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Abstract

This paper compares two different objective functions in 2D point feature Simultaneous Localization and Mapping (SLAM). It is shown
that the objective function can have a significant impact on the convergence of the iterative optimization techniques used in SLAM.
When Frobenius norm is adopted for the error term of the orientation part of odometry, the SLAM problem has much better convergence
properties, as compared with that using the angle difference as the error term. For one-step case, we have proved that there is one and
only one minimum to the SLAM problem, and strong duality always holds. For two-step case, strong duality always holds except when
three very special conditions hold simultaneously (which happens with probability zero), thus the global optimal solution to primal SLAM
problem can be obtained by solving the corresponding Lagrangian dual problem in most cases. Further, for arbitrary m-step cases, we also
show using examples that much better convergence results can be obtained. Simulation examples are given to demonstrate the different
convergence properties using two different objective functions.
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1 Introduction

The main task of Simultaneous Localization and Mapping
(SLAM) is to estimate robot poses and environment fea-
tures simultaneously. SLAM plays an important role in robot
navigation in environments where GPS signals are serious-
ly sheltered, such as indoor, underwater, underground envi-
ronments etc (Cadena, Carlone, Carrillo, Latif, Scaramuzza,
Neira, Reid & Leonard 2016). In the past decades, many
efficient algorithms and methods for SLAM have been pro-
posed. In order to obtain a globally consistent representa-
tion of environment and optimal estimation of robot pos-
es, graph theory, convex optimization theory and probabili-
ty theory have been widely used in the literature. Note that
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one important part of a SLAM system is called back-end
which aims to use the odometry and observation informa-
tion to produce the maximum a posteriori estimate, the stan-
dard formulation origins from (Lu & Milios 1997)(Gutmann
& Konolige 1999) and followed by many papers (Thrun &
Montemerlo 2006)(Dellaert & Kaess 2006)(Grisetti, Stach-
niss, Grzonka & Burgard 2007)(Kaess, Johannsson, Robert-
s, Ila, Leonard & Dellaert 2012).

SLAM is a non-convex nonlinear optimization problem,
and it is supposed to have many local minima, however,
recent researches have shown some interesting phenomena,
for example, it seems that iterative algorithms are more apt
to converge to globally optimal solution, even when start-
ing with very poor quality initial values (Olson, Leonard &
Teller 2006)(Grisetti, Stachniss & Burgard 2009)(Huang,
Lai, Frese & Dissanayake 2010). For one-step SLAM
problem where robot only moves one step, the nonlinear
structure has been analyzed in (Wang, Huang, Frese &
Dissanayake 2013), necessary and sufficient conditions guar-
anteeing globally optimal solution have been proved (Wang
et al. 2013)(Wang, Hu, Huang & Dissanayake 2012), and it
is also proved that there are at most two minima for any one-
step SLAM optimization problem. In (Carlone 2013), basin
of convergence for Gauss-Newton method is estimated; and
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in (Carlone, Calafiore, Tommolillo & Dellaert 2016), it is
proved that under strong duality condition, global optimal
solution to pose graph SLAM can be obtained through
solving a convex semi-definite programming (SDP) prob-
lem. Further, through using Lagrangian duality of SLAM
problem, some verification algorithms have been proposed,
which is applied to judge whether a given SLAM solu-
tion is optimal or not (Carlone & Dellaert 2015)(Carlone
et al. 2016). On the other hand, by investigating the spe-
cial structure of SLAM problem, some convex relaxation
methods have been presented in (Liu, Huang, Dissanayake
& H.Wang 2012)(Rosen, DuHadway & Leonard 2015)
which avoid converging to local minima, and in (Khosoussi,
Huang & Dissanayake 2015), nonlinear separability be-
tween translation and rotation is well investigated such that
computation speed is improved greatly, while in (Carlone,
Aragues, Castellanos & Bona 2014), a linear approxima-
tion method named LAGO (Linear Approximation for pose
Graph Optimization) is proposed which can reduce the risk
of being trapped in a local minimum.

It should be noted that there are two different kinds of objec-
tive functions used in the above mentioned 2D SLAM formu-
lations. One is using wrap(·) function to constrain the error
term relating to the orientation of odometry into (−π, π] in-
terval which is commonly referred to as angular or geodesic
distance (Carlone, Tron, Daniilidis & Dellaert 2015). An-
other is using Frobenius norm to deal with orientation part
of odometry. Particularly, in (Carlone et al. 2015)(Hartley,
Trumpf, Dai & Li 2013), a comprehensive description of
these objective functions and rotation estimation are present-
ed, and in (Carlone et al. 2015), the authors attempt to relate
these two objective functions firstly up to the first order. This
paper extends the investigation of nonlinear structure anal-
ysis as proposed in (Wang et al. 2013) and (Wang, Huang,
Khosoussi, Frese, Dissanayake & Liu 2015) by modifying
the objective function using Frobenius norms which was
proposed in (Carlone et al. 2016)(Rosen et al. 2015)(Rosen,
Carlone, Bandeira & Leonard 2016). The main contribution
of this paper is twofold. Firstly, for one-step SLAM prob-
lem, we show that strong duality between primal SLAM and
corresponding convex programming problem always holds,
and for two-step SLAM problem, we present clear condi-
tions for this strong duality which are expressed using obser-
vation and odometry data. Secondly, we compare the con-
vergence to global optimal solution for both new objective
function (using Frobenius norm to deal with orientation part
of odometry) and former objective function (using a wrap(·)
function to constrain the error term of the orientation part of
odometry directly); the comparison results show that using
new objective function formulation results in much better
convergence results.

Notations: Throughout the paper, ⊗ denotes the Kronecker
product, superscript T and −1 stand for, respectively, the
transposition and the inverse of a matrix; C ≻ D means
that matrix C −D is positive definite; I and In denote the
identity matrix with compatible dimension and dimension
n; 0 represents the zero matrix with compatible dimension,

and ∥e∥2C = eTCe, where C ≻ 0 and e is a vector. wrap(·)
is the function that maps an angle to its equivalent angle
in (−π, π]. The symbol diag{C1, . . . , Cn} denotes a block-
diagonal matrix whose diagonal blocks are C1, . . . , Cn.

2 Outline of the paper

In order to make the paper more accessible, an outline of
the remaining sections is provided before the main body of
the paper as follows:

• In Section 3, two kinds of objective functions, the old one
using wrap(·) and the new one using Frobenius norm, are
formulated for 2D point feature SLAM problems;

• In Section 4, the dimension of the primal SLAM problem
using the new objective function is reduced, where both
two-step and m−step cases are considered;

• In Section 5, the primal unconstrained optimization prob-
lem in Section 4 is converted into a constrained optimiza-
tion problem, which is essential for later solution analysis
in Sections 6 and 7;

• In Section 6, the global optimal solution of one-step S-
LAM problem is analyzed by investigating the strong du-
ality between primal SLAM problem and its correspond-
ing relaxed convex optimization problem;

• In Section 7, conditions to obtain the global optimal so-
lution of two-step SLAM problem are drawn through in-
vestigating the corresponding Lagrangian dual function
to the primal SLAM problem;

• In Section 8, some simulation results are provided to
show the advantage of using Frobenius norm in objective
function for m−step case, where the convergence perfor-
mance is compared with those of the objective functions
using wrap(·) as presented in (Wang et al. 2013)(Wang
et al. 2015);

• In Section 9, some conclusions of this paper and future
work are provided.

3 Two objective functions used in SLAM

In this section, we will introduce two kinds of objective
function that have been used in the literature.

Assume that n 2D point features {fk}nk=1 are observed from
a sequence of m + 1 2D robot poses {ri}mi=0. We use zik
to denote the observation made from pose ri to feature fk,
oi (1 ≤ i ≤ m) denote the odometry measurement between
pose ri−1 and pose ri which includes both the relative trans-
lation measurement oxy

i and the relative rotation measure-
ment oϕi . Both the odometry and observations are corrupt-
ed by zero-mean Gaussian noises with covariance matrices
Pzi

k
, Poxy

i
and poϕ

i
, respectively. xfk = [xfk yfk ]

T denotes

the position of feature fk. xri = [xri yri ]
T denotes the po-

sition of robot pose ri while ϕri denotes the orientation of
robot pose ri. R(ϕri) is the rotation matrix corresponding

2



to ϕri defined by:

R(ϕri) ,
[
cosϕri − sinϕri

sinϕri cosϕri

]
. (1)

We first state the definitions of spherical matrices which
were defined in (Wang et al. 2013)(Wang et al. 2015).

Definition 1: A ∈ R2×2 is called spherical if it commutes
with R(ϕ) (defined in (1)) for every ϕ. i.e. AR(ϕ) = R(ϕ)A
for every ϕ. B ∈ R3×3 is called spherical if it has the format
of B = diag{A, a} where A ∈ R2×2 is spherical and a is a
real number.

Definition 2: Let R̄k(ϕ) be the block-diagonal matrix with
k blocks where each block is a 2× 2 rotation matrix R(ϕ).
That is

R̄k(ϕ) , diag{R(ϕ), . . . , R(ϕ)} (2)

Matrix A ∈ R2n×2m is called spherical if AR̄m(ϕ) =
R̄n(ϕ)A for every ϕ.

When covariance matrices Pzi
k

and Poxy
i

are spherical (Wang
et al. 2015)(Carlone et al. 2016)(Rosen et al. 2015), SLAM
can be formulated as solving a non-linear least squares (N-
LLS) problem which is to minimize

F0(x) =
m∑
i=0

ni∑
j=1

∥(xfk − xri)−R(ϕri)z
i
k∥2P−1

zi
k

+
m∑
i=1

∥(xri − xri−1)−R(ϕri−1)o
xy
i ∥2

P−1

o
xy
i

+
m∑
i=1

p−1

oϕ
i

(wrap(oϕi − ϕri + ϕri−1))
2 (3)

where ni denotes the number of features observed from
robot pose ri and k is the global index of the j-th feature
observed from pose ri, and the coordinate frame is defined
by the robot pose r0, that is, xr0 = [0 0]T , ϕr0 = 0,
R(ϕr0) = R(0) = I .

The state vector contains all the robot poses and all the
feature positions that are to be estimated.

x , [xT
f1 · · · xT

fn xT
r1 ϕr1 · · · xT

rm ϕrm ]T (4)

In (Carlone et al. 2016)(Rosen et al. 2015), the Frobenius
norm is used to deal with the orientation part of odometry

in (3), which generate the following objective function

F (x) =
m∑
i=0

ni∑
j=1

∥(xfk − xri)−R(ϕri)z
i
k∥2P−1

zi
k

+
m∑
i=1

∥(xri − xri−1)−R(ϕri−1)o
xy
i ∥2

P−1

o
xy
i

+
m∑
i=1

γi
2
∥R(oϕi )−RT (ϕri−1)R(ϕri)∥2F (5)

where γi > 0 is a weight, ∥ · ∥F is the Frobenius norm.

In the following sections, we firstly formulate an alterna-
tive form for objective function (5) with reduced number of
variables, then provide condition for strong duality between
primal SLAM problem and its corresponding relaxed con-
vex optimization problem using observation and odometry
data, in addition, we compare performance of convergence
to globally optimal solution by applying objective function
(5) with that by applying objective function (3).

4 Dimension reduction of m-step point feature SLAM

In this section, we study the dimension reduction of SLAM
problem formulation (5). Firstly, two-step SLAM case is
considered, then the result is extended to m-step case (with
m+ 1 robot poses r0, r1, · · · , rm).

4.1 Two-step SLAM

When the covariance matrices are spherical, by (5), the ob-
jective function of the two-step SLAM problem can be writ-
ten in a compact form as below (note ϕr0 = 0) similar to
(Wang et al. 2015)

F (x) = ∥ATxL − Ř(ϕr0 , ϕr1 , ϕr2)z∥2C
+

γ1
2
∥R(oϕ1 )−R(ϕr1)∥2F

+
γ2
2
∥R(oϕ2 )−RT (ϕr1)R(ϕr2)∥2F (6)

where xL ,
[
xT
f1

. . . xT
fn

xT
r1 xT

r2

]T
, and

A , A0 ⊗ I2, (7)

where A0 ∈ R(n+2)×(n0+n1+n2+2) (n is the total number
of features observed, ni is the number of features observed
from pose ri, i = 0, 1, 2) is the reduced incidence matrix of
the directed graph of the SLAM problem (the direction of
each edge is from the robot pose to the observed feature or
from the robot pose i to the robot pose i+1, as shown in Fig.
1). The reduced incidence matrix is obtained by deleting the
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row that corresponds to the “origin” in the incidence matrix
of graph 1 .

r0

f1

r1

f2

r2

f3

Fig. 1. An example of two-step SLAM with three features.

For example, for the two-step SLAM with three features as
shown in Fig. 1 with pose r0 as the “origin”, the reduced
incidence matrix A0 can be written as

A0 =


z01 z02 z11 z12 z13 z22 z23 oxy

1 oxy
2

xf1 1 0 1 0 0 0 0 0 0
xf2 0 1 0 1 0 1 0 0 0
xf3 0 0 0 0 1 0 1 0 0
xr1 0 0 −1 −1 −1 0 0 1 −1
xr2 0 0 0 0 0 −1 −1 0 1


The other matrices/vectors in (6) are (note that ϕr0 = 0)

Ř(ϕr0 , ϕr1 , ϕr2)

, diag{R̄n0(ϕr0), R̄n1(ϕr1), R̄n2(ϕr2), R(ϕr0), R(ϕr1)}
= diag{R̄n0(0), R̄n1(ϕr1), R̄n2(ϕr2), R(0), R(ϕr1)} (8)

z ,
[
(z0f )

T (z1f )
T (z2f )

T (oxy
1 )T (oxy

2 )T
]T

(9)

C , diag{C0
z , C

1
z , C

2
z , Cp} (10)

where R̄k(ϕ) is defined in (2), and

zif =
[
(zik1

)T · · · (zikni
)T

]T
, i = 0, 1, 2 (11)

Ci
z = diag{P−1

zi
k1

, . . . , P−1
zi
kni

}, i = 0, 1, 2 (12)

Cp = diag{P−1
oxy
1
, P−1

oxy
2
}. (13)

According to Definition 1, A, C are both spherical matrices.

Before stating the main results, we introduce more notations.
Denote

Ai , A0
i ⊗ I2, i = 0, 1, 2 (14)

where A0
i is similar to the reduced incidence matrix A0 but

assuming only edges originating from pose ri is available.
Thus

A0 = A0
0 +A0

1 +A0
2, A = A0 +A1 +A2.

1 For the directed graph G = (V, E), the incidence matrix
A ∈ {0, 1}nv×ne where nv = |V| and ne = |E|. For the k’th
edge (ik, jk) ∈ E , Aikk = −1 and Ajkk = 1. The other elements
of A are zero.

See (Wang et al. 2015) for more details on the formulation
of A0 and A0

i . Furthermore, we define

Qi , CAT
i (ACAT )−1AC, i = 0, 1, 2. (15)

Now the dimension reduction result for two-step SLAM is
stated in the following theorem.

Theorem 1: The two-step SLAM problem (minimizing the
objective function F (x) in (6)) is equivalent to minimizing
the following nonlinear function with two variables

f0(ϕr1 ,ϕr2) = c1 − 2
∑

0≤i<2

∑
i<j≤2

bij cos(ϕrj − ϕri − ϕij0)

− 2

2∑
i=1

γi cos(ϕri − ϕri−1 − oϕi ) (16)

where c1 = zTCz −
∑2

i=0 bii + 2
∑2

i=1 γi, and for i, j =
0, 1, 2,

bij ,
√

(zTQizj)2 + (zTQiz⊥j )
2 (17)

ϕij0 , atan2(zTQiz
⊥
j , z

TQizj) (18)

with Qi given in (15), and z⊥j is defined as

z⊥j , Ř(
π

2
,
π

2
,
π

2
)zj (19)

with

z0 =



z0f

0

0

oxy
1

0


, z1 =



0

z1f

0

0

oxy
2


, z2 =



0

0

z2f

0

0


. (20)

Proof. Firstly, it can be readily proved by using Theorem 1
of (Wang et al. 2015) that minimizing the objective function
F (x) in (6) is equivalent to minimizing

f0(ϕr1 , ϕr2) = c0 − 2
∑

0≤i<2

∑
i<j≤2

bij cos(ϕrj − ϕri − ϕij0)

+
2∑

i=1

γi
2
∥R(oϕi )−RT (ϕri−1)R(ϕri)∥2F (21)

where c0 , zTCz−
∑2

i=0 bii. Note that

R(oϕi )−RT (ϕri−1)R(ϕi) =[
cos(oϕi )− cos(ϕri − ϕri−1) − sin(oϕi ) + sin(ϕri − ϕri−1)

sin(oϕi )− sin(ϕri − ϕri−1) cos(oϕi )− cos(ϕri − ϕri−1)

]
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Thus, we have

∥R(oϕi )−RT (ϕri−1)R(ϕi)∥2F = 4−4 cos(ϕri−ϕri−1−oϕi ).

Substitute the above result into (21), the proof is evident.

4.2 m-step SLAM

For the m-step case (5), we have the following theorem:

Theorem 2: The m-step SLAM problem (minimizing the
objective function F (x) in (5)) is equivalent to minimiz-
ing the following objective function with only m variables
ϕr1 , · · · , ϕrm

f0(ϕr1 , · · · , ϕrm)

=c1 − 2
∑

0≤i<j≤m

bij cos(ϕrj − ϕri − ϕij0)

− 2
m∑
i=1

γi cos(ϕri − ϕri−1 − oϕi ) (22)

where

c1 = zTCz−
m∑
i=0

bii + 2

m∑
i=1

γi (23)

and for i, j = 0, . . . ,m,

bij =
√

(zTQizj)2 + (zTQiz⊥j )
2 (24)

ϕij0 =atan2(zTQiz
⊥
j , z

TQizj) (25)

with Qi = CAT
i (ACAT )−1AC, where A,Ai, C, z, zj are

similar to those defined in Section 4.1.

Proof. The proof of Theorem 2 is similar to that of Theorem
1 and is omitted here.

Corollary 1: The m-step SLAM problem (22) is equivalent
to minimizing

f0(ϕr1 , · · · , ϕrm)

=c1 − 2
∑

0≤i<j≤m

βij cos(ϕrj − ϕri − φij0) (26)

where βij = bij , φij0 = ϕij0 except for i = 0, . . . ,m −
1, j = i+ 1 such that

βij =
√
b2ij + γ2

j + 2bijγj cos(ϕij0 − oϕj )

φij0 = atan2(bij sinϕij0 + γj sin o
ϕ
j , bij cosϕij0 + γj cos o

ϕ
j )

and c1 is defined in (23).

Proof. Denote ϕ̃f
ij = ϕrj − ϕri − ϕij0, we have that

− 2
∑

0≤i<j≤m

bij cos ϕ̃
f
ij − 2

m∑
i=1

γi cos(ϕri − ϕri−1 − oϕi )

= −2
∑

0≤i≤m−1
j=i+1

bij cos ϕ̃
f
ij − 2

∑
0≤i≤m−1
i+1<j≤m

bij cos ϕ̃
f
ij

− 2
m∑
i=1

γi cos(ϕri − ϕri−1 − oϕi )

= −2
∑

0≤i≤m−1
j=i+1

(bij cos ϕ̃
f
ij + γj cos(ϕrj − ϕri − oϕj ))

− 2
∑

0≤i≤m−1
i+1<j≤m

bij cos ϕ̃
f
ij

= −2
∑

0≤i<j≤m−1

βij cos ϕ̃
f
ij .

Substitute the above equation into (22), the proof is evident.

Remark 1: From Corollary 1, it can be seen that the for-
mat of orientation part is similar to the x-y part if we use
Frobenius norm in the objective function (5), this is differ-
ent from the case when objective function (3) is used (Wang
et al. 2015).

5 Alternative form of primal unconstrained SLAM op-
timization problem

In this section, we convert the unconstrained optimization
problem of them-step SLAM problem as described in Corol-
lary 1 into a constrained optimization, which is essential for
the analysis of globally optimal solution.

Corollary 2: The m-step SLAM problem (26) is equivalent
to the following optimization problem

min c2 +
∑

0≤i<j≤m

βij∥pj −Rijpi∥22

s.t., ∥pi∥22 = 1, i = 0, . . . ,m (27)

where pi = [cosϕri sinϕri ]
T for i = 0, . . . ,m with p0 =

[1 0]T , and

Rij =

[
cosφij0 − sinφij0

sinφij0 cosφij0

]
, c2 = c1 − 2

∑
0≤i<j≤m

βij .

5



Proof. Note that

∥pj −Rijpi∥22

=∥

[
cosϕrj

sinϕrj

]
−

[
cosφij0 − sinφij0

sinφij0 cosφij0

][
cosϕri

sinϕri

]
∥22

=∥

[
cosϕrj − cos(φij0 + ϕri)

sinϕrj − sin(φij0 + ϕri)

]
∥22

=(cosϕrj − cos(φij0 + ϕri))
2 + (sinϕrj − sin(φij0 + ϕri))

2

=2− 2 cos(ϕrj − ϕri − φij0).

Thus,

βij∥pj −Rijpi∥22 = 2βij − 2βij cos(ϕrj − ϕri − φij0).

Substitute above equation into (26), the proof is evident.

Optimization problem (27) is equivalent to

min p̄TW0p̄+ c2

s.t., pT
i pi = 1, i = 1, . . . ,m (28)

where p̄ = [pT
m pT

m−1 . . . pT
1 pT

0 ]
T , and W0 is a 2(m +

1)× 2(m+ 1) matrix which can be denoted as

W0 =



αmmI2 −β(m−1)mR(m−1)m · · ·
−β(m−1)mRT

(m−1)m α(m−1)(m−1)I2 · · ·
...

... · · ·
−β1mRT

1m −β1(m−1)R
T
1(m−1) · · ·

−β0mRT
0m −β0(m−1)R

T
0(m−1) · · ·

−β1mR1m −β0mR0m

−β1(m−1)R1(m−1) −β0(m−1)R0(m−1)

...
...

α11I2 −β01R01

−β01R
T
01 α00I2


(29)

where for i = 0, . . . ,m,

αii =
∑
k ̸=i

βki

with βki = βik.

Notice that since p0 = [1 0]T , we can remove the column
and row of W0 which corresponds to 0, such that (28) be-
comes

min pTWp+ c2

s.t., pT
i pi = 1, i = 1, . . . ,m (30)

where p = [pT
m pT

m−1 . . . pT
1 1]T , and

W =



αmmI2 −β(m−1)mR(m−1)m · · ·
−β(m−1)mRT

(m−1)m α(m−1)(m−1)I2 · · ·
...

... · · ·
−β1mRT

1m −β1(m−1)R
T
1(m−1) · · ·

−β0mvT
0m −β0(m−1)v

T
0(m−1) · · ·

−β1mR1m −β0mv0m

−β1(m−1)R1(m−1) −β0(m−1)v0(m−1)

...
...

α11I2 −β01v01

−β01v
T
01 α00


(31)

with v0k = [cosφ0k0 sinφ0k0]
T for k = 1, · · · ,m.

Particularly, for one-step case, i.e., m = 1, we have p =
[pT

1 1]T , and

W =

[
β01I2 −β01v01

−β01v
T
01 β01

]
= β01

[
I2 −v01

−vT
01 1

]
(32)

and for two-step case, i.e., m = 2, we have p = [pT
2 pT

1 1]T ,

W =


(β12 + β02)I2 −β12R12 −β02v02

−β12R
T
12 (β12 + β01)I2 −β01v01

−β02v
T
02 −β01v

T
01 β01 + β02

 .

6 Globally optimal solution to one-step SLAM

In this section, the globally optimal solution to one-step
SLAM is studied, through investigating the strong duality
condition, and an example is introduced to verify the result.

6.1 Globally optimal solution to primal problem

In (5), when m = 1, the problem becomes one-step SLAM,
and from Theorem 1, it can be seen that the one-step SLAM
problem is equivalent to minimizing the following objective
function:

f0(ϕr1) = c1 − 2b01 cos(ϕr1 − ϕ010)− 2γ1 cos(ϕr1 − oϕ1 )

= c1 − 2β01 cos(ϕr1 − φ010) (33)
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where c1 = zTCz−
∑1

i=0 bii + 2γ1, and

β01 =

√
b201 + γ2

1 + 2b01γ1 cos(ϕ010 − oϕ1 )

φ010 = atan2(b01 sinϕ010 + γ1 sin o
ϕ
1 ,

b01 cosϕ010 + γ1 cos o
ϕ
1 ).

Consider interval [−π, π), there is only one minimum, i.e.,
ϕr1 − φ010 = 0 which means the globally optimal solution
to one-step SLAM is

ϕr1 = φ010 (34)

Thus, the global minimum of f0(ϕr1) is

f0(ϕ
∗
r1) = c1 − 2β01.

6.2 Strong duality for one-step case

For one-step SLAM case, the primal problem can be rewrit-
ten as

min pTWp+ c2

s.t., pT
1 p1 = 1 (35)

where p = [pT
1 1]T , and

c2 = zTCz−
1∑

i=0

bii + 2γ1 − 2β01.

From the analysis in Section 6.1, we have known that the
global minimum of the primal problem (28) when m = 1 is

f∗ = c1 − 2β01

= zTCz−
1∑

i=0

bii + 2γ1 − 2β01

= c2 (36)

where c1 = zTCz−
∑1

i=0 bii+2γ1, and the optimal solution
is ϕr1 = φ010. Next, we will calculate the global minimum
of the Lagrangian dual problem.

The Lagrangian of primal problem is

L(p1, λ̄1) = pTWp+ c2 + λ̄1(1− pT
1 p1) (37)

where λ̄1 is Lagrange multiplier.

Let λ̄1 = β01λ1, the dual function d: Rn −→ R is the
infimum of the Lagrangian with respect to p1:

d(λ1) = inf
p1

L(p1, λ1) = inf
p1

pT W̃p+ c2 + β01λ1 (38)

where

W̃ = β01

[
(1− λ1)I −v01

−vT
01 1

]
.

The Lagrangian dual problem is to look for a maximum of
the dual function over λ1:

d∗ = max
λ1

d(λ1) = max
λ1

inf
p1

pT W̃p+ c2 + β01λ1. (39)

Set L(p1, λ1)’s partial derivative with respect to p1 to zero:

∂L(p1, λ1)

∂p1
= 0

which generates

∂L(p1, λ1)

∂p1
= 2(1− λ1)p1 − 2v01 = 0 (40)

From (40), we have p1 = 1
1−λ1

v01, substitute it into (38),
we have

d∗ = max
λ1

d(λ1) = max
λ1

β01(−
1

1− λ1
+ 1) + c2 + β01λ1.

(41)

The maximum of d(λ1) can be obtained by solving

∂d(λ1)

∂λ1
= β01 −

β01

(1− λ1)2
= 0 (42)

from which we have λ∗
1 = 0, thus, the optimal minimum of

the Lagrangian dual

d∗ = c2 (43)

with the optimal solution p1 = v01, thus, ϕr1 = φ010, which
equals the optimal solution to the primal problem. Compare
d∗ in (43) with f∗ in (36) of the primal problem, we have
d∗ = f∗, the so called strong duality holds.

Remark 2: It can be concluded that no matter what level
noise is, for one-step SLAM here, the optimal solution to
the Lagrangian dual problem (37) is equal to that of primal
optimal problem (35), and this solution is unique. Further-
more, it can be proved that the eigenvalues of W̃ (λ∗) for
the Lagrangian dual problem (37) are

1− λ∗
1,

2− λ∗
1 ±

√
λ∗2

1 + 4

2
(44)

From (42), we have that λ∗
1 = 0, thus, there is only one

eigenvalue which satisfies the Single Zero Eigenvalue Prop-
erty (SZEP) condition proposed in (Carlone et al. 2016).
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Remark 3: Through using objective function (5) for one-
step case, there exists only one minimum which is global
optimal, however, applying objective function (3), accord-
ing to the result obtained in (Wang et al. 2013), when some
conditions as proposed in Theorem 2 of (Wang et al. 2013)
are satisfied, there are two local minima. The following Ex-
ample 1 shows the advantage of using objective function (5)
instead of (3) for one-step case.

Example 1: Consider one-step one feature case, giv-
en ground truth of robot pose r1 and feature f1 as
xr1 = [1 5 0.2]T and xf1 = [−5 5]T , respectively.
Let the observation and odometry be affected by nois-
es with mean 0 and standard deviation 0.7, which are
z0f = [−5.3488 5.2851]T , z1f = [−5.8028 0.9995]T ,
oxy
1 = [1.0605 5.3026]T , oϕ1 = 3.1610. If we use objective

function (3), the one-step SLAM problem can be converted
into solving (10) of (Wang et al. 2013), and from Theorem
2 of (Wang et al. 2013), it can be seen that conditions (16)-
(20) of (Wang et al. 2013) are satisfied, there are two mini-
ma, i.e., x = [−5.1259 4.8542 0.8376 5.7335 0.395])T

and x = [−5.1178 5.7617 0.8295 4.8260 − 0.0716]T ,
where x = [xT

f1
xT
r1 ϕr1 ]

T . However, if we use ob-
jective function (5), from above analysis, we have that
there is only one minimum which is the global op-
timal solution to the one step SLAM problem, i.e.,
x = [−5.1749 5.2597 0.8865 5.3281 0.1865]T .

7 Globally optimal solution to primal two-step SLAM

In this section, conditions to obtain the globally optimal so-
lution of the two-step SLAM case are drawn through inves-
tigating the corresponding Lagrangian dual problem, an ex-
ample is provided to verify the main theorem of this section.

Similar to one-step case, the Lagrangian dual function d is
the infimum of Lagrangian with respect to p2,p1:

d(λ1, λ2) = inf
p

L(p, λ) = inf
p2,p1

pTW (λ)p+ c2 +
2∑

i=1

λi

where p = [pT
2 pT

1 1]T , c2 = zTCz −
∑1

i=0 bii +

2
∑2

i=1 γi − 2
∑

0≤i<j≤2 βij

W (λ) =


W11(λ) −β12R12 −β02v02

−β12R
T
12 W22(λ) −β01v01

−β02v
T
02 −β01v

T
01 w33


where W11(λ) = (β12 + β02 − λ2)I2, W22(λ) = (β12 +
β01 − λ1)I2, w33 = β01 + β02. The following lemma is
borrowed from (Gallier 2010).

Lemma 1: If W is a symmetric matrix, then the function

f(p) = pTWp+ 2pTu

has a minimum value iff W ≥ 0 and (I −WW †)u = 0, in
which case this minimum value is

f∗ = −uTW †u.

The lagrangian dual problem is to look for a maximum of
the dual function over λ:

d∗ = max
λ

d(λ) = max
λ

inf
p

pTW (λ)p+ c2 +

2∑
i=1

λi

= max
λ

inf
p

pT W̃ (λ)p+ 2pTu+ v + c2 +
2∑

i=1

λi

(45)

where

W (λ) =

[
W̃ (λ) u

uT v

]
,u =

[
−β02v02

−β01v01

]
, v = β01 + β02

W̃ (λ) =

[
(β12 + β02 − λ2)I2 −β12R12

−β12R
T
12 (β12 + β01 − λ1)I2

]
.

Since we consider the case when there exists minimum,
apply Lemma 1, we have

d∗ = max
λ2,λ1

− uT W̃ (λ)†u+ v + c2 +
2∑

i=1

λi. (46)

Using Schur complement lemma, the problem can be con-
verted into

d∗ = max
λ2,λ1

λ0 + c2 +
2∑

i=1

λi

s.t., W̄ (λ) ≥ 0 (47)

where W̄ (λ) =

[
W̃ (λ) −u

−uT v − λ0

]
, which is equivalent to

d∗ = max
λ

2∑
i=0

λi + c2

s.t., W̄ (λ) ≥ 0 (48)

where λ = [λ2 λ1 λ0]
T , and

W̄ (λ) =


W̄11(λ) −β12R12 −β02v02

−β12R
T
12 W̄22(λ) −β01v01

−β02v
T
02 −β01v

T
01 W̄33(λ)


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where W̄11(λ) = (β12 + β02 − λ2)I2, W̄22(λ) = (β12 +
β01 − λ1)I2, W̄33(λ) = β01 + β02 − λ0.

Optimization problem (48) is a convex optimization prob-
lem which can be solved efficiently using the Matlab LMI
toolbox. The following two lemmas can be proved by fol-
lowing similar lines as proposed in (Carlone et al. 2016)
which is omitted in this paper.

Lemma 2: The optimal value d∗ in (48) is attained at a
finite λ. Moreover, the penalized matrix W̄ (λ∗) has one zero
eigenvalue.

Lemma 3: If the zero eigenvalue of the penalized matrix
W̄ (λ∗) is simple, then the duality gap is zero, i.e., d∗ = f∗.

From Lemma 2, we have that W̄ (λ∗) at least has one zero
eigenvalue, in the following, we prove that for two-step case,
i.e., m = 2, there is only one zero eigenvalue.

The following two lemmas are common which will be used
in later development.

Lemma 4: If matrices A, B satisfy[
A B

BT 0

]
≥ 0, (49)

then A ≥ 0 and B = 0.

Lemma 5: Multiplication by nonsingular matrices cannot
change rank, e.g., given elementary matrix P , the rank of
W(λ) = PW̄ (λ)PT is the same as that of W̄ (λ). In addi-
tion, if W̄ (λ) ≥ 0, we have W(λ) ≥ 0 also holds.

The main result for two-step SLAM is given in the following
theorem:

Theorem 3: Given solution λ∗ to Lagrangian dual problem
(48), W̄ (λ∗) always has only one zero eigenvalue except the
following conditions are satisfied simultaneously

φ020 − φ010 − φ120 = (2k + 1)π, k ∈ {−2,−1, 0, 1}

λ2 = β12 + β02 −
β02β12

β01

λ1 = β12 + β01 −
β01β12

β02
(50)

Further, when W̄ (λ∗) has only one zero eigenvalue, the
duality gap is zero, i.e., d∗ = f∗.

Proof. From Lemma 4, it can be concluded that β01+β02−
λ∗
0 > 0 since v02 ̸= 0, v01 ̸= 0. Similarly, we have β12 +

β02 − λ∗
2 > 0 and β12 + β01 − λ∗

1 > 0.

Firstly, through elementary transformation, i.e., multiply
both the left and right sides of W̄ (λ) by

P1 =


I2 0 0

β12R
T
12

β12+β02−λ∗
2
I2 0

β02v
T
02

β12+β02−λ∗
2

0 I2


and PT

1 , respectively, we can convert W̄ (λ∗) into

W(λ∗) =


W11(λ

∗) 0 0

0 W22(λ
∗) −b

0 −bT W33(λ
∗)

 (51)

where W11(λ
∗) = (β12 + β02 − λ∗

2)I2, W22(λ
∗) = (β12 +

β01 − λ∗
1 −

β2
12

β12+β02−λ∗
2
)I2, W33(λ

∗) = β01 + β02 − λ0 −
β2
02

β12+β02−λ∗
2

, bT = (β01v
T
01 +

β02β12v
T
02R12

β12+β02−λ∗
2
), apply Lemma

5, we have that the number of zero eigenvalue of W(λ∗) is
equal to that of W̄ (λ∗), and

W(λ∗) ≥ 0 (52)

and there exists at least one zero eigenvalue for W(λ∗),
which means(β12 + β01 − λ∗

1 −
β2
12

β12+β02−λ∗
2
)I2

−bT

−b

β01 + β02 − λ∗
0 −

β2
02

β12+β02−λ∗
2

 ≥ 0.

If b ̸= 0, from Lemma 4, it can be concluded that

β12 + β01 − λ∗
1 −

β2
12

β12 + β02 − λ∗
2

> 0.

Multiply both the left and right sides of W(λ∗) in (51) by

P2 =


I2 0 0

0 I2 0

0 bT

β12+β01−λ∗
1−

β2
12

β12+β02−λ∗
2

I2


and PT

2 , respectively, we can convert W(λ∗) into

W(λ∗) =


W ′

11(λ
∗) 0 0

0 W ′
22(λ

∗) 0

0 0 W ′
33(λ

∗)


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where W ′
11(λ

∗) = β12 + β02 − λ∗
2 > 0, W ′

22(λ
∗) = β12 +

β01−λ∗
1−

β2
12

β12+β02−λ∗
2
> 0, and W ′

33(λ
∗) = β01+β02−λ∗

0−
β2
02

β12+β02−λ∗
2
− bTb

β12+β01−λ∗
1−

β2
12

β12+β02−λ∗
2

, the zero eigenvalue

of W(λ∗) (which is also the eigenvalue of W̄ (λ∗)) can only
be

W ′
33(λ

∗) = 0.

Thus, we have that for two-step case, if b ̸= 0, the penalized
matrix W̄ (λ∗) has only one eigenvalue in 0, by Lemma 3,
we have that the duality gap is zero, i.e., d∗ = f∗.

On the other hand, consider the case when β12+β01−λ∗
1−

β2
12

β12+β02−λ2
= 0, From Lemma 4, we have this requires that

b = 0. Since the necessary and sufficient condition of

b =

β01 cosφ010 +
β02β12

β12+β02−λ∗
2
cos(φ020 − φ120)

β01 sinφ010 +
β02β12

β12+β02−λ∗
2
sin(φ020 − φ120)


= 0

is that both

φ020 − φ120 = φ010 + (2k + 1)π, k ∈ {−2,−1, 0, 1}

and

β01 −
β02β12

β12 + β02 − λ∗
2

= 0

hold simultaneously. Thus, we have that if the following
conditions hold simultaneously, W̄ (λ∗) will have more than
one zero eigenvalues.

φ020 − φ010 − φ120 = (2k + 1)π, k ∈ {−2,−1, 0, 1}

β01 −
β02β12

β12 + β02 − λ∗
2

= 0

β12 + β01 − λ∗
1 −

β2
12

β12 + β02 − λ∗
2

= 0 (53)

which is (50), this completes the proof.

Remark 4: From Theorem 3, we have that one neces-
sary condition to ensure that W̄ (λ∗) has more than one ze-
ro eigenvalue is φ020 − φ010 − φ120 = (2k + 1)π, k ∈
{−2,−1, 0, 1}. Since φij0 ∈ [−π, π), we have that φ020 −
φ010−φ120 ∈ [−3π, 3π), furthermore, since φ120, φ010 and
φ020 are all dependent on observation zik and odometry oxy

i ,
let φ = φ020 − φ010 − φ120, φ can be seen as a continuous
random variable in [−3π, 3π). Let the probability density
function of φ be f(φ) = 1

6π , φ ∈ [−3π, 3π), it is obvious
that for an infinitesimal scalar ϵ,

lim
ϵ→0

∫ (2k+1)π+ϵ

(2k+1)π−ϵ

1

6π
dφ = lim

ϵ→0

ϵ

3
= 0

which means that the probability when φ = (2k + 1)π is
zero, i.e., φ020 −φ010−φ120 = (2k+1)π does not hold in
practice.

Remark 5: It should be pointed out that by applying objec-
tive function (5), clear conditions for globally optimal solu-
tion to two-step point feature SLAM have been formulated
in Theorem 3, this extends the results on solution to two-step
SLAM without orientation part of odometry as proposed in
(Wang et al. 2015) where objective function (3) is used. The
following Example 2 shows the advantage of using objective
function (5) instead of (3) for two-step case.

Example 2: Consider example of two-step with one
feature case, the ground truth of pose r1, r2 are xr1 =
[5 0 − 3.1325]T , xr2 = [10 0 − 3.1403]T , and
the ground truth of the feature is [10 5]T , assume that
the orientation part of odometry is affected by nois-
es, and the observation to features and odometry da-
ta are z0f = [10 5]T , z1f = [−5.0453 − 4.9543]T ,
z2f = [−0.0065 − 5]T , oxy

1 = [5 0]T , oϕ1 = 3.1363, oxy
2 =

[−4.9998 0.0455]T , oϕ2 = 3.0935. Using objective function
(3), the two-step SLAM problem can be formulated as min-
imizing (29) of (Wang et al. 2015), which can be solved by
using fminunc solver of Matlab, the result is that there are 2
local minima which depend on initial values, which are x =
[9.8877 4.8936 5.1123 0.1064 3.1065 10.6602 −0.0210
−2.8721]T and x = [10.0960 5.0816 4.9040 − 0.0816
−3.0752 9.3132 0.2383 2.8663]T , where x = [xT

f1
,xT

r1 ,
ϕr1 ,x

T
r2 , ϕr2 ]

T . However, using objective function (5),
from observation and odometry data, we can verify that
condition φ020 − φ010 − φ120 = (2k + 1)π does not hold,
from Theorem 3, we have that the solution to problem
(48) is the globally optimal solution of the primal SLAM
problem, i.e., x = [9.9996 4.9970 5.0004 0.0030 −
3.1341 10.0095 − 0.0039 −3.1365]T .

8 Simulation results to m-step SLAM

In this section, some simulation results are presented to
show the advantage of using the new objective function with
Frobenius norm for m-step case of the SLAM problems.

For m-step (m ≥ 3) SLAM case, from Corollary 1, we have
that the SLAM problem can be converted into minimizing
the following objective function

f0(ϕr1 , · · · , ϕrm)

=c1 − 2
∑

0≤i<j≤m

βij cos(ϕrj − ϕri − φij0) (54)

where parameters c1, βij , φij0 are given in Corollary 1.
However, if we use objective function (3), from (45) of
(Wang et al. 2015), we have that the m-step SLAM problem
will be converted into minimizing the following nonlinear
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function

f0(ϕr1 , · · · , ϕrm)

=c0 − 2
∑

0≤i<j≤m

bij cos(ϕrj − ϕri − ϕij0)

+

m∑
i=1

(wrap(oϕi − ϕri + ϕri−1))
2. (55)

Compare (54) with (55), it can be seen that (54) is simpler
and wrap(·) is not needed anymore. The following Example
3 shows that for some cases, minimizing objective function
(54) may receive much better results than (55).

While we currently do not have theoretical results on the
number of minima and global convergence for the general
m-step case, we can obtain an a-posteriori optimality check
as done in (Carlone et al. 2016) using Lemma 3. Similar to
two-step case, the Lagrangian of primal optimization prob-
lem can be formulated as solving the following convex op-
timization problem:

d∗ = max
λ

m∑
i=0

λi

s.t., W̄ (λ) ≥ 0 (56)

where W̄ (λ) = W−Λ, Λ = diag{λmI2, λm−1I2, . . . , λ0},
with W given in (31).

Through solving optimization problem (56), λ∗ is then ob-
tained. Substitute λ∗ into W̄ (λ), from Lemma 3, we have
that if W̄ (λ∗) has one and only one zero eigenvalue, the du-
ality gap between (56) and the primal optimization problem
(27) is zero.

Example 3: Consider the following example, we let the
ground truth of orientation part of robot poses be −π +
0.05∗rand, where rand is a sample drawn from the uniform
distribution in [0,1], the orientation part of odometry is π−
0.05 ∗ rand, ground truth positions for both features and
poses are shown in Fig. 2. In particular, for 4-step case, an
example of pose ground truths are xr1 = [5 0 −3.1325]T ,
xr2 = [10 0 −3.1403]T , xr3 = [15 0 −3.1325]T , xr4 =
[20 0 −3.1353]T , and odometries are o1 = [5 0 3.1363]T ,
o2 = [−5 0.0453 3.0935]T , o3 = [−5 0.0063 3.1414]T ,
o4 = [5 0.0457 3.1028]T , Table 1 presents the results of
percentage of convergence to global minima for minimizing
objective function (54) and (55), where fminunc of Matlab
is used to solve the minimization problem. From Table 1, it
can be seen that using objective function (54) can receive
much better convergence performance.

To demonstrate the advantage of objective function (54) fur-
ther, consider the DLR dataset as presented in (Kurlbaum
& Frese 2009)(Zhao, Huang & Dissanayake 2013). In order
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Ground truth of features (observed and unobserved) and poses

Fig. 2. Ground truth of features and poses. Black x-marks denote
positions of robot poses, while red circles denote positions of
features.

Table 1
Comparison of percentage of convergence to global mini-
ma (of 1000 simulations with arbitrary initial values) using
fminunc).

Number of robot poses m 4 10 20

Objective function (54) 100% 100% 100%

Objective function (55) 34.9% 23.3% 15.5%

to compare the convergence of objective functions (54) and
(55) with different levels of error and drift in the odometry,
the orientation part of odometry is corrupted with different
levels of additive zero mean Gaussian noise, the noise lev-
els are represented by different variances of noises. In total
four noise levels are tested to obtain statistical results in the
following Example 4, i.e., the variances of noises are 0, 0.5,
1 and 2.

Example 4: In this example, we use the local map datasets
available on OpenSLAM under project 2D-I-SLSJF, where
200 local maps are built from the DLR dataset, the results
of different scenarios are obtained using fminunc in Mat-
lab which are shown in Table 2 and Table 3, where it can be
seen that the result using objective functions (54) receives
better convergence performance. In addition, Fig. 3 shows
the result when the orientation part of odometry is not cor-
rupted by noise and the number of local maps is 20, the ob-
jective function is 0.3717 at the optima x∗

0, Table 4 shows
the derivation between x∗

0 and the local minima x∗
1 when

noise level is 1, i.e., ∥x∗
0 − x∗

1∥2, where it can be seen that
there are two local minima corresponding to f∗

0 = 16.1322
and f∗

0 = 21.2377, respectively, obviously, the result corre-
sponds to the objective function of 21.2377 is a local mini-
mum. Furthermore, Fig. 4 shows the convergence of the cost
vs the optimization step.
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Table 2
For DLR dataset, comparison of percentage of convergence
to global minima (of 1000 simulations with arbitrary initial
values) using fminunc for (54).

Number of local maps 4 10 20

Variance of noise: 0 100% 100% 100%

Variance of noise: 0.5 100% 100% 100%

Variance of noise: 1 100% 100% 100%

Variance of noise: 2 100% 100% 100%

Table 3
For DLR dataset, comparison of percentage of convergence
to global minima (of 1000 simulations with arbitrary initial
values) using fminunc for (55).

Total number of local maps 4 10 20

Variance of noise : 0 100% 100% 100%

Variance of noise: 0.5 100% 100% 100%

Variance of noise: 1 100% 74.4% 72.5%

Variance of noise: 2 100% 50.1% 33.5%

Table 4
Deviation of local minima

objective function f∗
0 16.1322 21.2377

Deviation 17.66 18.38
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Fig. 3. Part of DLR dataset. Black triangles denote positions of
robot poses, while red circles denote positions of features.

Example 5: Consider 10-step case, ground truths of posi-
tions of features and poses are chosen as shown in Fig. 2,
and orientation of poses are arbitrarily chosen. Observation
of features and odometries are set to be ground truth plus
different levels of noises with variances being 0.1, 1, 3, 5
and 10. For each level of noise, through solving optimiza-
tion problem (56), we substitute its solution λ∗ into W̄ (λ)
and see whether SZEP condition holds, Table 5 shows av-
erage numbers of cases when SZEP condition holds out of
1000 simulation for each level of noises, which is consistent
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Fig. 4. Convergence of the cost vs optimization step, where the
blue line corresponds to the cost f∗

0 = 16.1322 at optima, and the
red dash line corresponds to the cost f∗

0 = 21.2377 at optima.

Table 5
Average number when SZEP condition is satisfied (of 1000
simulations) for different noise levels.

Variance of noise 0.1 1 3 5 10

SZEP condition holds 1000 1000 986 964 948

with the numerical analysis for the pose-based SLAM case
in Figure 4 of (Carlone et al. 2016).

9 Conclusions

In this paper, the advantage of introducing Frobenius norm
into objective function in SLAM has been demonstrated us-
ing both theoretical analysis and numerical examples. It has
been proved that the strong duality always holds for one-step
point feature SLAM with spherical covariance, and for two-
step case, the strong duality also holds as long as three strict
conditions are not satisfied simultaneously. It is also shown
that for arbitrary m-step point feature SLAM problem, if
SZEP condition is satisfied, the globally optimal solution to
primal SLAM problem can be obtained by solving a convex
optimization problem. Simulation examples have verified
the conclusions proposed in this paper. In the future, the fol-
lowing points will be under our further research directions.
Firstly, it is necessary to analyze the effect of choosing local
optimum as solution, especially for real world SLAM prob-
lems, and the effect on the ability to close loops. Secondly,
since practical SLAM implementations use non-linear least-
squares solvers, it is useful to apply the convergence results
proposed in this paper to those other optimization schemes.
Thirdly, note that angle-axis parameterizations and rotation
matrices are related via the exponential map for SO(3), it
is important to further investigate the extension to 3D case
and a version of objective function (5) that directly works
on quaternion or angle-axis parameterizations.
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