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ABSTRACT Improving the degree of assistance given by in-car navigation systems is an important issue
for the safety of both drivers and passengers. There is a vast body of research that assesses the usability
and interfaces of the existing navigation systems but very few investigations study the impact on the brain
activity based on navigation-based driving. In this paper, a real-world experiment is designed to acquire the
electroencephalography (EEG) and in-car information to analyze the dynamic brain activity while the driver
is performing the lane-changing task based on the auditory instructions from an in-car navigation system.
The results show that auditory cues can influence the speed and increase the frontal EEG delta and beta
power, which is related to motor preparation and decision making during a lane change. However, there were
no significant results on the alpha power. A better lane-change assessment can be obtained using specific
vehicle information (lateral acceleration and heading angle) with EEG features for future naturalized driving
study.

INDEX TERMS Auditory instructions, EEG, in-car navigation, lane change, real-world driving.

I. INTRODUCTION
The navigation system is the most popular and commonly
used function of an in-vehicle information system (IVIS).
In Taiwan, its output value to the automobile electronic
industry has exceeded 1 trillion New Taiwan Dollars and
reached 40.15 million units, meaning that almost every car
has an IVIS (Communication Components Magazine, 2010).
Although this technology is very convenient and helps the
driver navigate to near or far destinations, the in-car navi-
gation system has caused problems or accidents because
of software errors (Navigation Systems Research Founda-
tion, 2007) such as an unclear interface design [1] and
distracted driving [2]. According to the National Highway
Traffic Safety Administration (NHTSA), driver distraction

accounts for 25 to 30 percent of all accidents in the United
States. Another significant distractor in relation to accidents
is the use of GPS which causes around 10% of accidents due
to distraction. Although existing research on lane-changing
behavior emphasizes explicit behavior and typical durations,
there are few published results on how the brain is involved
in executing a lane change from the driver’s perspective.
Hence, there is a need to explore human brain activity during
this activity.

Another important issue in any study about driving is
how to generalize the findings from a simulator to real life.
There are some measurable differences between a simu-
lator and real-life driving [3]–[6]. For example, Halvig et al.
compared real-life driving and simulators with respect to
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driving performance, sleep-related physiology (using an EEG
and electrooculography) and subjective sleepiness during
night and day driving [5]. Generally, the simulator results
were associated with higher levels of subjective and phys-
iological parameters related to sleep than actual driving.
Therefore, this study focuses on an on-road experiment and
uses EEG recordings to explore the dynamic brain activity
of the driver during a lane change along with the auditory
instructions from the in-car navigation system.

II. BACKGROUND
A. THE DEFINITION OF LANE CHANGE
A lane change is defined as a driving maneuver that moves a
vehicle from one lane to another where vehicles in both lanes
are moving in the same direction of travel [7]. Researchers
have used different types of information to develop a lane
change model, including the position of the car [8], the loco-
motion of the car body [9] and the angle of steering [10].
Other researchers involved human or environmental factors,
including traffic signals and obstacles [11], intent and
distance between the other cars [12], the distance between
other cars [13] and maintaining a smooth driving state [14].
To explore the decision making of the driver, Guo et al. [15]
observed that when the driver performs a lane change, there is
sine-wave steering pattern (decelerate-accelerate-decelerate).
Also, drivers tended to turn the indicator signals on only 50%
of the time at lane-change onset, reaching a 90% rate only
1.5–2s after onset [15], [16].

B. EYE MOVEMENT STUDIES ON LANE CHANGES
Since vision is the main cue for driving behavior, researchers
have extensively utilized eye movements, or gaze, as a
window through which to study how humans execute these
car control behaviors [15]–[20]. In the lane change studies,
most of the work focuses primarily on the monitoring and
decision-making aspects which are the processes to deter-
mine when or how much time it will take to execute the
maneuver [16], [20]. Both novice and expert drivers exhibited
similar fixation patterns (time and frequency) on the rear
mirror [21] and gaze patterns on the target lane [20]. A dual-
purpose view of driver gazes for control and monitoring [22]
can be used to augment as well as to generalize the current
theories and models of vehicle control to include the neces-
sary behaviors for monitoring and situation awareness. More-
over, these findings have been implemented in an integrated
computational model of driver behavior with success [23] and
facilitated the development of real-world systems for lane-
change collision avoidance [24] to increase driving safety.

C. ELECTROENCEPHALOGRAPHY STUDIES
ON LANE CHANGE
The Lane Change Task (LCT) is a simple and low-cost simu-
lation tool to study the attention associated with performing
a vehicle task while driving [25], [26]. A previous study
showed that the reaction time of deviation when the study

participant controlled the steer to make the car go back to
the original lane increased with an increase in their drowsi-
ness level [27]. Regarding EEG signatures associated with
drowsy driving, theta power burst or longer episodes of
theta activity significantly increase when the driver goes
from an alert state to a poor/drowsy state during prolonged
driving [28]. These findings are implemented in the online
detection system, demonstrating their feasibility for detecting
behavioral lapses [29]–[31].

The LCT was also used to study the driver’s mental work-
load while driving [32], [33]. Participants were requested
to perform the lane change task and a secondary task at
the same time. The driving task load contributed more to
the changes in alpha power, whereas the working memory
load contributed more to the changes in theta power. These
results indicate that EEG can provide sensitive information
for workload detection of driver while he is performing the
lane change.

From the current survey, no previous work studies
the in-vehicle navigation effect on the lane change.
The psychophysiological signals provide sensitive informa-
tion for human functional states assessment in both laboratory
and real-world settings and for building a new communica-
tion channel between driver and vehicle that allows for driver
workload monitoring.

In summary, how to define the proper stage or execution
time is the core problem for studying lane changing, although
this is usually not addressed in the literature. The EEG feature
could be a better approach as the changes can be observed
before actual car movement takes place.

D. AIM OF THIS STUDY
To explore the in-car navigation effect on driving, an on-road
experiment was designed in which the subject is required to
perform a lane change while listening to auditory instruc-
tions from the in-car navigation system. The detailed aims
of this study are: (i) to build a system that integrates vehicle
information, imaging and electroencephalography to study
on-road driving; (ii) to develop an evaluation model that is
based on real-world vehicle information to mark the stages
of lane change; (iii) to study the behavioral performance
and dynamic brain activities during real-world lane change
driving; and (iv) to explore the voice navigation effect on real-
world lane change driving through EEG data.

III. MATERIALS AND METHODS
A. PARTICIPANTS
In this paper, 9 healthy adults aged from 22 to 30 (mean age
25.5 years) with normal vision and with more than three
years of driving experience (mean experience of 8.2 years)
participated in the experiment. All the participants were
recruited from National Chiao Tung University and none
of them suffered from any sleep or psychiatric disorders
nor did they have a history of central or peripheral neuro-
logical impairments, brain injury, alcohol abuse, diabetes,

26484 VOLUME 6, 2018



C.-T. Lin et al.: Voice Navigation Effects on Real-World Lane Change Driving Analysis

FIGURE 1. Realistic driving environment in the Hsinchu Fish Harbor.
(A) real environment; (B) the bird’s eye view of driving lane from GPS
(Green rectangle illustrating the experimental road path).

FIGURE 2. Integration system for studying the real-world driving.

or drug addiction. All subjects signed the consent and were
informed about the experimental procedures and driving task
process.

B. EXPERIMENTAL ENVIRONMENT
The experiment vehicle was a 2010 Luxgen M7 with an
automatic transaxle. The experiment was conducted on a rect-
angular section of roadway in Hsinchu Fish Harbor, Taiwan,
and a GPS signal was available for most of the experiment.
The snap shot of the road and the GPS position data from a
typical round on the rectangular section of the road is shown
in green in Figure 1A and 1B. Figure 2 shows the study in
process when the participant ready for the experiment in the
car as shown in Figure 3 and when the participant is driving
which consists of the experimental setup as shown in Figure 4.

C. LANE-CHANGE TASK
The real-life driving experiment used auditory stimulus and
comprised several instructions from the vehicle navigation
systemwhich were suitable for Taiwanese. For safety compli-
ance purposes, the vehicle speed was limited from 30km/s
to 50km/s on the experiment route, the experiment was only

FIGURE 3. Study participant ready for the experiment in the car.

FIGURE 4. Experimental setup of the instruments during study.

FIGURE 5. A bird’s eye view of the event-related lane-change paradigm.

conducted during daylight hours and the participants were
instructed to hold the steering wheel in both hands. During
the experiment, the examiner randomly played two types of
stimuli when the participant was driving along the longer
sections of the route (L-Road). The stimuli comprised two
instructions. The first was a cue type (CT): the cue was
‘‘change lanes after 500 meters’’; the target was ‘‘change
lanes’’ after 15 seconds. The other type was a non-cue
type (NCT): the cue had no instructions; the target was
‘‘change lanes’’. Each stimulus event was defined as a ‘‘trial’’
which included the cue and target (Figure 5). The partic-
ipant drove the vehicle in a clockwise direction, and the
examiner played the stimuli twice when the participant was
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on an L-Road. When, the participant had completed the
lane-change, the examiner played the next stimulus when
there was no traffic.

D. EXPERIMENT PROCEDURE
Every participant spent 15 minutes reading the instructions
and signing the informed consent form. Then, they were
given an EEG cap to wear and were asked to sit on a chair
while the conductive gel was applied. The electrodes were
digitized by a 3D-digitizer. Self-reporting questionnaires,
including Karolinska Sleepiness Scale (KSS) [34], [35] and
Stress Visual Analog Scale (S-VAS) [36], were used for every
participant to record their psychometric responses of fatigue
and stress. The KSS was closely related to EEG and behav-
ioral variables, indicating a high validity in measuring sleepi-
ness. The KSSmeasured the subjective level of sleepiness at a
time and would be recorded at primary experiment. This was
a ten-point scale (1 = extremely alert, 3 = alert, 5 = neither
alert nor sleepy, 7 = sleepy – but no difficulty remaining
awake, and 9 = very sleepy – fighting sleep) There was a
modified KSS that contains one other item: 10 = extremely
sleepy, falls asleep all the time. The S-VAS had proven to be
an effective tool to simply determine the stress level. It was
usually a horizontal line which was 100 mm in length (0= no
stress, 100 = very severe stress), operationally. The partici-
pants marked on the line the point that they felt represents
their sense of their current state.

First, the examiner guided the participant to the exper-
iment station. The participant filled in the Visual Analog
Scale (VAS) questionnaire at the start and end of the exper-
iment. The participant also filled in the Karolinska Sleepi-
ness Score (KSS) questionnaire every ten minutes during the
experiment period. During the primary experiment, partici-
pants continued to drive around the rectangular roadway and
engaged in the lane change task for about seventyminutes in a
soundproof car as shown in figure 3 and 4.

E. VEHICLE INFORMATION ACQUISITION
To collect human driving data from real-life scenarios, a
RT2500 inertial measurement unit and a GPS measurement
system (RT2500-IGMS) were used as the data collection
platform, as shown in Figure 6. Different sensors provide
different types of data: (i) Lane change trajectory: the
GPS/IMU integrated system records the position data of the

FIGURE 6. (A) RT2500-IGMS (B) RT2500 installed in the vehicle.

host vehicle with time stamps (x, y, z, yaw, t) and with
250Hz frequency. Lane change trajectory key points can be
extracted from this data; (ii) Steering angle: the heading
angle and the lateral acceleration are obtained from the
RT2500-IGMS. Steering angle data can be used to accu-
rately check the start and end of each lane change operation;
(iv) Panoramic camera: video was recorded around the host
vehicle. The recorded images can be used to visually check
each lane change trajectory segmented from the GPS position
data for validation; (v) Coarse start/end time of each lane
change trajectory: recorded automatically from the steering
angle which helps to quickly extract lane change behavior.

As illustrated in figure 2, the experimental instruments
included two notebooks (notebook A, notebook B) for
recording data, Empatica E3 wristband and event data
recorder. Notebook A recorded the vehicle dates which were
acquired from the RT2500-IGMS and dynamic image of
the road from the webcam. Simultaneously, notebook B
recorded the EEG data and played the auditory stimuli. And
then, notebook A had transmitted the data markers which
were synchronous indexes for vehicle data and webcam to
notebook B with some time. Notebook B would record the
markers to be ‘‘log’’ file form notebook A and EEG data for
information aligning.

Empatica E3 wristband was a peripheral recording instru-
ments. It could record the heart rate (PPG), skin conduc-
tivity (EDA), temperature, 3-axis accelerometer and coordi-
nated universal time (UTC). Then, we could use the UTC for
data synchronization with other information.

The experimental vehicle was installed a bi-camera event
data recorder (EDR) for security concerns. One of the EDR
recorded the traffic condition and another recorded the partic-
ipant of face condition. If the accident happened at that day,
we could get out the data form bicameral EDR to investigate
the accident condition.

F. PHYSIOLOGICAL DATA RECORDING
The EEG signals were recorded by Ag/AgCl electrodes that
were attached to a 32-channel Quik-Cap (Compumedical
NeuroScan). Thirty electrodes were arranged according to
a modified international 10-20 system [37], and two refer-
ence channels, A1 and A2, were placed on the left and
right mastoids. All channels were digitized by a 3D-digitizer.
The sampling frequency was 1000 Hz and the impedance
of each electrode was kept below 10 k�. The signals were
amplified by the ScanNuAmps 32 channel portable amplifier.

G. LANE-CHANGE POINT ANALYSIS
To study behavioral performance and dynamic brain activities
under different conditions, appropriate behavioral markers
from the vehicle information to define the lane-change time
points were developed. The heading angle (Xh) and lateral
acceleration (Xl) from RT2500-IGMS were used as the
assessment indicator to determine the lane-change time point.
Then, trial epochs from the first second are extracted before
‘‘cue’’ to 12 seconds after the ‘‘target’’ and preparation time
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(CT: 15 seconds; NCT: 5 seconds) forXh andXl . In the case of
NCT, the epoch had a total time of 18 seconds. The baseline
of the heading angle (Xbl) was taken as the average of the
2 seconds before the target, and the absolute coordinate angle
became the heading angle of the headstock deviation.

XH = Xh − Xbl

From the heading angle analysis, the minimum of heading
angle (XHmin) at time (tHmin) between the target and 10

th second
is calculated. Simultaneously, the lateral acceleration reduced
the traffic noise by a low pass filter, which was set 1∼ 10 Hz.

XL = lowpass10Hz(X l)

The next step is to find the minimum lateral acceleration
(XLmin) at time (tLmin) between target and t

H
min. Then, using t

L
min,

the first peak of the lateral acceleration was calculated as
(Vpeak ) at time (tpeak ) from tLmin to the target. The threshold
was set as the standard deviation as 2 seconds’ target before
(standard deviation of straight, Vth).
The final step is to calculate the discriminant function to

find out the start cross time point (tstart):{
If |XL (t)− 0| < Vth; t from tpeakto target, t = tstart
If XL (t) = 0; t fromtpeak to target, t = tstart

According to the flow path, all start cross time points for every
trial were defined. The above example was left as the cross
case. The right cross case was opposite for sign of heading
angle and lateral acceleration.

H. EEG DATA ANALYSIS
The EEG raw data was first processed by a band-pass filter
from 1 to 50 Hz. The filtered data was down-sampled from
1000 Hz to 500Hz to reduce the computational complexity
of the EEG data. Then, the event file was added to EEGLAB
in MATLAB for further analysis after removing the artifacts.

The recorded three-dimension coordinate was mapped to
the EEG channels for the visualization model display and for
fitting the advanced dipole before independent component
analysis (ICA) was conducted. After ICA, the independent
component signals were obtained with a scale map by ICA
decomposition processing. The scale map included some
topographical figures to show the source distribution on the
brain surface. Furthermore, according to the exact channel
location in the brain, the dipole fitting process provided by
EEGLAB correctly finds the source position of each compo-
nent through the Boundary ElementMethods [39]. The dipole
position is a three-dimensional coordination representing the
location in the brain model. By using the scale map and the
visualization model produced from the dipole fitting process,
the region of interest component was selected for further
analysis.

The components from each subject were selected based on
the features of dipole position, scale maps, and power spec-
trum information. Component clustering was used to classify
the components from all the subjects into several clusters for
event-related spectrum perturbation (ERSP) analysis.

I. STATISTICAL ANALYSIS
A t-test was applied to compare the difference in the
vehicle parameters (including preparation speed, response
time, response speed, action time, action speed and LC
distance) between CT and NCT. The Wilcoxon signed-rank
was applied to identify the differences between the EEG
signal (CT and NCT) in every brain area. In ERSP analysis,
a matrix is obtained with a size equivalent to [frequency
bins× time windows] for each brain area. There are two-time
ranges: preparation time (from cue to target) and response
time (from target to LC); four frequency band powers: delta
band (1 - 3 Hz), theta band (4 - 7Hz), alpha band (8 – 12 Hz)
and beta band (13 – 30 Hz) which combine to be 8 matrix
blocks by the ERSP matrix. An 8 EEG index matric is built
using the mean value of each matrix for every subject. Simi-
larly, all the vehicle parameters (including preparation speed,
response time, response speed, action time, action speed and
LC distance) for every subject were available. To discuss the
relationship between vehicle information and EEG signals,
the correlation between the EEG index and the vehicle param-
eters were calculated in the frontal and central component.

IV. RESULTS
A total of 10 subjects finished the experiment; 9 data of
all subjects were recorded and 1 datum of all subjects was
lost during experimentation. All recorded information was
synchronized between each other for all subjects.

A. BEHAVIORAL RESULTS BASED
ON VEHICLE INFORMATION
Figure 7 displays the relationship between the vehicle
parameters for CT and NCT with respect to: (a) response
time (RT), (b) action time (AT), (c) lane change distance (DI),
(d) preparation speed (PS), (e) response speed (RS), and
(f) action speed (AS). As shown in Figure 7-A (vertical
axis, millisecond; horizontal axis, left, CT group; right,
NCT group), a comparison of RT was not significant in the
CT group versus the NCT group (p > 0.05). As shown
in Figure 7-B (vertical axis, millisecond; horizontal axis, left,
CT group; right, NCT group), a comparison of AT was not
significant in the CT group versus the NCT group (p> 0.05).
There was no significant difference for the mean of

response time and action time between CT and NCT.
In Figure 7-C (vertical axis, meter; horizontal axis, left, CT
group; right, NCT group), a significant difference in DI
can be seen in the CT group versus the NCT group (p <

0.01). In Figure 7-D (vertical axis, kilometer per hour; hori-
zontal axis, left, CT group; right, NCT group), a significant
difference in PS can be seen in the CT group versus the
NCT group (p< 0.01). In Figure 7-E (vertical axis, kilometer
per hour; horizontal axis, left, CT group; right, NCT group),
a significant difference in RS can be seen in the CT group
versus the NCT group (p < 0.01).
In Figure 7-F (vertical axis, kilometer per hour; hori-

zontal axis, left, CT group; right, NCT group), a significant
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FIGURE 7. Parameter of vehicle information during real world
lane-change and a comparison of the parameters of vehicle information
for two cases. ∗∗p < 0.01.

difference in AS can be seen in the CT group versus the
NCT group (p < 0.01). There was a significant difference
for the mean in relation to speed between CT and NCT.
Because distance had an impact on speed, DI was found to
be significant between CT and NCT. All correlation compar-
isons between each vehicle information under different cue
types are shown in Table 1 and Table 2.

TABLE 1. The correlations between each behavioral performance under
cue-type condition.

In the CT condition, there is a significant positive correla-
tion between AT and DI (r = 0.87, p < 0.01,); PS and RS
(r = 0.94, p < 0.01); PS and AS (r = 0.83, p < 0.01);
RS and AS (r = 0.92, p < 0.01). The vehicle speed of each
lane-change stage has a higher relationship with each other
when driving with the CT. Voice navigation seems to cast an
influence on the driver’s speed control in all the stages and on
the finishing distance of the lane change.

TABLE 2. The correlations between each behavioral performance under
no cue-type condition.

In the NCT condition, there is a significant positive corre-
lation between AT and DI (r = 0.71, p < 0.05,); PS and RS
(r = 0.99, p < 0.01); PS and AS (r = 0.95, p < 0.01);
RS and AS (r = 0.94, p < 0.01); RT and AS (r = −0.74,
p < 0.01). This result was also like CT. Moreover, there was
a higher correlation between response time and action speed.

B. QUESTIONNAIRE ANALYSIS
Figure 8 shows the average trend of the fatigue level in the
experimental period (70 minutes), which is continuously
increasing. In the finalmoments of the experiment, the fatigue
level is expected to decrease.

FIGURE 8. The results of Karolinska Sleepiness Scale Questionnaires
within ten-minute intervals during on-road driving.

As shown in Figure 9, there was no statistical significance
in the experimental start versus the end in the average value
of S-VAS (p > 0.05).

FIGURE 9. The results of Stress Visual Analogue Scale Questionnaires for
the start and end during on-road driving.

C. ELECTROENCEPHALOGRAPHY DATA ANALYSIS
ERSP analysis could be used to investigate the EEG dynamics
in the frequency domain. Figure 10 shows the ERSP
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FIGURE 10. The frontal ERSP comparison between cue type (CT) and
non-cue type (NCT).

in the frontal component between CT, NCT, and differences
between CT and NCT by Wilcoxon signed-rank test to find
the characters of power changes related. The vertical axis has
a frequency range of 1 Hz ∼ 30 Hz, the horizontal axis had
a timeline of −2 second ∼ 15 seconds. The important time
points were ‘cue’ (0 seconds), ‘target’ (5 seconds), and ‘LC’
(lane change point was not fixed under a difference type).

Figure 11 shows the ERSP in the central component
between CT, NCT, and is tested on all 6 subjects. All compo-
nents are selected according to the scale map and visu-
alization model produced from the dipole fitting process.
The CT shows the alpha (8 Hz ∼ 12 Hz) and beta (13Hz ∼
30 Hz) frequency band power response around the LC (cue:
0 seconds, target: 5 seconds, LC: 7.33 second). The NCT
also shows the alpha (8 Hz ∼ 12 Hz) and beta (13Hz ∼
30 Hz) frequency band power response around the LC (cue: 0
seconds, target: 5 seconds, LC: 7.41 second). The Wilcoxon
signed-rank test showed there was significant difference
in the CT versus the NCT (p < 0.005). The test shows that
central beta band power increases more in the CT than the
NCT between cue and LC, preparation time and action time
(cue: 0 second, target: 5 seconds, LC: 7.37 second).

FIGURE 11. The central ERSP comparison between cue type (CT) and
non-cue type (NCT).

D. CORRELATION ANALYSIS BETWEEN EEG
AND VEHICLE INFORMATION
As shown in Table 3 to Table 10, the correlation analysis
was performed to compare the EEG indexes and vehicle

TABLE 3. Correlation between frontal EEG and vehicle information from
Cue to Target under Cue type condition.

TABLE 4. Correlation between frontal EEG and vehicle information from
Cue to Target under No-Cue type condition.

TABLE 5. Correlation between frontal EEG and vehicle information from
Target to LC under Cue type condition.

TABLE 6. Correlation between frontal EEG and vehicle information from
Target to LC under No-Cue type condition.

TABLE 7. Correlation between central EEG and vehicle information from
cue to Target under Cue type condition.

performance during each stage under different cue type
conditions. The frontal beta showed a negative correlation
with RT (r=−0.742, p= 0.056) after the cue and before the
target in the CT condition, as shown in Table 3. The frontal
delta showed a negative correlation with AT (r = 0.729,
p = 0.063) after the target and before the LC in the CT
condition, as shown in Table 5.
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TABLE 8. Correlation between central EEG and vehicle information from
cue to Target under No-Cue type condition.

TABLE 9. Correlation between central EEG and vehicle information from
Target to LC under Cue type condition.

TABLE 10. Correlation between central EEG and vehicle information from
Target to LC under No-Cue type condition.

The central alpha showed a positive correlation with AT
(r = 0.901, p < 0.05) after the target and before LC in the
CT condition, as shown in Table 9. The central theta showed
a positive correlation with RT (r = 0.938, p < 0.01) after
the target and before the LC in the CT condition, as shown
in Table 9. The frontal beta showed a negative correlation
with AT (r=−0.7555, p < 0.05) after the cue and before the
target in the NCT condition, as shown in Table 4. The central
theta showed a negative correlation with DI (r = −0.8173,
p < 0.05) after the cue and before the target in the NCT
condition, as shown in Table 8. The frontal beta showed a
negative correlation with RT (r=−0.7308, p= 0.0621) after
the target and before the LC in the NCT condition, as shown
in Table 6. The frontal beta showed a negative correlationwith
AT (r = −0.7287, p = 0.0632) after the target and before the
LC in the NCT condition, as shown in Table 6.

V. DISCUSSION
The on-road experiment was designed with the EEG record-
ings and in-car information to explore the dynamic brain
activity while the driver performed the lane-change task
followed by the auditory instructions from the in-car navi-
gation system. By GPS measurement system, an on-road
lane-change detection model (ORLCDM) based on two

pieces of vehicle information (heading angle and lateral
acceleration) which is sensitive to car locomotion was devel-
oped to detect the car movement as the driver starts to
change lanes and finishes the change in the target lane.
Although the ORLCDM can reach 85.53% of accuracy,
the model still needs more parameters, such as the angle
of the steer, the distance between other cars, night/day
etc. [8], [9], [11]–[14], [43] to enhance its performance
and generalization for each situation. Currently, this model
provides a useful tool to define the different stages of on-road
lane changes to explore behavioral performance and brain
activities.

From the behavioral results, the auditory in-car navigation
system had an influence on the real-world driver’s perfor-
mance, especially on speed control. There is a time difference
between the auditory target shown and the lane change as
judged by the ORLCDM. The subjects did not change lanes
immediately but instead spent a similar amount of time scan-
ning the environment to decidewhether to turn the car. During
this period, the drivers exhibited significantly different visual
scanning in the rear-view/left/right mirror and current/target
lanes to get sufficient information [15], [16], [20]. Therefore,
these drivers could use a similar strategy and time to initiate
a lane change, but the speed of the car was influenced by the
auditory instructions from the navigation system. Although
the difference is not reflected in the response time of the
lane change, the distance to finish the lane change is shorter
in the cue-type condition than it is in the non-cue type
condition. The cue-type condition provides the driver with
enough information to reduce speed for the incoming situ-
ation but the related brain processing should be examined
by EEG analysis. There are some specific neural activities
related to on-road lane change. Both cue types showed that
the delta power at the frontal component increased after the
target voice and before the lane-change. Both conditions
also showed that there was an increase in alpha and beta
power at the central component after the lane-change. There
are no significant differences in either the frontal or central
components for the two conditions. Currently, the role of
the delta band in different cognitive processes is still under
discussion [43]–[45]. Functional delta oscillations appear to
attention and the detection of motivationally salient stimuli
in the environment [46], [47]. Also, several studies suggest
this reflects behavioral inhibition [47]–[49]. Other work indi-
cates that synchronous delta activity plays an important role
in coordinating the neural activity of the network during
decision making [50]. In the current study, the increase
in delta power is just before the lane change is initiated.
Therefore, it could be related to the decision-making process
which excludes interference from other senses when making
the decision to execute a lane change (internal representa-
tion). Moreover, the frontal delta band is influenced by the
cue instruction, and there is a positive relationship with the
time to finish the lane change under the cue-type condition.
The frontal delta could be a good index related to the decision
making of an on-road lane change.
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VI. CONCLUSIONS
In-car navigation systems influence on-road lane change
behavior. They provide the driver with enough information
to take preparatory action to move the vehicle into a different
lane and help the driver to decide to make a lane change.
The frontal delta and beta are unique for real-world lane
change driving and these features can provide the index to
test more lane-change performance under different individual
status. The lane-change assessment developed in this study
which is based on vehicle information (lateral acceleration
and heading angle) can be used as a specific event maker
for future naturalized driving study. Future study includes
increasing the number of subjects to enhance reliability
and develop the image analysis to compare the lane-change
assessment.
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