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Background: Protein-protein interactions (PPIs) play important roles in biological functions. Studies of the effects
of mutants on protein interactions can provide further understanding of PPIs. Currently, many databases collect
experimental mutants to assess protein interactions, but most of these databases are old and have not been

Results: To address this issue, we manually curated a kinetic and thermodynamic database of mutant protein
interactions (dbMPIKT) that is freely accessible at our website. This database contains 5291 mutants in protein
interactions collected from previous databases and the literature published within the last three years. Furthermore,
some data analysis, such as mutation number, mutation type, protein pair source and network map construction, can

Conclusion: Our work can promote the study on PPIs, and novel information can be mined from the new database.
Our database is available in http://Deeplearnerahu.edu.cn/web/doMPIKT/ for use by all, including both academics and
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Background

Protein-protein interactions (PPIs) play crucial roles in
organisms particularly by mediating the majority of bio-
logical functions [1]. Mutations in PPIs are associated
with some human diseases, for instance, cancer and Alz-
heimers disease [2]. In some studies, the mechanism of
PPIs has been investigated and used for treat interven-
tion and drug design [3, 4]. PPI interfaces contain many
amino acid residues, but only a few of these amino acids
greatly contribute to binding free energy, which are
defined as hot spots [5]. Hot spots can be determined by
the calculation of mutant data on protein interactions.
The knowledge of hot spots is extremely important in
designing PPI inhibitors [6]. Many researchers have de-
veloped different methods to obtain mutant information
on protein-protein interactions and have built public
databases for users to investigate hot spots [7].
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Traditionally, hot spots can be determined using bio-
logical experiments, such as alanine scanning mutagen-
esis and alanine shaving [8]. In general, residues with
alanine mutations that exhibit changes in binding free
energy (G) of 2.0 kcal/mol are defined as hot spots (HS),
whereas others are defined as nonhot spots (NS) [9].
Several studies have attempted to build mutation data-
bases associated with hot spots. The first database of
alanine mutations in protein interactions named ASEdb
was built by Thorn and Bogan [10], and experimentally
determined binding affinity data were collected. Then,
BID was developed by Fischer et al. This database
extracted hot spots in protein interfaces from scientific
literature [11]. Kumar and Gromiha built the PINT
database, which mainly stored thermodynamic data on
PPIs, such as binding free energy change, dissociation
constant, and heat capacity change [12]. SKEMPI is a
manually curated database containing 3046 binding free
energy changes upon mutation in the literature [13].

However, experimental methods for hot spot identifi-
cation are time- consuming and labor-intensive. In
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addition, it is also difficult to measure all potential
binding hot spots in a large number of proteins [14,
15]. Therefore, many researchers have developed com-
putational tools to identify hot spots. Machine learning
methods were most widely used in the related fields of
hot spot identification, such as SVM, Random Projec-
tion, and Random Forest [16-21]. The group used
existing databases to build a training model and further
applied this model to predict potential hot spots from
unknown amino acid residues [22]. In addition, these
hot spot residues can be used to identify the effects of
protein-protein affinity changes when missense muta-
tions occur. Some researchers have combined se-
quence- and structure-based methods to judge the
effect of point mutations on protein-protein affinity
using the change in free energy [23]. Furthermore,
some studies have attempted to study the effects of sin-
gle or multiple missense mutations on protein-protein
affinity. Li et al. improved predictive performance by
changing energy functions or adjusting parameters [24].
However, in recent years, these databases were not
maintained and updated in a timely manner. To ad-
dress this issue, we built a state-of-the-art database by
mining mutants of protein interactions from related
databases and literature.

This work presents a kinetic and thermodynamic data-
base of mutant protein interactions called dbMPIKT.
The database consists of data from previous databases
about mutant protein interactions, including BID,
SKEMPI and AB-Bind, and data extracted from scientific
literature published in recent years. The dbMPIKT con-
tains 5291 nonredundant mutants of experimental
kinetic and thermodynamics data upon mutation. Our
database will facilitate research on hot spot prediction,
drug discovery, and other topics.

Construction and content

Data collection

This database consists of two types of data sources. On
data source involves existing databases, i.e, SKEMPI,
BID, and AB-Bind; the other data source is curated lit-
erature. Our curated literature database collected the
mutation data of protein interactions from scientific
literature within the past three years (The detailed litera-
ture can be found in Additional file 1: Figure S1). To
build the curated database, first, a comprehensive litera-
ture search method was performed to identify related lit-
erature in PubMed using two sets of keywords. One set
contains the terms of PPIs, G and thermodynamics data,
and the other set contains the terms of PPIs, amino acid
mutations and kinetic data. The kinetic and thermody-
namics data of mutants were curated from PubMed
literature. Although some of the studies were missed,
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425 credible studies were obtained. Figure 1 shows the
detailed information of data collection.

Then, the structures of protein complexes were ob-
tained by advanced searches of the PDB database using
various query items, ie., macromolecule type (only
contains protein), protein stoichiometry (heterodimer
complexes), release date (froml January 2013 to 31
December 2016) and X-ray resolution (less than 3'A). As
a result, 1017 protein structures were obtained from 682
citations in PDB, which were mapped to the PDB-Bind
database to extract the corresponding thermodynamic
data. A total of 99 complex structures from 85 citations
containing dissociation constant (Kd value) information
were obtained. All of the literature was manually
assessed, and all Kd values of the structures were
recorded [25]. The details of the collection of protein
complexes and their sources can be referred to the
Additional file 2: Figure S2.

After removing redundancy based on the above pro-
cedure, our database contains 5291 mutations that are
composed of manually curated data and the three
existing databases.

Database construction
The dbMPIKT database is available online and is com-
posed of some functional modules, such as query, statis-
tics and analysis. For example, a quick search is located
on the top right of the homepage. Users can search for a
target protein in the database and obtain relevant mu-
tant information using PDB ID. Additionally, users can
find statistical information in the database and links to
related websites in the homepage of dbMPIKT.

The webserver includes the following pages: home,
browse, document, upload, download and contact.
Figure 2 presents the entire database structure. The
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Fig. 2 The database structure of dbMPIKT

Browse page presents all data in the database. Here, you
can see the details of mutants from the four sources. All
data can be freely downloaded. To continuously update
the database, an upload link is provided to help users
upload their own data that is subsequently assessed and
stored in the database through a user-friendly interface.
In addition, the newly uploaded data are also presented
on the browse page.Our dbMPIKT was constructed
using MySQL and PHP. More information about the
database can be obtained by browsing the six webpages.

Analysis of protein-protein interaction pairs and
interaction network construction
In addition to mutation data collection, related protein-pro-
tein interaction pairs were also recorded in our database.
All protein-protein complexes were classified into different
categories based on atomic structures of complexes. In
addition, to illustrate whether each pair of PPIs is linked, a
network analysis tool (Cytoscopeversion 3.5.1) [26] was em-
bedded into dbMPIKT to construct interaction networks.
According to the network map, some features of PPI net-
work, such as the regularity of PPIs, can be obtained by
analyzing the association of PPIs and network structure.

Utility and discussion

Important features in database

In this paper, although data entries in dbMPIKT were
obtained from different sources, the database contains

Page 3 of 7

distinguished attributes. The first feature is the PDB ID,
which denotes the ID of the protein-protein complex in
the PDB database. This ID is linked to a related PDB
website, so users can obtain more information on the
complex. The second attribute is mutation information,
which consists of original residue, chain identifier, the
position of the mutant residue in sequence and the
name of mutant residue. The third attribute includes the
names of the two interacting proteins, namely protein 1
and protein 2. Additional attributes in- clude kinetic
data and thermodynamic data. In general, kinetic data
(Kd), includes the association rate (Kon), and dissoci-
ation rate (Koff). Most data are presented in units of
nM, M~'S™* and §*. Other units can be converted into
these units. Moreover, thermodynamic data contain
changes in binding free energy (AG) and differences in
binding free energy changes between the mutant and
wild-type complex (AAG). These values are reported as
kcal/mol. PubMed ID is another attribute. This ID is the
source of kinetic and thermodynamic data. In addition,
you can refer to more details by clicking on each
PubMed ID in the table and download literature from
NCBI. The last attribute is Method, which presents the
experimental measurement method of the affinity of
PPIs. There are mainly two methods: SPR (surface plas-
mon resonance) and ITC (isothermal titration calorimet-
ric) [27]. Temperature information is also included as an
attribute. The other three databases contain data attri-
butes similar to our curated database, and users can be
referred to corresponding literature.

Database statistics

The dbMPIKT database collected 5291 mutants with
kinetic or thermodynamic data. The data were divided
into four sources: SKEMPI, AB-Bind, BID and literature,
containing 3046, 815, 256 and 1174 mutants, respect-
ively. The mutants are derived from 233 structures of
245 protein-protein complexes, and only 12 complexes
do not have PDB IDs. Some statistical information of
dbMPIKT can be found on our website, where the com-
parison of the four databases with respect to mutation
type is presented. The mutations in each database are
clustered into three mutation types: single mutants,
double mutants and multiple mutants. The data distri-
bution from different sources is presented in Fig. 3
(More details can be found in Additional file 3: Table S3
of supplementary materials). In general, the SKEMPI
database contains the greatest number of single mutants,
and the curated database contains the second most
single mutants. Regarding mutation type, single muta-
tions account for 75.88% of the total mutations, double
mutations account for 13.28% and multiple mutations
account for 10.84%.
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Fig. 3 The data distribution of the four data sets

Specifically, the collected thermodynamic and kinetic
data are measured by G, change in enthalpy (H), change
in entropy (S), and kinetic rate constants. These values
are derived from SPR, ITC and alanine mutation scan-
ning (AMS) experiments.

The database contains almost all experimental mu-
tants to date. For single mutations, we counted the num-
ber of mutations for each type of amino acids. Table 1
presents the distribution of 20 types of amino acids in
single mutant data (More details can be found in
Additional file 4: Table S4 of supplementary materials).
Statistically, alanine mutation accounts for 56% of single
mutant data, and threonine has the lowest mutant rate.
Compared with other data sets, these results are more
commonly observed in the curated database, where ala-
nine mutations account for 66.7% of all mutations. In
terms of amino acid properties, the 20 types of amino
acids are divided into five categories: polar (S, T, N and
Q), hydrophobic (A, I, L, M, V, W, Y and F), positive (R,
K and H), negative (D and E) or other (G, P and C) [28].

Analysis of protein-protein pairs in dbMPIKT

In our database, 5291 mutants were obtained from 245
protein-protein complexes, including heterodimer com-
plexes, antigen-antibodies, and enzyme-inhibitors [29].
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Table 1 The distribution of single mutant amino acids for the
four datasets

Dataset Amino acid  SKEMPI BID  AB-Bind dbMPIKT  Total
Hydrophobic A 1057 256 267 673 2253

| 53 0 2 M 66

L 77 0 3 17 97

M 60 0 3 12 75

\% 74 0 12 12 98

W 5 0 14 13 81

Y 56 0 14 14 84

F 94 0 8 23 125

S 71 0 1M 21 103
Polar T 48 0 6 9 63

N 60 0 15 21 96

Q 78 0 25 21 124
Positive R 76 0 15 18 109

K 98 0 7 29 134

H 54 0 2 10 66
Negative D 76 0 15 27 118

E 83 0 12 35 130
Other C 45 0 1 14 60

G 59 0 7 21 87

p 78 0 25 21 124
Total 2316 256 440 1010 4022

In addition, human, Mus musculus, and Bos taurus pro-
teins are included in the database, and human proteins
represent the largest group. A protein interaction net-
work was constructed based on protein interaction pairs,
which can be used to identify protein functions for spe-
cific protein interactions [30]. Figure 4 illustrates a part
of the protein interaction network, and the entire net-
work is presented in Additional file 5: Table S5 of the
supplementary material. In Fig. 4, most of the protein in-
teractions are independent, but it is interesting that a
small portion of proteins interact with each other to
form an interaction network. Figure 4 demonstrates seen
that a small network is centered at basic pancreatic
trypsin inhibitor (BPTI) and bovine alpha-chymotrypsin
protein, which are both Bos taurus proteins. BPTI plays
an important role in biomedical science given that it can
be used to study the conformations and PPIs of globular
proteins reduce hemorrhagic complications in clinical
practice [31]. Furthermore, the protein interaction
network is an important tool to analyze the biological
function of proteins [32].

Data source analysis
The dbMPIKT consists of data from four data sources,
which all include kinetic or thermodynamic data of
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mutant protein interactions. However, these data are
somewhat different. The SKEMPI database contains the
largest number of mutants, and the manually curated
database is the second largest source. The BID is the
least represented source given that the BID database is
not currently operational and data cannot be down-
loaded directly. Some BID data are extracted from the
additional studies in the literature [33]. In addition, our
curated database contains the largest number of alanine
mutations in terms of mutant types. Therefore, our data-
base is more useful for hot spot predictions. Moreover,
based on protein types, previous databases almost exclu-
sively targeted specific complexes. For example, AB-bind
is an antibody binding mutational database extracted from
information regarding antigen-antibody complexes. Our
work integrated these databases together so that it is easy
for researchers to obtain required data. Although SKEMPI
has been updated recently, i.e., SKEMPI2.0 [34], the de-
scription of mutation data in our database is more consist-
ent with scientific research compared with SKEMPI2.0.
To clearly describe the characteristics of mutation data in
our curated database, mutation data features are classified
into two simple categories: wild type data (WT data) and
mutated data (MT data). Among them, each type of data
contains thermodynamic data or kinetic data.
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Biological significance of database data

Protein-protein interactions have been extensively
studied, and many researchers have proposed calcula-
tion methods for PPI predictions. Among them, dis-
ease— related PPIs deserve in-depth study [35]. Our
database provides information on mutant data and PPI
pairs as well as links to related websites that can indir-
ectly capture structure and sequence information for
each protein complex. This information can be used as
features for PPI predictions. For example, evolutionary
features can be obtained from protein sequences and
incorporated into Ensemble to predict hots spots [16,
19]. Protein pairs also represent an important part of
our database, i.e., self-interacting proteins (SIP) are a
type of PPI, and SIP detection is a recent hot topic of
related research [36]. In general, our database can
provide valid datasets and relevant feature information
for PPI predictions.

Conclusions

The paper proposes to integrate the three previous
databases and manually curated data presented in the
literature over the last three years. We built a web
server to store kinetic and thermodynamic data on
mutant protein interactions. More detailed informa-
tion about mutants and protein-protein interactions
can be found on the web server. In our database, kin-
etic and thermodynamic data of mutants, including
Kd, AAG, AG, Koff and Kon, are obtained. In addition,
some data can be calculated using other data. For
example, AAG, a parameter that can be used to dia-
metrically distinguish hot spots and nonhot spots, can
be indirectly obtained using the following equation:

Ko
= and
on

Kd =

AG=RT In Kq (1)

The database provides a large hot spot data set that
can help improve the applications of hot spots and hot
spot predictions.

Webserver

Our free website is available at http://DeepLearner.a-
hu.edu.cn/web/dbMPIKT/. Users can perform advanced
searches on the home page to obtain interesting data
and browse all data on the browse page.
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