study the RB-k-core search problem.
We propose a triple-vertex-based algorithm and a binary-

vertex-based algorithm as benchmark algorithms. We propose
a rotating-circle-based algorithm which can find possible cost
sharing when solving the RB-k-core search problem. The
rotating-circle-based algorithm is further enhanced with critical
pruning techniques. We conduct extensive experiments on both
real and synthetic datasets and the experimental result shows
that our rotating-circle-based algorithm significantly outper-
forms the benchmark algorithms. In the future, we plan to
study the RB-k-core search problem when users are moving.

REFERENCES

[1] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engagement meets
similarity: efficient (k, r)-core computation on social networks,” PVLDB, vol. 10,
no. 10, pp. 998–1009, 2017.

[2] Q. Zhu, H. Hu, C. Xu, J. Xu, and W.-C. Lee, “Geo-social group queries with
minimum acquaintance constraints,” VLDBJ, pp. 1–19, 2014.

[3] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community search over
large spatial graphs,” PVLDB, vol. 10, no. 6, pp. 709–720, 2017.

[4] S. B. Seidman, “Network structure and minimum degree,” Social networks, vol. 5,
no. 3, pp. 269–287, 1983.

[5] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,” NSATR,
vol. 16, 2008.

[6] R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,”
Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.

[7] D. McKenzie-Mohr, Fostering sustainable behavior: An introduction to community-
based social marketing. New society publishers, 2011.

[8] T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering the m-closest
keywords query,” in SIGMOD. ACM, 2015, pp. 405–418.

[9] Y. Wu, R. Jin, X. Zhu, and X. Zhang, “Finding dense and connected subgraphs in
dual networks,” in ICDE. IEEE, 2015, pp. 915–926.

[10] J. Elzinga and D. W. Hearn, “Geometrical solutions for some minimax location
problems,” Transportation Science, vol. 6, no. 4, pp. 379–394, 1972.

[11] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decomposition of
large networks on a single pc,” PVLDB, vol. 9, no. 1, pp. 13–23, 2015.

[12] R. Hartshorne, Geometry: Euclid and beyond. Springer Science & Business Media,
2013.

[13] G. Watson, “Computing helmert transformations,” JCAM, vol. 197, no. 2, pp. 387–
394, 2006.

[14] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbel, “Lars*: An efficient
and scalable location-aware recommender system,” TKDE, vol. 26, no. 6, pp. 1384–
1399, 2014.

[15] D. Deng, A. Kim, S. Madden, and M. Stonebraker, “Silkmoth: An efficient method
for finding related sets with maximum matching constraints,” arXiv, 2017.

[16] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,” CSUR,
vol. 18, no. 1, pp. 23–38, 1986.

[17] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and
H. A. Makse, “Identification of influential spreaders in complex networks,” arXiv,
2010.

[18] X. Liu, Q. He, Y. Tian, W.-C. Lee, J. McPherson, and J. Han, “Event-based social
networks: linking the online and offline social worlds,” in SIGKDD. ACM, 2012,
pp. 1032–1040.

[19] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decomposition of
networks,” arXiv, 2003.

[20] X. Huang, L. V. Lakshmanan, J. X. Yu, and H. Cheng, “Approximate closest
community search in networks,” PVLDB, vol. 9, no. 4, pp. 276–287, 2015.

[21] J. Cheng, L. Zhu, Y. Ke, and S. Chu, “Fast algorithms for maximal clique
enumeration with limited memory,” in SIGKDD. ACM, 2012, pp. 1240–1248.

[22] J. Wang, J. Cheng, and A. W.-C. Fu, “Redundancy-aware maximal cliques,” in
SIGKDD. ACM, 2013, pp. 122–130.

[23] P. Lee, L. V. Lakshmanan, and E. Milios, “Cast: A context-aware story-teller for
streaming social content,” in CIKM. ACM, 2014, pp. 789–798.

[24] H. Cai, V. W. Zheng, F. Zhu, K. C.-C. Chang, and Z. Huang, “From community
detection to community profiling,” PVLDB, vol. 10, no. 7, pp. 817–828, 2017.

[25] M. Sozio and A. Gionis, “The community-search problem and how to plan a
successful cocktail party,” in SIGKDD. ACM, 2010, pp. 939–948.

[26] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities in large
graphs,” in SIGMOD. ACM, 2014, pp. 991–1002.

[27] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in large
networks,” PVLDB, vol. 8, no. 5, pp. 509–520, 2015.

[28] X. Huang and L. V. Lakshmanan, “Attribute-driven community search,” PVLDB,
vol. 10, no. 9, pp. 949–960, 2017.

[29] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for large
attributed graphs,” PVLDB, vol. 9, no. 12, pp. 1233–1244, 2016.

[30] Q. Qu, S. Liu, B. Yang, and C. S. Jensen, “Efficient top-k spatial locality search for
co-located spatial web objects,” in Mobile Data Management (MDM), 2014 IEEE
15th International Conference on, vol. 1. IEEE, 2014, pp. 269–278.

[31] L. R. Derczynski, B. Yang, and C. S. Jensen, “Towards context-aware search and
analysis on social media data,” in Proceedings of the 16th international conference
on extending database technology. ACM, 2013, pp. 137–142.

[32] Y. Chen, J. Xu, and M. Xu, “Finding community structure in spatially constrained
complex networks,” IJGIS, vol. 29, no. 6, pp. 889–911, 2015.

