
Hybrid Networks: Improving Deep Learning
Networks via Integrating Two Views of Images

Sunny Verma1, Wei Liu1,∗, Chen Wang2, and Liming Zhu2

1 Advanced Analytics Institute, School of Software, University of Technology Sydney,
Sydney, Australia

Sunny.Verma@student.uts.edu.au, Wei.Liu@uts.edu.au
2 CSIRO, Data61, Sydney, Australia

Chen.Wang@data61.csiro.au, Liming.Zhu@data61.csiro.au

Abstract. The principal component analysis network (PCANet) is an
unsupervised parsimonious deep network, utilizing principal components
as filters in the layers. It creates an amalgamated view of the data by
transforming it into column vectors which destroys its spatial structure
while obtaining the principal components. In this research, we first pro-
pose a tensor-factorization based method referred as the Tensor Fac-
torization Networks (TFNet). The TFNet retains the spatial struc-
ture of the data by preserving its individual modes. This presentation
provides a minutiae view of the data while extracting matrix factors.
However, the above methods are restricted to extract a single represen-
tation and thus incurs information loss. To alleviate this information loss
with the above methods we propose Hybrid Network (HybridNet)
to simultaneously learn filters from both the views of the data. Compre-
hensive results on multiple benchmark datasets validate the superiority
of integrating both the views of the data in our proposed HybridNet.

Keywords: Tensor Decomposition, Classification, Feature Extraction

1 Introduction

Features extraction is an important operation in the development of classifica-
tion tasks. This process has matured with a multitude of developments evolving
from the machine learning, computer vision, data mining, and signal processing
communities [26]. Today, in the era of deep learning, features are extracted by
processing the data through multiple stacked convolution layers. The crux of
feature extraction with deep architectures is to perform sophisticated operations
with multiple layers in a sequential manner [1]. The features obtained by the deep
networks promise better feature representations than the conventional shallow
networks. However, these networks are trained via stochastic optimization tech-
niques which necessitates multiple flops of the same data to effectively learn its
representation. This leads to longer training time while obtaining feature rep-
resentations from the data. Furthermore, the fundamental operations utilized
in deep networks are expensive regarding memory and space complexities. This



2 S. Verma et al.

limits the usability of deep architectures on micro devices like cellphones. The
current research trend focuses on alleviating the above problem associated with
the development of deep architectures [11],[14].

PCANet is one such promising architecture: it is an unsupervised deep par-
simonious network extracting principal components in its cascaded layers [4].
Due to the remarkable performance of PCANet on several benchmark face
datasets, the network is currently accepted as a simple deep learning baseline
for image classification. However, the features extracted by PCANet (and its
later variant FANet [13]) does not achieve similar performance on challenging
object recognitions datasets like CIFAR-10 [15]. There is a major reason for this
performance degradation: vectorizing image patches (which we call the amal-
gamated view of the data) while extracting principal components. This results
in loss of spatial information present in the images. This loss is amplified when
one vectorizes an RGB-image which incurs the loss of both color and spatial
information present in the data. However, this operation is inherent with the
principal components analysis and necessitates the development of sophisticated
techniques to reduce this information loss.

In this paper, we explore the feasibility of reducing the spatial information in
PCANet by first devising Tensor Factorization Networks (TFNet). The
TFNet extracts features from the original multi-mode data (which we call the
minutiae view of the data) by utilizing multi-linear algebraic operations in its
cascaded deep architecture. Contrary to the PCANet the TFNet does not
vectorizes the data while learning its convolution filters and hence preserves the
spatial information present in the data. Also, each mode of the multi-mode data
is decomposed individually providing several degrees of freedom to the filter
learning procedure in the TFNet.

We then propose the Hybrid Network (HybridNet) which integrates the
advantages of both the PCANet and the TFNet. The HybridNet utilizes
both tensor and matrix decompositions techniques while obtaining features rep-
resentations from different views of the data. Our hypothesis is that the infor-
mation from either the amalgamated view or the minutiae view is individually
insufficient for classification. Since the information captured from the two views
contains complementary information and hence both of them are necessary and
their integration can enhance the performance of classification systems. To val-
idate our claims we utilize multiple real world benchmark datasets to exten-
sively evaluate the classification performance of the features obtained through
the PCANet, the TFNet, and the HybridNet.

We summarize our contributions in this paper as follows:

– We propose Tensor Factorized Network (TFNet) which preserves the
spatial information present in the data and enables extraction of matrix
factors from the minutiae view of the tensorial data.

– We propose Hybrid Network (HybridNet) which integrates the filter
learning procedure from the amalgamated view and the minutiae view of
the data and simultaneously extracts features from them.



HDNet: integrating two views of the images for improving deep learning 3

– We perform comprehensive evaluations with the features obtained via PCANet,
TFNet, and the HybridNet on multiple benchmark real world datasets.

The rest of the paper is organized in the following sections: prior work (i.e.
the PCANet) and tensor preliminaries is presented in Section 2. Our proposed
TFNet and HybridNet are presented in Section 3 and Section 4 respectively.
Next we describe the experimental setup, results and discussions in Section 5
and finally the conclusions in Section 6.

2 Background

2.1 PCANet

The PCANet’s 3-layer architecture is summarized in this section. Assume that
there are N input training images denoted as {Ii}Ni=1 of size m×n. Also, assume
learning L1 and L2 number of filters in the first and the second layer respectively.

The First Layer The procedure begins by extracting overlapping patches of
size k1×k2 around each pixel in the image; the patches from image Ii are denoted
as xi,1,xi,2, ...,xi,m̃ñ ∈ Rk1k2 , where m̃ = m− dk1

2 e and ñ = n− dk2

2 e,where dze
gives the smallest integer greater than or equal to z. Then, the obtained patches
are vectorized and the mean of the image patches is subtracted from them to
obtain the patch matrix as Xi ∈ Rk1k2×m̃ñ. Obtaining patch representation for
all the images one obtains

X ∈ Rk1k2×Nm̃ñ (1)

the PCA minimizes the reconstruction error with a family of orthonormal filters
known as L1 principal eigenvectors of XXT calculated as below:

min
V ∈Rk1k2×L1

‖X − V V TX‖F , s.t. V TV = IL1 (2)

where IL1
is an identity matrix of size L1×L1, the filters are then expressed as:

W 1
lPCANet

= matk1,k2(ql(XXT )) ∈ Rk1×k2 , l = 1, 2, ..., L1 (3)

where matk1,k2(v) is a function that maps v ∈ Rk1k2 to a matrix W ∈ Rk1×k2 ,

and ql(XXT ) denotes the l-th principal eigenvector of XXT . Each input image
Ii in this layer are then convolved with the L1 filters obtained as below:

IliPCANet
= Ii ∗W 1

lPCANet
, i = 1, 2, ..., N, l = 1, 2, ..., L1 (4)

where ∗ denotes the 2D convolution. The boundary of image Ii is zero-padded
before convolution to obtain I liPCANet

with the same dimensions as in Ii. From
Eq. 4, one obtains N ×L1 outputs attributed as the output from the first layer.



4 S. Verma et al.

The Second Layer In the second layer, the overlapping patches from the
input images in this layer (i.e., I liPCANet

) are collected and then the mean of the
patches is subtracted from them. Next the patches are vectorized to obtain the
final patch matrix which is factorized to obtain the PCA filters:

Y ∈ Rk1k2×L1Nm̃ñ (5)

W 2
lPCANet

= matk1,k2(ql(Y Y T )) ∈ Rk1×k2 , l = 1, 2, ..., L2 (6)

we then convolve input images in the this layer with the L2 filters to obtain the
output from this layer and proceed with the next layer of the network

Ol
iPCANet

= IliPCANet
∗W 2

lPCANet
, i = 1, 2, ..., NL1, l = 1, 2, ..., L2 (7)

The Output Layer In the final output layer, the convolution outputs from
the previous layers of PCANet are combined to obtain the final feature vec-
tor. First, each of the real-valued outputs from Eq. 7 are binarized by using a
Heaviside function H(Ol

iPCANet
) which converts positive entries to 1 otherwise 0.

Then the L2 outputs in the second layer corresponding to the L1 outputs in the
first layer are combined by summing and multiplying with weights. This converts
them back into a single image whose pixel value is in the range [0, 2L2 − 1]:

IliPCANet
=

L2∑
l=1

2l−1H(O2
lPCANet

) (8)

Then, each of the L1 images from Eq. 8 are partitioned into B blocks and then
for each block a histogram is computed with 2L2 bins. Finally the histograms
from B blocks are concatenated and denoted as Bhist(IliPCANet

). This block-wise
encoding process encapsulates the L1 images from Eq. 8 into a feature vector as:

fiPCANet = [Bhist(I1iPCANet
), ..., Bhist(IL1

iPCANet
)]T ∈ R(2L2 )L1B (9)

One can now utilize these feature vectors to perform classification.

2.2 Tensor Preliminaries

Tensors are multi-mode arrays, where the modes (also known as orders) of a
tensor are analogous to rows and columns (i.e., the two modes) of a matrix.
Vectors are defined as first order tensors denoted as x, whereas matrices are
defined as second order tensors denoted as X. Tensors are of order-3 or higher
and are denoted as X. Few important tensors operations utilized in this paper
are defined below.

Tensor Unfolding: also known as tensor matriziation, is the way of rear-
ranging the elements of an n-mode tensor X ∈ Ri1×i2...×iN as a matrix in chosen
mode n denoted as X(n) ∈ Rin×j , where j = i1 ...× in−1 × in+1...× iN .

Tensor to matrix multiplication: The n-mode tensor product of matrix
A ∈ Rj×in with tensor X ∈ Ri1...×im−1×im×im+1...×in is denoted as X ×n A,
which results in another tensor X̂ of size Ri1×i2×in−1×j×in+1...×in .



HDNet: integrating two views of the images for improving deep learning 5

Tensor Decomposition Tensor decomposition is a form of generalized of ma-
trix decomposition for factorizing tensors. The algorithm factorizes an n-mode
tensor X ∈ Ri1×i2...×in into two subcomponents: 1) G ∈ Rr1×r2...×rn which is
a lower dimensional tensor called the core-tensor and, 2) U(n) ∈ Rrn×in which
are matrix factors associated with each mode of the tensor. Entries in the core
tensor G represents the level of interaction between different components. By
contrast, entries in the factor matrices U(n) can be thought as the principal
components associated with the mode-n. This form of tensor factorization falls
under the Tucker family of tensor decomposition [5]. The original tensor can be
reconstructed by taking product of the core-tensor with the factor matrices as:

G×1 U
(1) ×2 U

(2)...×N U(n) ≈ X (10)

The advantages of Tucker based factorization methods has already studied
in several domains. In computer vision, [25] applied them to the face recognition
problem and popularized them as Tensor faces. In data mining, [20] considered
the problem of handwritten digits recognition through tensor factorization. In
signal processing, [7],[5] considered the problem of brain signal analysis with
tucker decomposition.

3 The Tensor Factorization Network (TFNet)

The development of TFNet is motivated by the information loss which occurs
while vectorizing image-patches in PCANet. This transformation is inherent
while extracting the principal components and incurs the loss of geometric struc-
ture present in the data. Furthermore, the vectorization of the data results in
high dimensional vectors which generally requires more computational resources.
Motivated by the above shortcomings with PCANet we propose TFNet which
is computationally efficient and extracts information while preserving the spatial
structure of the data for obtaining feature representation.

3.1 The First Layer

Similar to the first layer in PCANet, we collect all overlapping patches of size
k1 × k2 around each pixel from the image {Ii}. However, contrary to PCANet
here the obtained patches forms a 3-mode tensor Xi ∈ Rk1×k2×m̃ñ instead of
a matrix. The mode-1 and mode-2 of this tensor represents the row-space and
column-space spanned by the pixels in the image, while the third mode of this
tensors represents the total number of image patches and we obtain

X ∈ Rk1×k2×Nm̃ñ (11)

as our final tensor. We decompose the tensor using our custom-designed LoMOI
algorithm presented in Alg. 1 to obtain the factor matrices corresponding to the
first two modes, which are later utilized in our tensorial filter generation.

[X̂,U(1),U(2)]← LoMOI(X, r1, r2) (12)



6 S. Verma et al.

Algorithm 1 Left One Mode Out Orthogonal Iteration (LoMOI)

1: Input: n-mode tensor X ∈ Ri1,i2,...,in ; factorization ranks for each mode of the tensor
[r1...rm−1, rm+1...rn], where rk ≤ ik∀ k ∈ 1, 2, ..., n and k 6= m; factorization error-tolerance ε,
and Maximum allowable iterations = Maxiter, m = mode to discard while factorizing

2: for i = 1, 2, ..., n and i 6= m do
3: Xi ← unfold tensor X on mode-i
4: U(i) ← ri left singular vectors of Xi . extract leading ri matrix factors

5: G← X×1 (U(1))T ...×m−1 (U(m−1))T ×m+1 (U(m+1))T ...×n (U(n))T . Core tensor

6: X̂← G×1 (U(1))T ...×m−1 (U(m−1))T ×m+1 (U(m+1))T ×N U(n) . reconstructed tensor
obtained by multilinear product of the core-tensor with the factor-matrices; Eq. 10.

7: loss← ‖X− X̂‖ . decomposition loss
8: count← 0
9: while [(loss ≥ ε) Or (Maxiter ≤ count)] do . loop until convergence
10: for i = 1, 2, ..., n and i 6= m do

11: Y← X×1 (U(1))T ...×(i−1) (U(i−1))T ×(i+1) (U(i+1))T ...×n (U(n))T . obtain the
variance in mode-i

12: Yi ← unfold tensor Y on mode-i
13: U(i) ← ri left singular vectors of Yi

14: G← X×1 (U(1))T ...×(m−1) (U(m−1))T ×(m+1) (U(m+1))T ...×n (U(n))T

15: X̂← G×1 U(1)...×(m−1) (U(m−1))T ×(m+1) (U(m+1))T ...×n U(n)

16: loss← ‖X− X̂‖
17: count← count + 1

18: Output: X̂ the reconstructed tensor and [U(1)...U(m−1),U(m+1)...U(n)] the factor matrices

where X̂ ∈ Rr1×r2×Nm̃ñ, U(1) ∈ Rk1×r1 , and U(2) ∈ Rk2×r2 . We discard ob-
taining the matrix factors from mode-3 i.e. U(3) of the tensor as the mode-3
matricization of tensor X denoted as X3 ∈ RNm̃ñ×k1×k2 is equivalent to the
transpose of the patches matrix X defined in Eq. 1 which is not decomposed in
the PCANet while obtaining their filters. A total of L1 = r1× r2 filters (equiv-
alent to the number of filters in the PCANet)are obtained from the factor
matrices U(1) and U(2) as:

W 1
lTFNet

= U
(1)

(:,i) ⊗U
(2)

(:,j) ∈ Rk1×k2 , i = 1...r1, j = 1...r2, l = 1...L1 (13)

where ‘⊗’ is the outer product between two vectors and U
(m)
(:,i) represents ‘ith’

column of the ‘mth’ factor matrix. Our filters obtained in Eq. 13 does not require
any explicit reshaping as the operation outer -product between two vectors natu-
rally results in a matrix. Hence, we can straightforwardly convolve our tensorial
filters with the input images to obtain output from the first stage as:

IliTFNet
= Ii ∗W 1

lTFNet
, i = 1, 2, ..., N, l = 1, 2, ..., L1 (14)

When the data are RGB-images, every patch xi,j extracted from image is
a 3-order tensor X ∈ Rk1×k2×3 (RowPixels×ColPixels×Color). After collecting
image patches from the training images, we obtain a 4-mode tensor

X ∈ Rk1×k2×3×Nm̃ñ (15)

decomposing the above tensor to obtain factor matrices are as follows:

[X̂,U(1),U(2),U(3)]← LoMOI(X, r1, r2, r3) (16)

W 1
lTFNet

= U
(1)

(:,i) ⊗ U
(2)

(:,j) ⊗ U
(3)

(:,k) ∀i ∈ 1...r1, j ∈ 1...r2, k ∈ 1...r3 (17)



HDNet: integrating two views of the images for improving deep learning 7

3.2 The Second Layer

Similar to the first layer, we extract overlapping patches from the input images
and then subtract the patch mean from the patches and build a 3-mode tensor
denoted as Yi and then decompose it to obtain our factor matrices as:

[Ŷ,V(1),V(2)]← LoMOI(Y, r1, r2) (18)

where, Ŷ ∈ Rr1×r2×NL1m̃ñ, V(1) ∈ Rk1×r1 , and V(2) ∈ Rk2×r2 . We then generate
our tensorial filters from the matrix factors of the first two modes as:

W 2
lTFNet

= V
(1)

(:,i) ⊗V
(2)

(:,j) ∈ Rk1×k2 , i = 1..r1, j = 1.., r2, l = 1...L2 (19)

Now, each of the L1 input images in the first layer are convolved with tensorial
filters obtained in the second layer as:

Ol
iTFNet

= IliTFNet
∗W 2

lTFNet
, l = 1, 2, ..., L2 (20)

The number of output images obtained from this operation is equal to L1×L2.
We now utilize the output layer of PCANet to obtain our final feature vectors

IliTDNet
=

L2∑
l=1

2l−1H(O2
lTensorNet

) (21)

fiTFNet = [Bhist(I1iTFNet
), ..., Bhist(IL1

iTFNet
)]T ∈ R(2L2 )L1B (22)

the features vectors obtained in Eq. 22 can now be utilized for classification.

4 The Hybrid Network (HybridNet)

The PCANet extracts features from the amalgamated view of the data whereas
the TFNet extracts features from the minutiae view of the data. Our hypothesis
is that both these views are important as they conceal distinct representations
of the data and integrating feature representations from these views can enhance
the performance of classification systems. Motivated by the above, we propose
the HybridNet which integrates the filter learning process from the minutiae
view and the amalgamated view. We explain the feature extraction procedure
in HybridNet with the help of Fig. 1.

4.1 The First Layer

The first layer in HybridNet consists of image-patches expressed as both as
tensors and matrices. In this way, the first layer in HybridNet perceives more
diverse information from different views of the data while learning its filters.
Further, the filters for the tensorised patches were obtained via LoMOI, while
the filters for the patch-matrices are obtained via the principal components.
Since the first layer of HybridNet consists of hybrid filters, the output from
this layer is obtained by convolving input images with: a) the PCA-filters and
b) the tensorial-filters. This injects more diversity to the output from the first



8 S. Verma et al.

Extract 
Patches

Patch

k1

k2

32 30

32 30

32 30

32 30
32 30

32 30

32 30

32 30
32 30

32 30

iI

Layer 1 of HybridNet

Matrix, X

32

Tensor, X

La
ye

r 
2

o
f 
H
y
b
ri
d
N
et

O
u

tp
u

t 
fe

at
u

re

C
o

nv
o

lu
ti

o
n

Filters

PCA

LoMOI

La
ye

r 
N

o
f 
H
y
b
ri
d
N
et

...

I1
i

i
1IL

P
C

A
 –

Fi
lt

er
 O

u
tp

u
t

Te
n

so
r 
–

Fi
lt

er
 O

u
tp

u
t

...

I1
i

i
1IL

Fig. 1. The Proposed Hybrid Network

layer in HybridNet or equivalently to the input of the succeeding layer. Conse-
quently,the covariance matrix in the HybridNet captures more variability than
that of the covariance matrix obtained in either of the PCANet or TFNet.
Therefore, the hybrid filters captures more variability in the data which leads
to better disentangled representations. This results in superior performance from
the features obtained with the HybridNet. Since we obtain L1-PCA filters from
the patch-matrices and L1-tensor filters from the patch-tensors, a total of 2×L1

output images are obtained after the convolution of images with these filters.

4.2 The Second Layer

In the second layer of HybridNet the filters are learned with the hybrid data
obtained from the first layer. Moreover, the output images from this layer are
obtained by a) convolving the L1 images corresponding to the output from the
PCA-filters in the first layer with the -filters in the second layer, and b) convolv-
ing the L1 images corresponding to the output from the tensor-filters in the first
layer with the tensor-filters in the second layer. The number of output images
obtained from the second layer produces a total of 2×L1×L2 outputs. Finally,
the outputs from the second layer of HybridNet are processed with the same
Output Layer as in PCANet and TFNet, to obtain hybrid features.

5 Experiments and Results

5.1 Experimental Setup

In our experiments, we utilized two-layer architecture for each of the networks
while learning their filters and utilized the output layer of the PCANet to
obtain feature vectors from the networks. Since the number of filters in the first



HDNet: integrating two views of the images for improving deep learning 9

and the second layer are L1 and L2 respectively. The feature-length obtained
with the PCANet and the TFNet are equal to BL12L2 , while the feature-
length with HybridNet is equal to 2BL12L2 ; where B is the number of image-
blocks obtained while calculating the histograms. Throughout our experiments,
we utilized Linear SVM [9] as the classifier while performing classification.

5.2 Datasets

We utilize the following datasets and hyper-parameters in our experiments:

1 MNIST variations [16], which consists of 28×28 gray scale handwritten dig-
its with controlled factors of variations such as background noise, rotations,
background-images etc. Each variation contains 10K training and 50K test-
ing images. We set, L1 = 9, L2 =8, k1 = k2 = 7, with block size = 7× 7.3

2 CUReT texture dataset [24], consisting of 61 classes of image textures where
each class has images of the same material with different pose, illumina-
tion conditions, specularity, shadowing, and surface normals. A subset of 92
cropped images were taken from each category as in [24],[4]. Following the
standard procedure in [4], we randomly split the data into train and test set
with a split ratio of 50% and classification results are averaged over 10 trails.
We set, L1 = 9, L2 =8, k1 = k2 = 5, and the block size = 50× 50.

3 CIFAR-10 [15] consisting of 50K training and 10K testing images distributed
among 10 classes. The RGB images are of dimensions 32 × 32 and vary
significantly in object position, scale, colors, and textures. We vary L1 as
9 and 27, keep L2 =8; whereas the patch sizes k1 = k2 are varied as 5, 7,
and 9. Following [4] we also applied spatial pyramid pooling (SPP) [10] to
the output layer of PCANet, while the block size = 8× 8. We additionally
applied PCA to reduce the dimension of each pooled feature to 100.4

5.3 Results and Discussions

Classification errors obtained on handwritten digits variations and texture recog-
nition datasets are reported in Table 1. The hybrid features obtained with our
proposed HybridNet outperforms the state of the art results on five out of
seven MNIST variations dataset. For texture classification the hybrid features
achieves the lowest error among the three networks, however on this dataset
they perform slightly lower than the state of the art. For object recognition the
classification errors obtained on CIFAR-10 are reported in Table 2, again the hy-
brid features achieves the lowest error among the three networks studied in this
paper. However on this dataset the performance of hybrid features is 14.57%
lower than state of the art - NIN i.e. 10.41% (without data augmentation)
[17]. This is because a) NIN is comparatively deeper and more importantly b)
NIN performs supervised nonlinear feature extraction whereas the HybridNet

3 Overlapping regions between the blocks is equal to half of the block size.
4 Results does not vary significantly on increasing the projection dimensions.



10 S. Verma et al.

Table 1. Classification Error (%) obtained on MNIST variations and CuReT datasets

Methods baisc rot bg-rnd bg-im bg-im-rot rect cnvx

CAE-2 [19] 2.48 9.66 10.90 15.50 45.23 21.54 -
TIRBM [22] - 4.20 - - 35.50 - -
PGBM [23] - - 6.08 12.25 36.76 8.02 -
ScatNet [3] 1.27 7.48 12.30 18.40 50.48 15.94 6.50

PCANet 1.07 6.88 6.08 11.16 37.28 13.59 4.15
TFNet 1.07 7.15 6.49 11.44 38.26 16.87 4.98
HybridNet 1.01 6.47 5.46 10.08 35.15 12.91 3.55

(a) MNIST Variations Datasets

Methods Error (%)

Textons [12] 1.50
BIF [8] 1.40
Histogram [2] 1.00
ScatNet [3] 0.20

PCANet 0.84
TFNet 0.96
HybridNet 0.81

(b) CuReT Dataset

Table 2. Classification Error (%) obtained on CIFAR-10 without Data Augmentation

Parameters PCANet TFNet HybridNet

L1 L2 k1 k2 Error (%) Error (%) Error (%)

8 8 5 5 34.80 32.57 31.39
27 8 5 5 26.43 29.25 24.98
8 8 7 7 39.92 37.19 35.24
27 8 7 7 30.08 32.57 28.53
8 8 9 9 43.91 39.65 38.04
27 8 9 9 33.94 34.79 31.36

(a) Performance of PCANet, TFNet, and
the HybridNet by varying hyperparamters

Methods Error (%)

Tiled CNN [18] 26.90
K-means [6] (1600 dim.) 22.10
Conv. Maxout [21] 11.68
NIN [17] 10.41

PCANet 26.43
TFNet 29.25
HybridNet 24.98

(b) Benchmark comparisons

performs an unsupervised linear feature extraction. However, the classification
errors obtained with HybridNet are still promising and can be enhanced with
more layers and non-linear operations. Besides, the above we have also evaluated
the performance of PCANet, TFNet and the HybridNet by varying train-
ing data size on CIFAR and MNIST variation5 dataset, shown in Fig. 2. The
above experiments validates our claim of improving the classification accuracy
by integrating the information from two views of the data.

6 Conclusion and Future Work

In this paper we have first introduced Tensor Factorization Networks which
preserves the spatial structure of the data while extracting features from the
minutiae view of the data. Since both the amalgamated view and the minutiae
view are individually insufficient feature representations, we propose a hybrid
parsimonious network called the Hybrid Network. The Hybrid Network si-
multaneously learns its hybrid convolution filters by integrating the two views

5 Random background, images, and rotation is utilized with block size = 4× 4.



HDNet: integrating two views of the images for improving deep learning 11

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Data Size

26

28

30

32

34

36

38

E
rr

o
r 

(%
)

PCANet
TFNet
HybridNet

(a) CIFAR 10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Data Size

35

40

45

50

55

60

E
rr

o
r 

(%
)

PCANet
TFNet
HybridNet

(b) MNIST bg-img-rot

Fig. 2. Performance Comparison by varying size of the training data

of the data. The features obtained through hybrid filters enhances the classifica-
tion performance on several benchmark datasets. The experiments validates the
advantages of obtaining superior feature representation by integrating the two
views of the data. In future, we plan to study the effects of unaligned images
during the filter learning phase in the Hybrid Network.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence
35(8), 1798–1828 (2013)

2. Broadhurst, R.E.: Statistical estimation of histogram variation for texture classi-
fication. In: Proc. Intl. Workshop on Texture Analysis and Synthesis. pp. 25–30
(2005)

3. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35(8), 1872–1886 (2013)

4. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: Pcanet: a simple deep
learning baseline for image classification? IEEE Transactions on Image Processing
24(12), 5017–5032 (2015)

5. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan,
H.A.: Tensor decompositions for signal processing applications: from two-way to
multiway component analysis. IEEE Signal Processing Magazine 32(2), 145–163
(2015)

6. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. pp. 215–223 (2011)

7. Cong, F., Lin, Q.H., Kuang, L.D., Gong, X.F., Astikainen, P., Ristaniemi, T.: Ten-
sor decomposition of eeg signals: a brief review. Journal of Neuroscience Methods
248, 59–69 (2015)

8. Crosier, M., Griffin, L.D.: Using basic image features for texture classification.
International Journal of Computer Vision 88(3), 447–460 (2010)

9. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library
for large linear classification. Journal of Machine Learning Research 9(Aug), 1871–
1874 (2008)



12 S. Verma et al.

10. Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification
with sets of image features. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on. vol. 2, pp. 1458–1465. IEEE (2005)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. ICLR (2016)

12. Hayman, E., Caputo, B., Fritz, M., Eklundh, J.O.: On the significance of real-
world conditions for material classification. In: European Conference on Computer
Vision. pp. 253–266. Springer (2004)

13. Huang, J., Yuan, C.: Fanet: factor analysis neural network. In: International Con-
ference on Neural Information Processing. pp. 172–181. Springer (2015)

14. Kossaifi, J., Khanna, A., Lipton, Z., Furlanello, T., Anandkumar, A.: Tensor con-
traction layers for parsimonious deep nets. In: Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2017 IEEE Conference on. pp. 1940–1946. IEEE
(2017)

15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Master’s thesis, Department of Computer Science, University of Toronto (2009)

16. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
Proceedings of the 24th International Conference on Machine Learning. pp. 473–
480. ACM (2007)

17. Lin, M., Chen, Q., Yan, S.: Network in network. ICLR (2013)
18. Ngiam, J., Chen, Z., Chia, D., Koh, P.W., Le, Q.V., Ng, A.Y.: Tiled convolutional

neural networks. In: Advances in Neural Information Processing Systems. pp. 1279–
1287 (2010)

19. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders:
explicit invariance during feature extraction. In: Proceedings of the 28th Interna-
tional Conference on International Conference on Machine Learning. pp. 833–840.
Omnipress (2011)

20. Savas, B., Eldén, L.: Handwritten digit classification using higher order singular
value decomposition. Pattern Recognition 40(3), 993–1003 (2007)

21. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems. pp.
2951–2959 (2012)

22. Sohn, K., Lee, H.: Learning invariant representations with local transformations.
In: Proceedings of the 29th International Coference on International Conference
on Machine Learning. pp. 1339–1346 (2012)

23. Sohn, K., Zhou, G., Lee, C., Lee, H.: Learning and selecting features jointly with
point-wise gated boltzmann machines. In: International Conference on Machine
Learning. pp. 217–225 (2013)

24. Varma, M., Zisserman, A.: A statistical approach to material classification using
image patch exemplars. IEEE Transactions on Pattern Analysis and Machine In-
telligence 31(11), 2032–2047 (2009)

25. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear image analysis for facial recogni-
tion. In: Pattern Recognition, 2002. Proceedings. 16th International Conference
on. vol. 2, pp. 511–514. IEEE (2002)

26. Zheng, L., Yang, Y., Tian, Q.: Sift meets CNN: a decade survey of instance re-
trieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(5),
1224–1244 (2018)


