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Damage Identification of supporting structures 

with a Moving Sensory System 

by 

Zhu, X.Q.1, Law, S.S. 2,3, Huang, L. 4 and Zhu, S.Y. 5  

 

Abstract: An innovative approach to identify local anomalies in a structural beam bridge with an 

instrumented vehicle moving as a sensory system across the bridge. Accelerations at both the axle 

and vehicle body are measured from which vehicle-bridge interaction force on the structure is 

determined. Local anomalies of the structure are estimated from this interaction force with the 

Newton’s iterative method basing on the homotopy continuation method. Numerical results with the 

vehicle moving over simply supported or continuous beams show that the acceleration responses 

from the vehicle or the bridge structure are less sensitive to the local damages than the interaction 

force between the wheel and the structure. Effects of different movement patterns and moving speed 

of the vehicle are investigated, and the effect of measurement noise on the identified results is 

discussed. A heavier or slower vehicle has been shown to be less sensitive to measurement noise 

giving more accurate results. 
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1 Introduction 

The non-destructive approach for identifying local damages in a structure has been a hot research 

topic in the past few decades. Most literatures in this area are based on the characteristic dynamic 

parameters and responses [1] of structures. Sensors are often installed on the bridge deck for direct 

measurement of the responses of structure under load. Since the local damages are not known, a 

dense array of sensors should be used at different positions of the structure in practice to estimate 

the location and extent of the structural damage. Incorrect identification may occur when the sensor 

is far away from the local damage as local responses are sensitive to local damages. This 

phenomenom will be illustrated in Section 4.2.1 of this paper. Also, the design life of structure is 

usually much longer than the reliable lifespan of most sensors. The centralized long-term 

monitoring system requires costly onsite sensor maintenance due to the harsh operational 

environments. There is also a large stock of short and medium bridges, and most of them do not 

have such a system in practice. These form the main obstacles for general application of most 

existing damage detection algorithms. 

Sensors have been installed on the axle or the vehicle body instead of the bridge deck [2,3] 

to enable the vehicle to serve as both an exciter and a sensory system. Yang et al. [4] extracted the 

natural frequencies of a bridge deck directly from accelerations obtained from the axle of a passing 

vehicle. The accelerometers and velocity meters were vertically installed near the center of the 

vehicle. Experimental verification has been conducted [5] using a four-wheel commercial light truck 

towing a small two-wheel cart. Two identical trailers were instrumented with sensors to capture the 

ambient vibration of the bridge, and the modal parameters are extracted by applying the short-time 

frequency domain decomposition [6] on the difference of signals from the two trailers. Yang and 

Chen [7] presented a method to identify the bridge natural frequencies from the dynamic response 

of a test vehicle using the stochastic subspace identification technique. Kong et al. [8] conducted 

field tests to extract bridge modal properties using a specialized test vehicle consisting of a tractor 

and two trailers. The tractor was used as the exciter and the trailers were instrumented with sensors. 

The responses of the trailers were used to extract the modal parameters of the bridge deck.  

The above idea of a moving sensory system is for extracting the fundamental bridge 

frequency and mode shape. This indirect approach has also been adopted for damage detection in 

the last two decades. Bu et al. [9] proposed a method to assess the conditions of a bridge deck using 
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dynamic response of the passing vehicle with acceptable results. Kim and Kawatani [10] proposed a 

pseudo-static formulation of the vehicle-bridge interaction to identify the elemental stiffness 

changes of a bridge structure experimentally [11]. A truck-based mobile wireless sensory network 

has also been proposed to capture the vehicle-bridge interaction [12]. The wireless monitoring 

system is time-synchronized with the permanent wireless monitoring system installed on the bridge. 

Cerda et al. [13] collected data from passing vehicles over a bridge in an indirect approach of bridge 

health monitoring. The acceleration signals are wavelet decomposed. An instrumented truck-trailer 

vehicular system has been used to detect damping changes in a bridge deck with accelerometers 

fitted to the axles of the trailer [14,15]. Miyamoto and Yabe [16] studied the feasibility of the 

indirect approach to extract the bridge dynamic properties using an accelerometer mounted on the 

chassis of a public bus. The target bridge performance is evaluated from the measured acceleration 

data for the formulation of rational maintenance strategies. Zhang et al. [17] obtained damage 

information of a bridge deck using only one sensor mounted on a moving robot with a tapping 

device serving as an exciter. The operating deflection shape of the bridge deck was also estimated 

using information from a moving device [18], and its curvature can be obtained from wavelet-based 

filtering of the information for damage detection. 

The above review shows that the use of a moving sensory system is feasible and reliable for 

damage identification. The moving sensory system proposed in this paper collects dynamic 

responses along its moving path and this is equivalent to measuring responses from a dense array of 

sensors along the structure. Local damage in a region trepassed by the vehicle can be accurately 

identified by the local responses collected. Accelerometers located on the axle and body of the 

moving vehicle collect the dynamic responses of the vehicle. The dynamic interaction force between 

the vehicle and structure can then be determined from these responses. 

The identification equations from the above methods are usually solved iteratively in the 

inverse analysis using regularization method [9]. This and other method of optimization are locally 

convergent depending on the initial values. There are, however, algorithms for solving nonlinear 

sets of equation that are globally convergent without this constraint. The essence of these algorithms 

is the construction of an appropriate homotopy map and the tracking of solution sets on curves in 

this homotopy map. He [19] developed a new homotopy perturbation technique from the traditional 

perturbation method for solving different linear and nonlinear problems. Liao [20] proposed a 

homotopy analysis method which is capable to solve problems with highly nonlinear systems. 
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Alexander and Yorke [21] developed a homotopy continuation method to solve bifurcations 

problems in nonlinear systems with fixed points and singularities in the vector fields.   

In this paper, the homotopy map in the damage detection problem studied is formulated 

according to the general homotopy method [19-21]. The solution of the homotopy equation is based 

on the homotopy continuation method [21]. However, successful solution of the homotopy equation 

depends on the smooth tracking of the solution in the homotopy path. Choi et al. [22] have 

employed both the Euler method and Newton method to track the solution. Both approaches do not 

perform well in the system identification of a structure due to the presence of a singular matrix 

resulting in a set of non-realistic result. Other researchers [23] estimated the homotopy parameter 

from the homotopy equation with improved solution in the homotopy path using Newton iterative 

method. The Newton’s iterative method is adopted to track the correct solution path in this study. 

The proposed method of analysis based on interaction force has been shown to yield more accurate 

identified result than the regularization technique based on vehicle responses [9]. The interaction 

force under the wheel is shown much more sensitive to local damages in the structure than measured 

accelerations from either the structure or the moving vehicle. Different patterns of vehicle 

movement on deck, vehicle speed and measurement noise level on the identification are numerically 

investigated.  

2 Theory 

2.1 Determination of interaction force from vehicle responses 

The moving vehicle is modeled as a five-parameter two degrees-of-freedom (DOFs) system as 

shown in Figure 1. It moves on the beam bridge at a uniform speed v  from left to right. Two 

accelerometers are installed on the axle and body of the vehicle to collect the responses of the two 

masses. The physical properties of the vehicle are: an upper mass 1vm  of the suspension, a lower 

mass 2vm  of the bogie and axle connected to the suspension damper vc  and a suspension spring 

1vk , together with another spring 2vk  to model the stiffness of the tire. The equation of motion of 

the vehicle can be written as 

                        (1) 

               (2) 
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where 1y  and 2y  are the displacement responses of the masses 1vm  and 2vm , respectively. 

( ( ))y x t  is the displacement response of the bridge, ( ( ))r x t  is the road surface roughness, and 

( )x t vt=  is the location of the vehicle on the deck at time instant t. The interaction force )(int tP  

between the bridge and the vehicle can be expressed as 

)))(())((()()( 2221int txrtxyykgmmtP vvv −−++=                    (3) 

Substituting Eqs. (1) and (2) into Eq. (3), the interaction force can be rewritten as 

221121int )()( ymymgmmtP vvvv  −−+=                         (4) 

where the responses  and  are collected by the accelerometers. Combining Eqs. (1), (2) and 

(4), we have 
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Eq. (5) can be rewritten as 

))(( int tPFvvvvvvv −=++ DyKyCyM                          (6) 

where [ ]0 1= TD  is the mapping vector. 

2.2 Damage identification from the Interaction force 

The beam bridge shown in Figure 1 has span length L  and it is modeled as a planar 

Euler-Bernoulli beam with n finite elements. The equation of motion of the bridge can be expressed 

as 

)()()()()( int tPtttt T
bbbbbb RyKyCyM =++                          (7) 

where bM , bC  and bK  are the mass, damping and stiffness matrices of the structure respectively. 

Rayleigh damping 1 2b b ba aC = M + K  is assumed, where 1a  and 2a  are the two Rayleigh 

damping coefficients. ,  and by  are respectively the acceleration, velocity and displacement 

response vectors of the bridge. Note that the function (t) has been omitted for convenience. 
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{ }( ) 0,0, , ( ), ,0it t=R R   is a function of time and ( )i tR  is the vector of shape functions in the 

ith element on which the moving sensor is located at time instant t, and this can be expressed as  

{ }2 2 3 2 3 2 3( ) 1 3 2 , ( 2 ) ,3 2 , ( )i e et l lξ ξ ξ ξ ξ ξ ξ ξ ξ= − + − + − − +R  

with ( ( ) ) /i ex t x lξ = − , and ( 1)i ex i l= − , and el  is the length of the element. 

The acceleration, velocity and displacement responses of the time invariant system in 

y-direction in Eq. (7) can be written as 

                                 (8a) 

                                 (8b) 

( ( )) ( ) ( )d
b by x t t t= R y                                  (8c) 

where ( )a tR , ( )v tR  and ( )d tR  are the output influence matrices for the “measured” acceleration, 

velocity and displacement, respectively. They form the mapping matrix ( )tR when considering the 

entire time history. 

Combining Eqs. (4), (6), (7) and (8), the coupled equation of motion of both the vehicle and 

structure can be written as 

                            (9) 
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3 Damage detection algorithms 

3.1 Damage model 

The beam bridge is assumed to remain linear-elastic and isotropic after damage occurrence. A 

simple damage model is adopted in this paper where the local damage is modeled as a reduction in 

the elemental flexural stiffness. The elemental flexural stiffness of a damaged element can be 
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expressed as  

( ) ( )0(1 )= − ii i
EI EIα , ( 1, 2, ,i n=  )                       (10) 

where ( )0

i
EI  is the ith elemental flexural stiffness in the intact state. iα  represents the reduction 

coefficient of the elemental flexural stiffness in the ith element, and it is called the stiffness 

parameter or damage parameter with 0 1.0iα≤ ≤ .  

3.2 Objective Function and Identification Equation 

The damage detection of a structure can be considered as an optimization problem to find the vector 

of stiffness parameters 1 2, , , )T
nα α α= ( α . The error between the computational and the measured 

values can be written as 
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where cQ  and mQ  are the computed response function and the measured response function with 

respect to the stiffness parameters, respectively. Variable t  denotes the time instants; dt  is the 

time step increment, and /nt t dt=  is the number of time step,  

Three different response functions are considered here for comparison, viz, acceleration 

response of the vehicle, acceleration response of the beam bridge and the interaction force of the 

system. The acceleration response of the vehicle and bridge can be obtained from Eq. (9) with 

information of the vehicle. The interaction force can be derived from Eq. (4). Taking partial 

derivative of Eq. (11) with respect to the stiffness parameters, we have 
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where 
( , )c

i

t
α

∂
∂

Q α
 is the response sensitivity that is the first partial derivative of the computed 
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response with respect to the stiffness parameters. If cQ  is the acceleration response, , 

 and denote the acceleration response sensitivities that are the first partial derivative 

of the acceleration responses of the vehicle and the beam bridge respectively. They can be 

numerically obtained from taking the first partial derivative of Eq. (9) with respect to the stiffness 

parameters and then solving the equations obtained using Newmark integration method [24].  

If cQ  is the interaction force, the first derivative of Eq. (7) with respect to the stiffness 

parameter can be written as 

2
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b b b b b
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Thus the sensitivity of the interaction force can be derived as the first partial derivative of the 

interaction force int( , ) ( , )∂ ∂
=
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c

i i

t t
α α

PQ α α from Eq. (13)  

 (14) 

3.3 Homotopy Continuation Algorithm 

The homotopy continuation algorithm [21-23] introduces a homotopy parameter λ  with [ ]0,1λ∈  

into the function ( )f α  in Eq. (12) to construct a family of homotopy mapping ( , )=0H λα . The 

homotopy equation for the present problem takes up the following form as 

( , ) ( ) (1 ) ( ) 0H f gλ λ λ= + − =α α α                           (15) 

where function ( )g α  is related to the vector of arbitrarily selected initial values 0α , and it is 

assumed to have a form similar to ( )f α  with ( )0
1
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c
c c
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= −

∂∑ QQ Q αα α α
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.  

In the homotopy continuation algorithm, the homotopy parameter has a range [ ]0,1λ∈  and 

it is divided into N sub-intervals. Solution in each sub-interval is obtained by the Newton iterative 

method for updating the stiffness parameters and the homotopy equation. There are N+1 homotopy 

equations for the N sub-intervals with 0,1/ N, ,1λ =  . A family of homotopy mapping 

( , ) 0H λ =α  is constructed instead of a single mapping. Eq. (15) can be rewritten as 
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( ,0) ( )=0H g=α α  when the homotopy parameter is zero, i.e. the arbitrarily selected initial point of 

the homotopy path is the starting point for the iteration. When the homotopy parameter increases to 

unity, the homotopy equation becomes ( ,1) ( )=0H f=α α  where the solution matches the objective 

function. 

The Newton’s iterative method tracks and updates the vector of stiffness parameters, 1s+α , in 

the homotopy path in each sub-interval of the homotopy parameter as 
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where sα  is the vector of stiffness parameters in the sth iterative step. 
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 is the second partial derivative of the response function with respect to the stiffness 

parameters. The subscripts i  and k  are the element number.  

If cQ  is the acceleration response, the second partial derivative of the acceleration 

responses ,  and  can be obtained by taking the second derivative of Eq. (9) 

with respect to the stiffness parameters as 
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where 
2 2 2 2

1 2( ) ( ) ( ) ( ), ,
T

c b

i k i k i k i k

t t y t y t
α α α α α α α α

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

Q y , and Eq. (18) using Newmark integration method.  

If cQ  is the interaction force, the term  
2 ( , )c

i k

t
α α

∂
∂ ∂
Q α

 can be similarly obtained by taking the 

second derivative of Eq. (7) with respect to the stiffness parameters and solve the equation using 

Newmark integration method. 

In the Newton’s iteration algorithm, the criterion of convergence is defined as 

( ) ( )
( )

1

1

s s

s

I I
Tol1

I

+

+

−
≤

E E

E
                            (19a) 

where Tol1 is a small convergence threshold. The solution is also required to satisfy Eq. (19b) as 

shown below.  
1 1( , )+ + ≤s sH Tol2λα                               (19b) 

where Tol2 is a small value close to zero. Tol1 and Tol2 are taken equal to 41.0 10−×  and 10.0 in 

this work unless otherwise stated.  

The present study shows that the solution satisfying either Eq. (19b) or Eq. (19a) are close to 

each other (computation in Section 4.1.2 is referred). The updated point on the homotopy path 

satisfying Eq. (19a) is considered also satisfying Eq. (19b), and the second convergence criterion in 

Eq. (19b) is therefore neglected for a faster computation.  

3.4  Implementation procedure 

The computation procedure can be implemented as follows: 

Step 1: Collect the acceleration responses of the vehicle. 
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Step 2: Provide a good guess on the vector of initial damage parameters 0α , and let 0
s =α α  (s=0) 

with s denotes the iteration number. The homotopy parameter taking up the range of [ ]0,1λ∈  

is divided into N equal parts with 1 Ndλ = . Then let sλ =0 (s=0). The vector of initial values 

is set equal to null in this work. 

Step 3: Trace solution in the homotopy path starting from the initial value (α0, λ0) as follows. Apply 

an increment to the homotopy parameter sλ  as, 1+ = +s s dλ λ λ . 

Step 4: Calculate the dynamic responses of the vehicle and the interaction force under the wheel 

from Eqs. (4), (9) and (10) from initial models of the structure and the vehicle. Obtain the 

homotopy equation from Eqs. (12) and (15). 

Step 5: Use Newton’s iterative method to update the damage parameter vector 1s+α  at a point along 

the homotopy path from Eqs. (16) and (17). 

Step 6: Check whether the damage vector 1s+α  obtained has any physical meaning, i.e. when 
1 1.0s

iα
+ > , the stiffness parameter loses its physical significance. If yes, go to Step 7. 

Otherwise, the result is considered diverged, and either separate the range of homotopy 

parameter into more divisions or a new set of initial values is assigned. Then go to Step 2. 

Step 7: Let 1s s+=α α  and ( ) ( ) 1s s+=EI EI , and repeat Steps 4 to 6 until the obtained (αs+1, λs+1) 

and ( ) 1s+EI in the homotopy path satisfies the convergence criterion in Eqs. (19a) and (19b). 

Step 8: The set of initial values is updated with (αs+1, λs+1) obtained in last step. Repeat Steps 3 to 7 

for the whole range of the homotopy parameter 1+rλ . The final set of αs+1 obtained is the 

corresponding updated set of stiffness parameters. 

4 Numerical simulations  

4.1 Verification of the proposed method 

The bridge-vehicle system studied by Bu et al. [9] is investigated for comparison. The properties of 

the simply supported beam bridge are: 30L m= , 210105.2 mNEI ⋅×= , 36.0 10 /A kg mρ = × , and the 

damping coefficients 343.01 =a  and 001.02 =a  are respectively. The parameters of the vehicle 

are: 3
1 3.6 10vm kg= × , 3

2 0.25 10vm kg= × , 31.0 10 /vc Ns m= × , 5
1 6.0 10 /vk N m= ×  and 

5
2 8.5 10 /vk N m= × . The simply supported deck is discretized into 10 equal Euler-Bernoulli beam 
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elements, and the sampling frequency is 200Hz. The sampling rate would be sufficient to 

accommodate the natural frequencies of the vehicle which are 1.6 Hz and 12.2 Hz as well the first 

three natural frequencies 3.6Hz, 14.3Hz and 32.1Hz of the structure in the simulation studies. The 

speed of the vehicle is set at 20m/s as in Bu et al. [9] and it moves on the beam with Class C road 

surface roughness [25]. 

4.1.1 Comparison of different types of sensitivities to local damages 

The sensitivity of the interaction force underneath the moving vehicle is compared with the 

sensitivity of responses from the vehicle and from the beam bridge in this study. The vertical 

acceleration responses from the vehicle axle mass mv1, the body mass mv2 and from Node 4 on the 

bridge beam are calculated as the “measured” responses with the passage of the vehicle. The 

sensitivity of these responses with respect to a local change in the stiffness parameter in Elements 1, 

2, 4 and 6 are computed. The sensitivity of the interaction force is also computed. The three types of 

sensitivity time histories are shown in Figure 2. The acceleration response of structure is found 

much less sensitive to the local damaged element than the interaction force under the wheel. The 

axle acceleration response of the vehicle is found more sensitive to these local damages than 

response from the vehicle body. 

4.1.2 Comparison of identified results from different types of sensitivities 

The same beam bridge and vehicle as for last study are adopted. Multiple local damages are 

simulated with a reduction of the stiffness parameter by 5%, 10%, 10% and 15% in Elements 1, 2, 4 

and 6 respectively. There are two divisions in the homotopy parameter. An absolute error (AE) is 

defined to compare the accuracy of the identification as 

AE true identified= −α α                                (20) 

where • is the norm of the vector. trueα is the true vector of stiffness parameters; identifiedα  is the 

vector of the final identified stiffness parameters. 

Identified results from different responses are shown in Table 1. Accurate result can be 

obtained by using the interaction force and different types of acceleration responses. Results from 

using the interaction force are more accurate with less iteration in computation because it is more 

sensitive to local damages than the accelerations. Also, slightly better results can be obtained from 

using the acceleration responses in the homotopy iteration algorithm compared to the sensitivity 

method in Bu et al [9]. 
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It may be concluded that different acceleration responses can be used to identify the local 

damage successfully but not that accurate as those from the interaction force. Therefore, only the 

interaction force will be adopted for the remaining studies in this paper. 

The evolution of the identified results from the interaction force is shown in Figure 3. "Ele4" 

is the abbreviation of “Element 4”. Since there are two divisions in the homotopy parameter, the 

result converges twice in the computation process at 30th iteration when the homotopy parameter is 

0.5, and again at the 55th iteration when the homotopy parameter is unity. The final updated results 

are very close to the real stiffness parameters of the structure. Results in Figure 3(a) satisfy the 

convergence requirement in Eq. (19a), while those in Figures 3(b) satisfy both convergence 

requirements in Eqs. (19a) and (19b) from a separate study. The two sets of identified results are 

similar and accurate, but the latter set has been obtained with more iterations. Hence, the second 

criterion in Eq. (19b) is ignored in the remaining studies for a faster computation.  

4.2 Study 1: A two-span continuous beam 

The effect of different influencing factors on the identification using the homotopy iteration 

algorithm will be studied. The two-span continuous beam shown in Figure 4 has the following 

properties: length 15L m= for each span, elastic modulus 34E GPa= , mass density 
32800 /kg mρ = , and the cross-section of the beam is 4m  wide and 0.25m  thick. The beam is 

discretized into 10 equal elements in each span with the element numbering system as shown. The 

same moving vehicle as for last study is adopted. Other parameters for the simulation are the same 

as for last study.  

4.2.1 Effect of different moving patterns 

Four different moving patterns of the vehicle are shown in Figure 5. The first one has the vehicle 

moves from the left end to the right end of the bridge at a constant speed of 4m/s. The second one 

has the vehicle moves with the same constant speed in the first 23.6 meters. Then the vehicle 

decelerates at 2.5m/s2 until it stops at 26.8 meters from the left end. The other two patterns are 

similar to the second one but with the vehicle decelerating earlier at 6 meters and 15 meters from the 

left end, respectively. The same amount of data (1500 data) will be calculated as the “measured” 

data from sensors on the vehicle even when it stops in these three moving patterns for the 

subsequent identification. Only one local damage is simulated at Element 20 with 10% reduction in 

the stiffness parameter. The division of the homotopy parameter is kept at two.  

The evolution of the identified results is shown in Figure 6. Since the damage is at the right 

end of the beam, only the first two patterns can identify the damage correctly. Results from pattern 
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four are poor and all the incorrectly identified results are in the second span. This is because the 

vehicle stops at 9.2 meters from the left end, and the interaction force for identification mainly 

comes from the first span of the deck, while the local damage is close to the end of the second span. 

This serves as an evidence that local damage should better be identified from using local 

measurements. 

The vehicle in pattern three stops at 18.2 meters from the left end, and the incorrect 

identified result is in Element 19 next to Element 20 with a magnitude of 0.35. 

The first moving pattern is noted to give good identified results with less computation (17 

iterations) than in the other patterns. Since it is not easy to control deceleration of the vehicle in 

practice, the first movement pattern of the vehicle will be used for the following studies.  

4.2.2 Effect of moving speed of the vehicle  

The scenarios with the vehicle moves at a constant speed of 1m/s, 4m/s and 14m/s are studied. The 

last speed represents approximately 50 km/h. The sampling rate is kept at 200 Hz, while other 

parameters of the system are the same as those for last study. The local damage scenario for the last 

study is adopted. Cases without noise and with 2%, 5% and 10% noise in the acceleration response 

are studied. The measurement noise is normally distributed with zero mean and a unit standard 

deviation. The polluted responses is obtained by adding the noise vector to the calculated vehicle 

acceleration as 

                     (21) 

where  and  are the vector of polluted “measured” acceleration response;  

and  are the calculated acceleration response of the vehicle; PE  is the noise level; 1
oiseN  

and 2
oiseN  are two different normal distribution vector with zero mean and unit standard deviation; 

( )var •  is the standard deviation of the calculated acceleration response. The polluted interaction 

force can also be obtained from Eq. (4) with the polluted “measured” acceleration responses for this 

study.  

Two divisions in the homotopy parameter are adopted when there is no measurement noise. 

When there is noise in the measurement, 5 divisions and 15 divisions in the homotopy parameter are 

adopted for speeds of 1m/s and 4m/s and speed 14m/s, respectively to improve the convergence of 

the solution. The identification results are shown in Figure 7. The absolute error as calculated from 
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Eq. (20) and the iteration number required are presented in Table 2. Accurate identified result is 

noted when there is no noise in the measured responses. However, when measurement noise exists, 

incorrect identification occurs especially when the speed is 4m/s and 14m/s.  

The sensitivities of interaction force with respect to damage in Element 20 for different 

moving speeds are shown in Figure 8. It is noted that a lower speed has much higher sensitivity to 

the damage element than a higher speed at 4m/s and 14m/s. This explains why the identification 

from lower travelling speed of the vehicle can yield more accurate identified result than from a 

higher speed when there is measurement noise effect. 

4.2.3 Effect of sampling frequency 

The identified result from last study is poor when the sampling frequency is 200Hz and the moving 

speed is 4m/s. This study is repeated in this Section with a sampling frequency of 500Hz and 

1000Hz to check on the effect of a higher sampling rate. Other parameters are the same as for last 

study. The absolute error of identification and iteration required are shown in Table 2. Incorrect 

results are noted in the cases with noisy measurement, especially when there is 10% noise. The 

errors listed in Table 2 show that the accuracy of identification can be improved over the whole 

range of noise level studied with a higher sampling frequency. 

4.2.4 Identification of multiple damages 

Multiple damages in the structure are simulated with a reduction of 5%、10%、8%、12% and 10% of 

the stiffness parameter in Elements 1, 2, 7, 16 and 20 respectively. The moving speed is assumed to 

be 1m/s and the sampling frequency is 200Hz. Cases without noise and with 2%, 5% and 10% 

measurement noise are studied. There will be 10 divisions in the homotopy parameter. Other 

parameters are the same as for last study. The identified results are shown in Figure 9. Local 

damages can be identified satisfactory even with 10% measurement noise, with the largest false 

positive less than 2.5% at Element 15. The required number of iterations for the cases without noise 

and with 2%, 5% and 10% noise levels are 211, 188, 145 and 187 respectively. 

It is noted that the computation converges faster when there is noise effect as noted above. 

A convergence threshold of 41.0 10−×  has been adopted as stated underneath Eq. (19b), and this is 

applicable to both cases with and without measurement noise effect. The Newton’s iterative method 

has the converged results from the ith division serving as the initial values for optimization in the 

(i+1)th division of the homotopy parameter. It has also been stated that a finer division of the 

homotopy parameter would give better estimate on the unknown parameters for optimization in the 

next division. Ten divisions have been adopted in this study, and yet the convergence is slightly 
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faster when there is noise effect. This observation cannot be explained with the computation 

constraints adopted. This set of result may, however, due to the different noise vectors in each case 

as the trend of required iteration for convergence is not consistent with the noise level.  

4.3 Study 2: A three-span continuous haunch beam 

The proposed method is further verified with application to a more realistic three-span continuous 

haunch bridge [26] as shown in Figure 10. The properties of the beam bridge are: length 60L m= , 

elastic modulus 30E GPa= , mass density 32400 /kg mρ = , width of deck is 0.5m , and the depth 

varies from 1m  to 1.6m  as shown. Each span of the beam is discretized into 10 equal length 

elements and there is a total of 30 Euler-Bernoulli beam finite elements in the structure. One vehicle 

moves from the left end to the right end of the bridge with a constant speed of 5m/s. The parameter 

1vm  of the vehicle body is set to be one, three or five times the weight of vehicle adopted in 

previous studies to study the effect of vehicle mass and they correspond to Scenarios 1, 2 and 3 

respectively. The sampling rate of 200 Hz is adopted. Other parameters are the same as those for last 

study. Multiple damages are simulated with a reduction of 10%, 5%, 6% and 12% in Elements 1, 11, 

20 and 30 respectively. This simulates the situation when local damages are located close to 

supports, and they are usually difficult to be identified with existing damage detection algorithms. 

Cases without noise and with 5% and 10% noise are studied. 

The required number of iteration in computation and the number of divisions of the 

homotopy parameter are shown in Table 3. The identified results are shown in Figure 11. Accurate 

results can be obtained for all cases when there is no measurement noise. The location of the local 

damages can be identified correctly in all noisy cases, and the estimate of damage extent is poorer 

with higher measurement noise in general. The largest error is 2.58% in Element 13 and 2.18% in 

Element 13 with 10% noise in Scenarios 1 and 2 respectively. There are no notable false positives in 

Scenario 3 and all the errors are noted small to be ignored. Hence, it may be concluded that a 

heavier vehicle body could suppress significantly the measurement noise effect in the damage 

detection.  

5 Discussions 

(a) Concerns on the model-based approach 

There are concerns on the feasibility of the proposed approach based on model of the original 

configuration of the vehicle-bridge system. Not all the original vehicle-bridge systems are available 

at the time of damage detection. The dynamic properties measured from a real structure at its 

original configuration may be quite different from those computed from the design drawings of the 
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structure.  

In the process of damage detection, three different models can be developed for the bridge 

structure, i.e. (a) the original state with the original configuration; (b) the in-service state before 

damage occurrence; and (c) the damaged state after damage occurrence. Model (a) is usually 

developed from the design drawings, while models (b) and (c) are obtained from response 

measurements from field tests. 

The proposed approach does not require the dynamic properties obtained from the 

measured responses of the original configuration (model (a)) as it is usually absent for most 

structures. The reference model in this model-based damage identification approach is the model at 

the in-service state (model (b)). The dynamic properties between models (a) and (b) may be quite 

different due to wear and tear and local modifications made on the structure. The accuracy of 

reference model (b) can be improved with measured information using a wide range of existing 

model updating techniques. However, an accurate model of the numerical model is preferable and 

necessary to facilitate accurate identification results. 

The proposed algorithm of damage identification with the objective function in Eq. (11), 

therefore, refers to the measured data from the present state (model (c)) of the structure and data 

from the improved reference model (b) above. Early works on damage detection have concluded 

that incorrect system matrices would lead to smearing of the identified local damage to its adjacent 

area. With the highly sensitive interaction force studied in this paper, this smearing effect may be 

reduced but this needs further study in future. 

The present model (c), after updating via the proposed method or other techniques with the 

measured information, it will form the reference model for the next round of damage detection 

according to the maintenance program of the structure. 

 

(b) Potential problems to be solved for practical application of the proposed method 

The methodology proposed in this paper has high potential of application for a quick scan of the 

large stock of highway bridges with solution to the following problems. 
i. Accuracy of the moving sensor - The sensor (vehicle) has to be well-calibrated with 

instruments. This paper concludes that a slower and heavier vehicle could yield more accurate 

results. These observations can serve as references in the design of this instrumented vehicle. 

ii. Lack of information of the bridge system – General discussions on this problem has been 

provided in Point (a) above. The connectivity and mass distribution of the bridge system 
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would be available from the design drawing or from measurement. The system damping can 

be obtained from preliminary on-site measurement. The boundary conditions are usually well 

defined and the real conditions can be modeled with unknown constraints for inclusion in the 

identification of the system together with the unknown local damages. Alternate way to solve 

the last problem is to include a substructural technique to assess/identify only part of the beam 

bridge. This could remove this type of uncertainties at the boundaries of the bridge [27]. 

iii. The unknown road surface roughness – The effect of surface roughness has been extensively 

studied by many researchers. It is found to be equivalent to the effect of random white noise. 

Surface roughness of Grades A to D can be properly modeled with defined distributions, while 

Grade E roughness needs more attention in the identification. However, the latter constitutes 

only a small group of beam bridges and this problem can be considered later after the trial 

application of this technique to the bridge structures with other surface roughnesses. 

iv. The scenario when there is multiple instrumented vehicles on the beam bridge – The present 

study involves only a single calibrated instrumented vehicle on the bridge. When multiple 

instrumented vehicles are involved, the solution of the objective function in Eq. (11) would be 

benefited with more measured information from the vehicles. Note that the proposed 

technique does not consider the presence of other vehicles on the beam bridge during test, i.e. 

the proposed technique requires closure of the bridge in practice. 

 

(c) Possibilities for developing into a full-fledge structural health monitoring (SHM) system 

for civil infrastructural systems. 

The following additional efforts are required before the proposed approach can be generalized 

into a full-fledge SHM system for civil infrastructural systems. 

i. Inclusion of ad-hoc wireless communications with sensors installed on both the bridge and the 

vehicle; 

ii. Development of the smart suspension system of the instrumented vehicle to optimize the 

excitation imposed on the beam bridge for improved structural health assessment. 

 

6 Conclusions 

An innovative idea of utilizing the vehicular interaction forces on top of a beam bridge for damage 

detection of the structure is presented. A moving sensor in the form of a moving vehicle with two 
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DOFs is employed for illustration. The interaction force while moving on top of the structure is 

obtained from the dynamic responses of the vehicle, and the difference between the 

above-mentioned interaction force and the computed interaction force from the dynamic system 

serves as an objective function to be minimized with the homotopy iteration algorithm. The 

following conclusions can be drawn from the simulation studies above: 

(1) The vehicle-bridge interaction force along the travelling path of the vehicle is much more 

sensitive in the detection of local damages in the bridge structure than the acceleration 

responses from the vehicle axle and body. 

(2) The pattern with the vehicle moves at a constant speed across the beam bridge can yield better 

identified results and with a lower computation cost.  

(3) Lower speed and heavier body of the vehicle are recommended as the resulting solution would 

be less affected by the measurement noise. However, a higher sampling frequency would help to 

have better accuracy in the identified result. 
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Table 1: Identified results from different types of responses 

Element 
number 

True 
damage 
indices 

Bu et al. (2006)  Proposed HIA method 

1y  2y   intP  4by  1y  2y  
1 -5 -5.01 -4.95  -5.003 -5 -5.009 -5.008 
2 -10 -9.94 -10.01  -9.999 -9.999 -9.997 -9.996 
3 0 -0.13 0  0 -0.002 -0.001 -0.003 
4 -10 -9.85 -10  -10 -9.998 -10 -9.998 
5 0 -0.21 0  0 0 0 -0.002 
6 -15 -14.99 -15  -15 -15 -15 -14.999 
7 0 -0.17 -0.01  0 0 0 -0.002 
8 0 0.11 0.01  0 0 0 0 
9 0 -0.07 -0.02  -0.001 0 0 -0.002 
10 0 0.05 0.04  0 -0.007 0 0 

AE(%) - 0.3684 0.0693  0.0033 0.0076 0.0095 0.0103 
Iteration 
number - 41 37  55 79 136 94 

Notes: 4by  is the acceleration response of the bridge beam at Node 4. 

Table 2: Effect of the vehicle speed and the sampling frequency 

Moving 
speed (m/s) 

Sampling 
frequency 

(Hz) 

Absolute error (%) / Iteration number  

No noise 2% noise 5% noise 10% noise 

1 200 0.00 / 22  1.20 / 86 2.30 / 74 3.75 / 105 

4 200 0.00 / 17 13.75 / 78 20.68 / 112 29.67 / 170 

4 500 0.00 / 17 4.34 / 81 10.78 / 159 22.12 / 218 

4 1000 0.00 / 26 3.11 / 94 6.38 / 128 18.39 / 217 

14 200 0.00 / 19 26.19 / 163 38.36 / 229 45.11 / 201 

 

Table 3 - Effect of vehicle mass 

Scenarios vehicle body 1vm  
Division of homotopy parameter / Iteration number 

No noise 5% noise 10% noise 

1 3600kg  10 / 109 20 / 248 20 / 287 

2 3 3600kg×  15 / 108 20 / 265 20 / 284 

3 5 3600kg×  10 / 110 20 / 186 20 / 157 
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Figure 1 - Moving vehicle on a beam bridge 

 

 

0 0.5 1 1.5
-100

0
100

E
le

m
en

t 1

0 0.5 1 1.5
-500

0
500

E
le

m
en

t 2

0 0.5 1 1.5
-500

0
500

E
le

m
en

t 4

0 0.5 1 1.5
-500

0
500

Time (s)

E
le

m
en

t 6

 

0 0.5 1 1.5
-0.05

0
0.05

E
le

m
en

t 1

0 0.5 1 1.5
-0.2

0
0.2

E
le

m
en

t 2

0 0.5 1 1.5
-0.2

0
0.2

E
le

m
en

t 4

0 0.5 1 1.5
-0.1

0
0.1

Time (s)

E
le

m
en

t 6

 

0 0.5 1 1.5
-0.01

0
0.01

E
le

m
en

t 1

0 0.5 1 1.5
-0.1

0
0.1

E
le

m
en

t 2

0 0.5 1 1.5
-0.1

0
0.1

E
le

m
en

t 4

0 0.5 1 1.5
-0.1

0
0.1

Time (s)E
le

m
en

t 6

 

0 0.5 1 1.5
-0.5

0
0.5

E
le

m
en

t 1

0 0.5 1 1.5
-2
0
2

E
le

m
en

t 2

0 0.5 1 1.5
-2
0
2

E
le

m
en

t 4

0 0.5 1 1.5
-1
0
1

Time (s)

E
le

m
en

t 6

 
Figure 2 - Different response sensitivities to the damage of different elements: (a) interaction force 

sensitivity, (b) acceleration sensitivity at Node 4 on the bridge, (c) acceleration sensitivity from 
the vehicle body mass mv1, (d) acceleration sensitivity from the vehicle axle mass mv2. 
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Figure 3(a) - Evolution of identified results from interaction force (satisfying Eq. (19a)) 
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Figure 3(b) - Evolution of identified results from interaction force (satisfying Eqs. (19a) and (19b)) 

 

 

 
Figure 4 - Moving vehicle in a two-span beam bridge 
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Figure 6 - Identified results under different moving patterns: (a) move at constant 4m/s; (b) 
decelerates at 23.6m; (c) decelerates at 15m; (d) decelerates at 6m. 
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Figure 7 - Identified result from different moving speeds 
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Figure 8 - Sensitivities of interaction force at Element 20 with different moving speeds: 

(a) 1m/s; (b) 4m/s; (c) 14m/s. 
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Figure 9 - Identification of multiple damages with different measurement noise 

 

 

 

  

 

 

 

 

 
Figure 10 - A three-span continuous haunch beam under a moving vehicle 
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Figure 11 - Identified result 
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