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Abstract

Markov chains have been widely employed as a fundamental model in the stud-

ies of probabilistic and stochastic communicating and concurrent systems. It

is well-understood that decomposition techniques play a key role in reachabil-

ity analysis and model-checking of Markov chains. (Discrete-time) quantum

Markov chains have been introduced as a model of quantum communicating

systems [1] and also a semantic model of quantum programs [2]. The BSCC

(Bottom Strongly Connected Component) and stationary coherence decompo-

sitions of quantum Markov chains were introduced in [3, 4, 5]. This paper

presents a new decomposition technique, namely periodic decomposition, for

quantum Markov chains. We further establish a limit theorem for them. As an

application, an algorithm to find a maximum dimensional noiseless subsystem

of a quantum communicating system is given using decomposition techniques

of quantum Markov chains.
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1. Introduction

A Markov chain is a random process with the property that, conditional on

its present value, the future is independent of the past. Markov chains have been

used as statistical models of real-world processes in a wide range of fields [6].

They have been extensively employed as a fundamental model of probabilistic

and stochastic communicating and concurrent systems. In particular, various

algorithmic analysis and model checking techniques have been developed for

them in the last three decades (see for example [7], Chapter 10).

The notion of Markov chain, when properly generalized to the quantum

world, provides a potential paradigm for modeling the evolution of quantum

systems. Continuous-time quantum Markov processes have been intensively

studied in mathematical physics for many years, and achieved several discov-

eries of fundamental importance [8, 9, 10, 11]. Discrete-time quantum Markov

chains with finite dimensions were first introduced as a model of quantum com-

municating systems [1]. A special class of quantum Markov chains, namely

quantum walks, has been successfully used in the design of quantum algorithms

(see [12, 13] for a survey of this line of research). More recently, discrete-time

quantum Markov chains were introduced by the authors and their collaborators

[2, 14, 4] as a semantic model for the purpose of verification and termination

analysis of quantum programs.

It is well-known that decomposition techniques, e.g. the BSCC (Bottom

Strongly Connected Component) decomposition, are a key to reachability anal-

ysis and model checking of Markov chains (see for example, [7], Section 10.1.2).

In [4], the BSCC (bottom strongly connected component) decomposition tech-

nique was extended to quantum Markov chains and applied in their reachability

analysis. The same decomposition was also presented in the field of quantum

probability [3] with the name “the recurrent decomposition”. Meanwhile, an-

other decomposition, namely stationary coherence decomposition of quantum

Markov chains, was developed in [5] and further generalized into the infinite

dimensional case [15].
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This paper continues our studies of quantumMarkov chains in [4] and further

develops decomposition techniques that can be used in algorithmic analysis and

model checking of quantum Markov chains.

Contributions of this paper: More concretely, our main contributions

include:

(1) We develop a new decomposition technique, namely periodic decomposi-

tion, for quantum Markov chains.

(2) We give several characterizations of limiting states of quantum Markov

chains in terms of aperiodicity, irreducibility, and eigenvalues.

(3) The problem of finding a maximum dimensional noiseless subsystem of

a quantum communicating system has been studied employed by C*-

algebra [16, 17] and operator error correction [18]. We present a new

algorithm to solve this problem using decomposition techniques of quan-

tum Markov chains.

Organization of this paper: We review some basic notions and several

useful results of quantum Markov chains from previous literature in Section 2.

A two-level decomposition of quantum Markov chains combining the BSCC de-

composition in [4] and the stationary coherence decomposition in [5] is presented

in section 3. In particular, an algorithm to compute the two-level decomposition

of quantum Markov chains is given. In Section 4, we generalize the notions of

irreducibility and periodicity for classical Markov chains to quantum Markov

chains. It is shown that they coincide with the corresponding notions defined

in the previous literature from different perspectives. We then carefully exam-

ine the limiting states of irreducible and aperiodic quantum Markov chains. In

particular, a periodic decomposition technique of irreducible quantum Markov

chains is presented. In Section 5, we consider general quantum Markov chains

that may be reducible. A characterization of their limiting states is given in

terms of BSCCs, and their structures are analyzed by combining the stationary

coherence, BSCC and periodic decompositions. As an application of decompo-
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sition techniques developed in previous sections, Section 6 shows a method of

finding a maximum dimensional noiseless subsystem of a quantum communicat-

ing system by reducing the problem to the search of certain BSCCs.

2. Quantum Markov Chains

For convenience of the reader, we review some basic notions and results of

quantum Markov chains; for details we refer to [19]. Recall that a (classical)

Markov chain is a random process of which the future behavior depends only

on the present, and the evolution of such a process is modeled by a matrix of

transition probabilities. Note that the evolution of an open quantum system

can be modeled mathematically by a super-operator, i.e. a completely positive

and trace-preserving (CPTP) linear map, acting on its state Hilbert space of

the system. This naturally motivates us to present the following:

Definition 1 ([4]). A quantum Markov chain is a pair (H, E), where H is a

Hilbert space, and E is a super-operator on H.

In this paper, we only consider finite-dimensional quantum Markov chains,

i.e. dim(H) < ∞. We use B(H) and D(H) to denote the linear operators

acting on H and the set of density operators in H, respectively. Then a state

of a quantum Markov chain (H, E) is an operator ρ ∈ D(H). Recall that the

support of a density operator ρ, denoted supp(ρ), is the subspace of H spanned

by the eigenvectors of ρ corresponding to non-zero eigenvalues. The image of a

subspace X of H under a super-operator E is defined to be

E(X ) :=
∨

|φ〉∈X

supp(E(|φ〉〈φ|)).

Here |φ〉 denotes a pure state in X . The join of a family {Xk} of subspaces of
H is defined by

∨
k Xk = span(

⋃
k Xk), and for a set of vectors Y, span(Y) =

{∑k
i=1 λivi | k ∈ N, vi ∈ Y, λi ∈ C} is the space spanned by vectors in X .
For any linear map E on B(H), if dim(H) = n, then it admits up to n2

distinct (complex) eigenvalues λ satisfying

E(A) = λA
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for some A ∈ B(H), A 6= 0. We write spec(E) for the set of all eigenvalues of

E . The spectral radius of E is defined as ̺(E) := sup{|λ| : λ ∈ spec(E)}. In

particular, if E is a CPTP map, then ̺(E) = 1.

Definition 2 ([14]). Let G = (H, E) be a quantum Markov chain. For any

ρ ∈ D(H), the reachable space of ρ is defined to be

RG(ρ) :=
∞∨

i=0

supp(E i(ρ))

where E i stands for the composition of i copies of E, that is, E0 = I, the identity

super-operator on H, and E i = E i−1 ◦ E for i ≥ 1.

Intuitively, as its name suggests, RG(ρ) consists of all states that can be

reached from the initial state ρ in the iterative evolution of the system modeled

by G.

Lemma 1 ([14]). Let G = (H, E) be a quantum Markov chain and n = dim(H).
Then for any state ρ ∈ D(H), we have

RG(ρ) =

n−1∨

i=0

supp(E i(ρ)).

The above lemma indicates that all reachable states can be actually reached

within n steps if dim(H) = n.

Definition 3 ([4]). For a quantum Markov chain G = (H, E), a state ρ ∈ D(H)
is called stationary if E(ρ) = ρ; that is, ρ is a fixed point of E. Furthermore, ρ is

said to be minimal if there is no stationary state σ such that supp(σ) ( supp(ρ).

Let E be a super-operator with Kraus operators {Ei}, i.e. E(·) =
∑

iEi ·E†
i .

Then its matrix representation is defined to be M =
∑
i Ei ⊗ E∗

i where E∗

stands for the (entry-wise) complex conjugate of E. Assume that M = SJS−1

is the Jordan decomposition of M , where

J =

K∑

k=1

λkPk +Nk,
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Ndk
k = 0 for some dk > 0, NkPk = PkNk = Nk, PkPl = δklPk, tr(Pk) = dk, and

∑
k Pk = I. Let

J∞ :=
∑

k:λk=1

Pk, (1)

Jφ :=
∑

k:|λk|=1

Pk. (2)

Then we write:

• E∞ for the super-operator with the matrix representation SJ∞S
−1.

• Eφ for the super-operator with the matrix representation SJφS
−1.

The following interesting characterizations of E∞ and Eφ are crucial for our

later discussion.

Lemma 2 ([1, Proposition 6.3]). For any quantum Markov chain G = (H, E),

(1) there exists an increasing sequence of integers ni such that Eφ = limi→∞ Eni ;

(2) E∞ = limN→∞
1
N

∑N
n=1 En.

Meanwhile, we collect some other results in the previous literature for later

use.

Lemma 3 ([14]). For any quantum Markov chain G = (H, E), real number

p > 0, ρ ∈ D(H), and X ,Y being subspaces of H, we have

(1) supp(pρ) = supp(ρ);

(2) E(supp(ρ)) = supp(E(ρ));
(3) if X ⊆ Y, then E(X ) ⊆ E(Y);
(4) E(X ∨Y) = E(X )∨ E(Y).

Lemma 4 ([20]). If F is a CP map with F(·) = ∑
i Fi ·F †

i and
∑

i F
†
i Fi ≤ I,

then for any Hermitian matrix A,

‖F(A)‖1 ≤ ‖A‖1.
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Lemma 5 ([21]). Let S(H) denote the set of all subspaces of H. Then for any

ρ ∈ D(H),
inf

X∈S(H)\{0}
tr(PX ρ) = λmin(ρ)

where 0 is the zero-dimensional subspace and λmin(ρ) is the minimum eigen-

value of ρ.

3. Two-level Decomposition

In this section, we show how to combine the BSCC and stationary coher-

ence decompositions developed in [3, 4, 5] to form a two-level decomposition of

quantum Markov chains. In particular, we present an algorithm to implement

such a two-level decomposition.

A central concept in the analysis of quantum Markov chains is the strongly

connected component. Before giving its definition, let us first introduce an aux-

iliary notation. Let X be a subspace of a Hilbert space H, and E be a super-

operator on H. Then the restriction of E on X is defined to be a super-operator

E|X with E|X (ρ) = PXE(ρ)PX for all ρ ∈ D(X ), where PX is the projector onto

X .

Definition 4 ([4]). Let G = (H, E) be a quantum Markov chain. A subspace

X of H is called strongly connected in G if for any |φ〉, |ψ〉 ∈ X , we have

|φ〉 ∈ RGX
(|ψ〉〈ψ|) and |ψ〉 ∈ RGX

(|φ〉〈φ|), where GX denotes the quantum

Markov chain (X , E|X ); that is, |φ〉 and |ψ〉 can be reached from each other.

Let SC(G) be the set of all strongly connected subspaces of H in G. It is

easy to see that the partial order (SC(G),⊆) is inductive. Then Zorn’s lemma

asserts that it has maximal elements. Each maximal element of (SC(G),⊆) is

called a strongly connected component (SCC) of G.

Definition 5 ([4]). Let G = (H, E) be a quantum Markov chain. Then a sub-

space X of H is called a bottom strongly connected component (BSCC) of G if

it is a SCC and invariant in G. Here X is said to be invariant in G if E(X ) ⊆ X .
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The following characterization of BSCCs establishes a connection between

BSCCs and minimal stationary states.

Lemma 6 ([4]). A subspace X is a BSCC of quantum Markov chain G =

(H, E) if and only if there exists a minimal stationary state ρ∗ of E such that

supp(ρ∗) = X .

Note that a BSCC is essentially equivalent to be a minimal stationary range

defined in [5]. The following key definition is also from [5].

Definition 6 ([5]). Two mutually orthogonal BSCCs B1 and B2 in a quantum

Markov chain G = (H, E) have a stationary coherence if there is a BSCC B3 ⊆
B1

⊕B2 with B3 6= B1,B2, where
⊕

denotes direct sum.

Stationary coherence is the unique nature of quantum Markov chains, with-

out a counter-part in classical Markov chains.

Definition 7 ([4]). Let G = (H, E) be a quantum Markov chain. A subspace

X of H is called a transient subspace if for any ρ ∈ D(H),

lim
n→∞

tr(PX En(ρ)) = 0. (3)

Intuitively, equation (3) means that the system will eventually go out of X
no matter where it starts from.

Now we are ready to combine the BSCC decomposition in [4] and the station-

ary coherence decomposition in [5] to give a two-level decomposition of quantum

Markov chains.

Theorem 1 (Two-Level Decomposition). For any quantum Markov chain

G = (H, E), we have a unique orthogonal decomposition:

H =
⊕

l

Xl
⊕
TE (4)

where:

(1) TE is the largest transient subspace of G.
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(2) Each Xl is either a BSCC or can be further decomposed into mutually

orthogonal BSCCs:

Xl = Bl,0
⊕
· · ·

⊕
Bl,nl−1 (5)

such that

• all BSCCs Bl,j (0 ≤ j < nl) have the same dimension; and

• there are stationary coherences between any two of them.

(3) There are no stationary coherences between BSCCs in Xi and Xj if i 6= j.

From [4], we know that unlike classical Markov chains, the BSCC decom-

position is not unique in general for quantum Markov chains. By Theorem

1, we see that the stationary coherence between BSCCs is responsible for this

non-uniqueness.

For practical applications, an algorithm to implement the two-level decom-

position is crucial. Actually, we have already an algorithm to compute the

BSCC decomposition in [4]. So, a key to computing the two-level composition

is to identify the BSCCs having stationary coherences. This problem is solved

by the following:

Lemma 7. Let B1 and B2 be two mutually orthogonal BSCCs of a quantum

Markov chain (H, E) and F = {X ∈ B(B1
⊕B2)|E(X) = X}. Then there is a

stationary coherence between B1 and B2 if and only if dim(F) > 2.

Proof. By Lemma 6, B ⊆ H is a BSCC if and only if there is a minimal

stationary state ρ such that supp(ρ) = B. If B1 and B2 are two mutually

orthogonal BSCCs, let ρ1 ∈ D(B1) and ρ2 ∈ D(B2) be corresponding minimal

stationary states. Then there is a stationary coherence if and only if there is at

least one stationary state ρ3 which cannot be linearly represented by ρ1 and ρ2.

The lemma then follows from [1, Corollary 6.5]. �

We further observe that the stationary coherence is transitive in the sense

that if there are stationary coherences between B1 and B2 and between B2 and

B3, then there is a stationary coherence between B1 and B3 as well.
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Algorithm 1 Decompose(G)
Input: A quantum Markov chain G = (H, E).
Output: The two-level decomposition of H in the form of Eqs.(4) and (5).
⊕n

i=1 Bi
⊕ TE ← the BSCC decomposition of G = (H, E)

I ← {1, 2, · · · , n}
m← 1

for each i ∈ {1, 2, · · · , n} do

if i ∈ I then

xm ← {i}
for each j > i and j ∈ I do

F ← {X ∈ B(Bi
⊕Bj)|E(X) = X}

if dim(F) > 2 then

xm ← xm ∪ {j}
I ← I\{j}

end if

end for

Xm ←
⊕

k∈xm
Bk

m← m+ 1

end if

end for

return TE ,Xi, {Bk}k∈xi
for 1 ≤ i ≤ m− 1
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No algorithm for computing the stationary coherence decomposition has

been given in the previous literature. We developed an algorithm for this pur-

pose. It can be combined with the BSCC decomposition algorithm in [4] to

compute the two-level decomposition of quantum Markov chains. This com-

bination is presented as Algorithm 1. The time complexity of Algorithm 1 is

O(n8), where dim(H) = n.

4. Irreducibility and Periodicity

A two-level decomposition of quantum Markov chains was developed in

the last section. In this section, we propose another decomposition technique,

namely periodic decomposition, which can be combined with the two-level de-

composition to further form a three-level decomposition. Such a three-level

decomposition provides us with a very useful tool for a finer algorithmic analy-

sis of quantum Markov chains.

We first extend the notion of irreducibility for quantum Markov chains,

which turns out to be equivalent to the irreducibility defined in the previous

literature. Recall from classical probability theory that an irreducible Markov

chain starting from a state can reach any other state in a finite number of steps.

With the help of the reachable space introduced in Definition 2, we have:

Definition 8. A quantum Markov chain G = (H, E) is called irreducible if for

any ρ ∈ D(H), RG(ρ) = H.

From Lemma 1, it can be easily shown that the above definition indeed

coincides with the irreducibility given in [9] for quantum stochastic processes

and [1, Theorem 6.2] for quantum channels. However, our definition presents a

more natural extension of irreducibility for classical Markov chains.

To illustrate irreducibility, let us see two simple examples.

Example 1. Consider a natural way to encode the classical NOT gate X : 0→
1; 1→ 0 into a quantum operation. Let H = span{|0〉, |1〉}. The super-operator
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E : D(H)→ D(H) is defined by

E(ρ) = |1〉〈0|ρ|0〉〈1|+ |0〉〈1|ρ|1〉〈0|

for any ρ ∈ D(H). It is easy to check that the quantum Markov chain (H, E) is
irreducible.

Example 2 (Amplitude-damping channel). Consider the 2-dimensional amplitude-

damping channel modeling the physical processes such as spontaneous emission.

Let H = span{|0〉, |1〉}, and

E(ρ) = E0ρE
†
0 + E1ρE

†
1

where E0 = |0〉〈0|+√1− p|1〉〈1| and E1 =
√
p|0〉〈1| with p > 0. Then the quan-

tum Markov chain G = (H, E) is reducible since, say, RG(|0〉〈0|) = span{|0〉}.

Let us now consider how to check whether a quantum Markov chain G =

(H, E) is irreducible. Note from [4, Lemma 3] that G is irreducible if and only if

the state Hilbert spaceH itself is a BSCC of G. Moreover, we have the following:

Lemma 8. A quantum Markov chain G = (H, E) has a unique BSCC B if and

only if it has a unique stationary state ρ∗. Furthermore, supp(ρ∗) = B.

Proof. We see from Definition 7 that for any stationary state ρ, supp(ρ) ⊆ B.
Then the result immediately follows from Lemma 6 and Theorem 1. �

Therefore, uniqueness of BSCCs in G can be used to check irreducibility of

G.

Theorem 2. [9, Theorem 13] A quantum Markov chain G = (H, E) is irre-

ducible if and only if it has a unique stationary state ρ∗ with supp(ρ∗) = H.

Several different versions of this theorem and its special cases are known in

[1] and [22]. But the above version can be more conveniently used in checking

irreducibility of quantumMarkov chains. Indeed, it shows that checking whether

G = (H, E) is reducible can be done by Algorithm 1 in [4] to check whether its

state space H is a BSCC. The time complexity is O(n6), where dim(H) = n.

Next, we consider the periodicity of quantum Markov chains.
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Definition 9. Let G = (H, E) be a quantum Markov chain.

(1) A state ρ ∈ D(H) is called aperiodic if

gcd{m ≥ 1 : supp(ρ) ⊆ supp(Em(ρ))} = 1.

Here, gcd stands for the greatest common divisor; in particular, we assume

that gcd(∅) = 0.

(2) A subspace X of H is aperiodic if each density operator ρ with supp(ρ) ⊆ X
is aperiodic.

(3) If there exists an integer d ≥ 1 such that the whole state space H is aperi-

odic in quantum Markov chain Gd = (H, Ed), then the minimum of such

integers d, denoted d(G), is called the period of G.
(4) When d(G) = 1, G is said to be aperiodic; otherwise, it is periodic.

For the special case of irreducible quantum Markov chains, periodicity was

defined in [22, 23] based on the notion of E-cyclic resolution:

Definition 10 ([23]). For a quantum Markov chain G = (H, E), let (P0, · · · , Pd−1)

be a resolution of identity, i.e. a family of orthogonal projectors such that
∑d−1
k=0 Pk = I. Then (P0, · · · , Pd−1) is said to be E-cyclic if E†(Pk) = Pk⊟1

for k = 0, · · · , d − 1, where ⊟ denotes subtraction modulo d and E† is the ad-

joint map of E; that is, the linear map such that tr(ME(A)) = tr(E†(M)A) for

all M and A in B(H).

The next lemma shows that the period defined in [23] and that in Definition

9 are the same for irreducible quantum Markov chains. Actually, the former can

be better understood in the Heisenberg picture, and the latter in the Schrödinger

picture.

Lemma 9. For an irreducible quantum Markov chain G = (H, E), the period of

G is equal to the maximum integer c for which there exists a E-cyclic resolution

(P0, · · · , Pc−1) of identity.

13



Proof. By [1, Theorem 6.6], the maximum c for which there exists a E-cyclic
resolution (P0, · · · , Pc−1) of identity is the number of the eigenvalues of E with

magnitude one. Then the result follows from Lemma 13. �

The notion of periodicity is further illustrated by the following example.

Example 3. Let G = (H, E) with H = span{|0〉, |1〉, |2〉} and for any ρ ∈ D(H),

E(ρ) = |1 + 2〉〈0|ρ|0〉〈1 + 2|+ |0 + 2〉〈1|ρ|1〉〈0 + 2|+ |1 + 0〉〈2|ρ|2〉〈1 + 0|

where |i+ j〉 = (|i〉+ |j〉)/
√
2 for i, j ∈ {0, 1, 2}. Then it is easy to see that G is

irreducible and aperiodic, and has the unique stationary state

1

3
(|1 + 2〉〈1 + 2|+ |0 + 2〉〈0 + 2|+ |1 + 0〉〈1 + 0|).

The following lemma presents a useful characterization of the reachable space

starting from a state within an aperiodic subspace. It can be seen as a strength-

ened version of Lemma 1 in the special case of aperiodic quantumMarkov chains.

Lemma 10. Let G = (H, E) be a quantum Markov chain and X be an subspace

of H. Then the following statements are equivalent:

(1) X is an aperiodic subspace of H;
(2) For any ρ ∈ D(H) with supp(ρ) ⊆ X , there exists an integer M(ρ) > 0

such that supp(Em(ρ)) = RG(ρ) for all m ≥M(ρ).

Proof. (2) ⇒ (1) is obvious. So, we only need to show that (1) ⇒ (2). Fix

an arbitrary ρ with supp(ρ) ⊆ X . For each i ≥ 0, let Xi = supp(E i(ρ)). In

particular, X0 = supp(ρ). Let Tρ = {i ≥ 1 : Xi ⊇ X0}. Then from Lemma 3, we

have: for any i, j ≥ 0,

Xi+j = E i(Xj); and (6)

if i, j ∈ Tρ, then i+ j ∈ Tρ. (7)

By the assumption that X is aperiodic, we have gcd(Tρ) = 1. Then from

[24], there is a finite subset {mk}k∈K of Tρ, gcd{mk}k∈K = 1, and an integer

M ′(ρ) > 0 such that for any i ≥ M ′(ρ), there exist positive integers {ak}k∈K
such that i =

∑
k∈K akmk. Thus i ∈ Tρ from Eq. (7).
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Now let M(ρ) =M ′(ρ)+n− 1 where n = dim(H), and take any m ≥M(ρ).

For all 0 ≤ i ≤ n − 1, we have shown that m − i ∈ Tρ; that is, Xm−i ⊇ X0.

Thus Xm ⊇ Xi from Eq. (6), and Xm ⊇ RG(ρ) from Lemma 1. Therefore,

Xm = RG(ρ), as the reverse inclusion trivially holds. �

Combining the above lemma with Definition 8, we have:

Corollary 1. Let G = (H, E) be an irreducible and aperiodic quantum Markov

chain. Then for any ρ ∈ D(H), there exists an integer M(ρ) > 0 such that

supp(Em(ρ)) = H for all m ≥M(ρ).

The above corollary shows that starting from any state ρ, an irreducible and

aperiodic quantum Markov chain can reach the whole state space after a finite

number of steps. Then it is interesting to see when the whole space can be

reached for the first time.

Definition 11. Let G = (H, E) be an irreducible and aperiodic quantum Markov

chain. For each ρ ∈ D(H), the saturation time of ρ is defined to be

s(ρ) = inf{n ≥ 1 | supp(En(ρ)) = H}.

It is clear from Corollary 1 that the infimum in the defining equation of s(ρ)

can always be attained. Furthermore, we can show that for an irreducible and

aperiodic quantum Markov chain, the saturation time for any initial state has

a universal upper bound.

Lemma 11. Let G = (H, E) be a quantum Markov chain and X be an invariant

subspace of H. Then the following statements are equivalent:

(1) GX = (X , E|X ) is irreducible and aperiodic;

(2) There exists an integer M > 0 such that for all ρ ∈ D(X ), supp(Em(ρ)) =

X for all m ≥M .

Proof. (2) ⇒ (1) is obvious. So, we only need to show that (1) ⇒ (2). Let

sX (ρ) be the saturation time of ρ in GX . Then for any ρ ∈ D(X ), let

B(ρ) = {σ ∈ D(X ) | ‖ρ− σ‖1 < λ̄min(EsX (ρ)(ρ))},
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where ‖ · ‖1 is the trace norm and λ̄min(ρ) is the minimum non-zero eigenvalue

of ρ. Obviously, B(ρ) is an open set. Then {B(ρ)}ρ∈D(X ) is an open cover of

D(X ). As D(X ) is compact, we can find a finite number of density operators

{ρi}i∈J such that

D(X) =
⋃

i∈J

B(ρi).

In the following, we show for any ρ ∈ D(X ) and σ ∈ B(ρ), supp(Em(σ)) = X
for all m ≥ s(ρ). Then the theorem holds by taking M = maxi∈J sX (ρi). Let

Y = supp(EsX (ρ)(σ)), and PY be the projector onto Y. As X is invariant,

Y ⊆ X . Let PȲ = IX − PY , where IX is the identity operator on X . Then

tr(PȲEsX (ρ)(ρ)) = ‖PȲEsX (ρ)(ρ)PȲ‖1

= ‖PȲ(EsX (ρ)(ρ)− EsX (ρ)(σ))PȲ‖1

≤ ‖EsX (ρ)(ρ)− EsX (ρ)(σ)‖1

≤ ‖ρ− σ‖1

< λ̄min(EsX (ρ)(ρ)).

The first two inequalities follow from Lemma 4. By Lemma 5, this is only pos-

sible when Y = X , since X is invariant. In other words, supp(EsX (ρ)(σ)) = X .
Thus supp(EsX (ρ)−1(σ)) ⊆ supp(EsX (ρ)(σ)), and supp(EsX (ρ)(σ)) ⊆ supp(EsX (ρ)+1(σ))

from Lemma 3. So

supp(EsX (ρ)+1(σ)) = X .

By induction, we can show that supp(Em(σ)) = X for all m ≥ sX (ρ). �

It is worth noting that the integer M in the above theorem does not depend

on state ρ. This makes it much stronger than Lemma 10. Considering the whole

state space, we have:

Corollary 2. Let G = (H, E) be a quantum Markov chain. Then the following

statements are equivalent:

(1) G is irreducible and aperiodic;
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(2) There exists an integer M > 0 such that for all ρ ∈ D(H), supp(Em(ρ)) =

H for all m ≥M .

Note that a (classical) Markov chains described by a stochastic k-by-k matrix

P is irreducible and aperiodic if and only if there exists an integer m such that

(Pm)i,j > 0 for all i and j. Then by (classical) Perron-Frobenius theory, we

have Wielandt’s inequality [25]: the minimum m ≤ k2 − 2k + 2. A quantum

Wielandt’s inequality was recently proved in [26]. As its direct application, we

see that the minimal M in Corollary 2 satisfies M ≤ n4 where n = dim(H).
Then a limit theorem of quantum Markov chain can be directly obtained by

combining Corollary 2 and [1, Theorem 6.7].

Theorem 3 (Limit Theorem). Let G = (H, E) be a quantum Markov chain.

Then the following statements are equivalent:

(1) G has a limiting state ρ∗ with supp(ρ∗) = H in the sense that

lim
n→∞

En(ρ) = ρ∗, ∀ρ ∈ D(H).

(2) G is irreducible and aperiodic;

(3) 1 is the only eigenvalue of E with magnitude one and the corresponding

eigenvector ρ∗ is positive definite.

Proof. Direct from [1, Theorem 6.7], by noting that irreducibility plus ape-

riodicity are equivalent to primitivity with Corollary 2. �

Generally, aperiodicity can be determined by the eigenvalues of E without

the assumption of irreducibility.

Lemma 12. Let G = (H, E) be a quantum Markov chain with a trivial transient

subspace; that is, TE = {0} in the decomposition in Eq. (5). If E has only 1 as

its eigenvalue with magnitude one, then G must be aperiodic.

Proof. As 1 is the only eigenvalue with magnitude one, Eφ = limn→∞ En.
Then for any |ψ〉 ∈ H,

lim
n→∞

En(|ψ〉〈ψ|) = ρ∗
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for some stationary state ρ∗.

By the proof of Lemma 11, there exists an integer N > 0 such that for all

n > N ,

supp(En(|ψ〉〈ψ|)) = supp(ρ∗).

Then with TE = {0} and Lemma 6, there is a stationary state σ∗ such that

tr(σ∗ρ∗) = 0 and supp(ρ∗ + σ∗) = H. Then as supp(ρ∗), supp(σ∗) is invariant

under Eφ and Eφ = limn→∞ En is CPTP, it is easy to see that |ψ〉 ∈ supp(ρ∗).

Therefore, by Definition 9, |ψ〉〈ψ| is aperiodic. Consequently, (H, E) is aperiodic
from the arbitrariness of |ψ〉. �

The next lemma shows that the period of an irreducible quantum Markov

chain is exactly the number of eigenvalues with magnitude one.

Lemma 13. For an irreducible quantum Markov chain G = (H, E), the period

of G equals the number of eigenvalues of E with magnitude one.

Proof. Let m be the number of eigenvalues of E with magnitude one and d

the period of G. By [1, Theorem 6.6], 1 is the only element in spec(Em) with

magnitude one. As G is irreducible, Gm = (H, Em) has only a trivial transient

subspace by Theorem 2. Then from Lemma 12, Gm = (H, Em) is aperiodic, and

hence d ≤ m.

We now turn to prove that d ≥ m. The case when m = 1 is trivial. Suppose

m ≥ 2. By [1, Theorem 6.6], there exists a E-cyclic resolution of identity

(P0, · · · , Pm−1). As Gd = (H, Ed) is aperiodic, there exists an integer N ′ > 0

such that supp(Pk) ⊆ supp(Edn(Pk)) for all n ≥ N ′. Thus for n ≥ N ′

0 < tr(PkEdn(Pk)) = tr(E†dn(Pk)Pk) = tr(Pk⊟dnPk) (8)

where ⊟ denotes subtraction modulo m. Therefore, m must be a factor of d

and m ≤ d. �

Lemma 13 indicates that every irreducible quantum Markov chain has a

period and also offers an efficient algorithm for computing the period by counting

the number of eigenvalues of the super-operator.
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Now we are ready to present the main result of this section – a periodic

decomposition technique for irreducible quantum Markov chains.

Theorem 4 (Periodic Decomposition). The state Hilbert space H of an ir-

reducible quantum Markov chain G = (H, E) with period d can be decomposed

into the direct sum of some orthogonal subspaces:

H = B0
⊕
· · ·

⊕
Bd−1

with the following properties:

(1) E(Bi⊟1) = Bi, where ⊟ denotes subtraction modulo d;

(2) (Bi, Ed|Bi
) is irreducible and aperiodic; and

(3) B′
is are mutually orthogonal subspaces of H and invariant under Ed.

Proof. Immediate from the proof of Lemma 13. �

5. Three-level decomposition for quantum Markov chains

The periodic decomposition technique for irreducible quantumMarkov chains

was developed in the last section. The main aim of this section is to integrate

it with the two-level decomposition to form a finer decomposition of a general

quantum Markov chain that might be reducible.

Let us first consider limiting states in a general quantum Markov chain.

Lemma 14. Let G = (H, E) be a quantum Markov chain. Then the following

statements are equivalent:

(1) For any ρ ∈ D(H), limn→∞ En(ρ) exists.
(2) 1 is the only eigenvalue of E with magnitude one.

Proof. If 1 is the only eigenvalue with magnitude one, then Eφ = limn→∞ En.
On the other hand, if for any ρ ∈ D(H), limn→∞ En(ρ) exists, then

Eφ(ρ) = lim
n→∞

En(ρ) = E( lim
n→∞

En(ρ)) = E(Eφ(ρ)).
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So E(Eφ) = Eφ. Note that the corresponding Jordan norm forms of E ◦ Eφ and

Eφ are respectively

JJφ =
∑

k:|λk|=1

λkPk

Jφ =
∑

k:|λk|=1

Pk.

Thus, whenever |λk| = 1 it actually holds λk = 1. �

A special case of Lemma 14 where E is unital (that is, E(I) = I) was proved

in [27]. The following lemma further deals with the case when the limiting state

is unique.

Lemma 15. For any quantum Markov chain G = (H, E), the following state-

ments are equivalent:

(1) There is a limiting state ρ∗, i.e. limn→∞ En(ρ) = ρ∗ for all ρ ∈ D(H).
Especially, if E is unital, then ρ∗ = I/n, where dim(H) = n;

(2) H contains a unique BSCC B and (B, E|B) is aperiodic;

(3) 1 is the only eigenvalue of E with magnitude one and its geometric multi-

plicity is 1.

Proof. (1)⇒ (2) is easy. If H has two BSCCs, then there are two stationary

states. This contradicts the uniqueness of limiting states. As limiting states

must be stationary, by Lemma 8, supp(ρ∗) = B. From Theorem 3, (B, E|B) is

aperiodic.

(2) ⇒ (3) As Eφ = limi→∞ Eni , we see from Definition 7 that for any ρ ∈
D(H), supp(Eφ(ρ)) ⊆ B. Note that (B, E|B) is irreducible and aperiodic. Thus

for any σ ∈ D(B), limn→∞ En(σ) = ρ∗ with supp(ρ∗) = B, and Eφ(σ) = ρ∗.

From the fact Eφ ◦ Eφ = Eφ, we have that for any ρ ∈ D(H), Eφ(ρ) = ρ∗ and

ρ∗ is the only stationary state of Eφ. By the definition of Eφ, the stationary

states of E are also stationary states of Eφ, so 1 is the only eigenvalue of E with

magnitude one and its geometric multiplicity is 1.

(3) ⇒ (1) Suppose 1 is the only eigenvalue with magnitude one. Then

Eφ = limn→∞ En, i.e., for all ρ ∈ D(H), limn→∞ E(ρ) exists. Furthermore,
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as limiting states must be stationary states and 1’s geometric multiplicity is

one, there is only one stationary state ρ∗ satisfying limn→∞ E(ρ) = ρ∗ for any

ρ ∈ D(H), by [1, Corollary 6.5]. �

Now we turn to present a three-level decomposition of quantum Markov

chains. For any quantum Markov chain G = (H, E), we first use Theorem 1 to

decompose H into

H = X0

⊕
· · ·

⊕
Xn−1

⊕
TE ,

where each Xl = Bl,0
⊕ · · ·⊕Bl,nl−1. It was proved in [4] that although the

BSCC decomposition of H is not unique, the number nl of BSCCs for different

decompositions of Xl is the same. Furthermore, for each Bi,l, we can employ

Theorem 4 to decompose it into di,l aperiodic subspaces, where di,l is the period

of Bi,l. Then the only question that remains to answer is: is the sum
∑
i di,l of

the periods of BSCCs the same for different decompositions of Xl? The following

is a key lemma to give a positive answer to this question:

Lemma 16. Let G = (H, E) be a quantum Markov chain with the stationary

coherence decomposition:

H =
⊕

l

Xl
⊕
TE .

Then for any l and any BSCCs X and Y contained in Xl, we have d(X) = d(Y ),

where d(·) denotes the period of E when restricting to the corresponding subspace.

Proof. Let R =
⊕

l Xl be the subspace of H spanned by all BSCCs. For

any subspace Z of H, let PZ be the projector onto Z and PZ be super-operator

with PZ(·) = PZ · PZ . Then E|Z = PZ ◦ E ◦ PZ . By [5, Corollary 23], we can

find a unitary U such that

(1) PY = UPXU
† (thus PY = U ◦ PX ◦ U† where U(·) = U · U †); and

(2) for any linear operator A with A = PR(A), PR◦E†◦U(A) = U◦PR◦E†(A).

For any orthogonal projectors P0, · · · , Pd−1 such that
∑d−1
i=0 Pi = PX and

E†X(Pi) = PX ◦ E†(Pi) = Pi⊟1, where ⊟ denotes subtraction modulo d, let
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P ′
0, · · · , P ′

d−1 be orthogonal projectors with P ′
i = U(Pi). Then for any i,

(E|Y )†(P ′
i ) = PY ◦ E† ◦ PY ◦ U(Pi) = PY ◦ PR ◦ E† ◦ U(Pi)

= PY ◦ U ◦ PR ◦ E†(Pi) = U ◦ PX ◦ PR ◦ E†(Pi)

= U ◦ PX ◦ E†(Pi) = U(Pi⊟1) = P ′
i⊟1.

Thus following from Lemma 9, d(X) ≤ d(Y ). By a symmetric argument, we

can show that d(Y ) ≤ d(X) as well. �

Now we can easily prove the following:

Theorem 5. Let a quantum Markov chain (H, E) have two different BSCC

decompositions:

H = B0
⊕
· · ·

⊕
Bn−1

⊕
TE

= B′
0

⊕
· · ·

⊕
B′
n−1

⊕
TE

and let di (resp. d
′
i) be the period of E restricting on Bi (resp. B′

i). Then

n−1∑

i=0

di =
n−1∑

i=0

d′i.

6. An Application

To show the utility of the three-level decomposition for quantum Markov

chains presented in the last section, we apply it to the problem of finding a

maximum dimensional noiseless subsystem of a quantum communicating sys-

tem. The problem has been tackled in the previous literature [16, 17] using

C*-algebra and operator error correction. The advantage of our approach is

that we can give an algorithmic solution to it.

In quantum communication, channels are mathematically modeled as super-

operators. Therefore, a simple quantum communicating system can be regarded

as a quantum Markov chain.

Definition 12 ([18]). Given a quantum Markov chain G = (H, E) with H =

(HA
⊗HB)

⊕K.
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(1) If dim(HA) > 1, then HA is called a subsystem of H.
(2) A subsystem HA is noiseless if

∀ρA ∈ D(HA), ρB ∈ D(HB) ∃σB ∈ D(HB) : E(ρA ⊗ ρB) = ρA ⊗ σB .

Intuitively, noiselessness means that quantum operation E does not cause

any change of the state of subsystem HA. In other words, the restriction of E
onto HA

⊗HB satisfies

EAB = IA ⊗ EB

for some CPTP map EB on HB ; That is the noisy subsystem HB has no impor-

tance.

The next lemma shows that to decide if a subsystem HA is noiseless with

respect to E , it suffices to find a state σB such that any product state ρA ⊗ σB
is in D(H) and a stationary state.

Lemma 17. Given a quantum operation E on H, a subsystem HA is noiseless

if and only if

∃σB, ∀ρA ∈ D(HA) : ρA ⊗ σB ∈ D(H) and E(ρA ⊗ σB) = ρA ⊗ σB.

Proof. Let H = HA
⊗HB

⊕K and P be the projector onto HA
⊗HB . If

HA is noiseless, then the restriction of E to HA
⊗HB satisfies

EAB = IA ⊗ EB

for some CPTP map EB on HB. So there exists a stationary state σB for EB
from Theorem 1 and Lemma 6. Then we have that for any ρA ∈ D(HA),

E(ρA ⊗ σB) = ρA ⊗ σB .

Conversely, letHB = supp(σB). By the assumption, for any pure state |ψ〉 ∈
HA, E(|ψ〉〈ψ| ⊗ σB) = |ψ〉〈ψ| ⊗ σB . Then E(P ) = PE(P )P ⇒ EiP = PEiP ,

where {Ei} is the Kraus operators of E . Then let Ki = PEiP ∀i.
First, we claim that (|ψ〉〈ψ| ⊗ PB)Ki = Ki(|ψ〉〈ψ| ⊗ PB) ∀i by the similar

argument in the proof of [28, Lemma 5.2]. With the arbitrariness of |ψ〉, for any
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i, Ki must have the following form:

Ki = IA ⊗ Fi

for some operator Fi on HB. Therefore, HA is noiseless. �

Now we are ready to give a sufficient and necessary condition for noiseless-

ness.

Theorem 6. Given a quantum Markov chain G = (H, E) with a subsystem

HA. HA is noiseless if and only if there exists a subspace HB such that for any

|ψ〉 ∈ HA, supp(|ψ〉〈ψ|)
⊗HB ⊆ H is a BSCC of E.

Proof. Let H = HA
⊗HB

⊕K. If HA is noiseless, then the restriction of E
to HA

⊗HB satisfies

EAB = IA ⊗ EB

for some CPTP map EB on HB. Let σ be a minimal stationary state of EB in

HB. Now, we claim that for any |ψ〉 ∈ HA, |ψ〉〈ψ| ⊗ σ is a minimal stationary

state of E .
Firstly, E(|ψ〉〈ψ|⊗σ) = |ψ〉〈ψ|⊗σ. Thus Hψ

⊗HB′ is an invariant subspace

of E , where Hψ = supp(|ψ〉〈ψ|) and HB′ = supp(σ). If there exists a stationary

state ρ ∈ D(Hψ
⊗HB′) of E and ρ 6= |ψ〉〈ψ|⊗σ, then ρ must have the following

form:

ρ = |ψ〉〈ψ| ⊗ σ′

for some σ′ ∈ D(HB′) and σ′ 6= σ. Hence σ′ is the stationary state of EB in

EAB = IA ⊗EB, contradicting that σ is a minimal stationary state of EB. Then
Hψ

⊗HB′ is a BSCC following from Lemma 6.

Conversely, let {|i〉}ni=1 be a set of orthogonal basis of HA, where n =

dim(HA). Then we have a BSCC decomposition for HA
⊗HB as follows:

HA
⊗
HB′ =

⊕

i

(Hi
⊗
HB)

whereHi = supp(|i〉〈i|) for all i. As for all |ψ〉 ∈ HA,Hψ
⊗HB is a BSCC, there

are stationary coherences between any two BSCCs in the above decomposition.
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From [5, Theorem 7], we obtain that:

VA = UAHA, VB = UBHB

for some unitary matrices UA, UB and HA
⊗HB = VA

⊗VB, such that there

is a state τ with supp(τ) = VB and for any stationary state ρ ∈ D(HA
⊗HB)

of E ,
ρ = U †

Aρ
′UA ⊗ U †

BτUB

for some ρ′ ∈ D(VA). Note again that for any |ψ〉 ∈ HA, Hψ
⊗HB is a

BSCC. There exists a state ρψ with supp(ρψ) = HB such that |ψ〉〈ψ| ⊗ ρψ ∈
D(HA

⊗HB) is stationary under E . Therefore,

|ψ〉〈ψ| ⊗ ρψ = U †
A|φ〉〈φ|UA ⊗ U †

BτUB

for some |φ〉 ∈ HA, which is possible only if ρψ = U †
BτUB . By the arbitrariness

of ψ and the linearity of E , we know

E(ρA ⊗ U †
BτUB) = ρA ⊗ U †

BτUB

for any ρA ∈ D(HA). Then the result follows from Lemma 17. �

Furthermore, the maximum dimension of noiseless subsystems can be deter-

mined as follows.

Corollary 3. For a quantum operation E on H, the maximum dimension of

noiseless subsystems is the maximum number of BSCCs which have stationary

coherences between any two of them.

Proof. Immediate from [5, Theorem 7] and Theorem 6. �

It is clear from Theorem 6 and [5, Theorem 7] that finding a maximum

dimensional noiseless system is equivalent to searching special BSCCs, which

have stationary coherences between any two of them. So, Algorithm 1 can serve

as a footstone of the construction of the noiseless subsystem. In general, the

number of noiseless subsystems is infinite for a given quantum communicating

system. But we are able to develop an algorithm – Algorithm 2 – for finding a

maximum dimensional noiseless subsystem, which is usually the most important
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Algorithm 2 FindMaxNS(G)
Input: A quantum Markov chain G = (H, E).
Output: A decomposition of H = (HA

⊗HB)
⊕K where HA is a maximum

dimensional noiseless subsystem or false indicating there is no noiseless sub-

system.

H =
⊕m−1

l=0 Xl
⊕ TE ,Xl =

⊕nl−1
i=0 Bi,l ← Decompose(G)

f ← 1

j ← 0

for each l ∈ {0, 1, · · · ,m− 1} do

if f < nl then

f ← nl

j ← l

end if

end for

if f > 1 then

K ←⊕m−1
l=0,l 6=j Xl

⊕ TE
HA ← Cf

r ← the dimension of B0,j
HB ← Cr

return HA,HB,K
else

return false

end if
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in practical applications. It is easy to see that Algorithm 2 either produces a

maximum one or indicates there is no noiseless subsystem in time O(n8), where

dim(H) = n.

7. Conclusion

In this paper, we obtained some useful characterizations of irreducibility and

periodicity for quantum Markov chains. Based on them, we developed a peri-

odic decomposition technique for irreducible quantum Markov chains, which is

further combined with the BSCC decomposition and stationary coherence de-

composition in the previous literature to construct a three-level decomposition

of general quantum Markov chains. This three-level decomposition provides

us with a finer tool for algorithmic analysis and model-checking of quantum

systems. We also established a limit theorem that gives a characterization of

limiting states in a quantum Markov chain in terms of periodicity, irreducibil-

ity, and eigenvalues of the super-operator. As an application, we presented an

algorithm for constructing the maximal dimensional noiseless subsystem of a

quantum communicating system.

There are several interesting topics for future studies:

• Reachability analysis of quantum Markov chains: The BSCC decomposi-

tion was already used in reachability analysis of quantum Markov chains

[4]. The eventual, global, ultimately forever and infinitely often reacha-

bility of quantum automata were carefully examined in [29]. Quantum

automata is a special kind of quantum Markov chains, where the dy-

namics is described by a unitary transformation rather than a general

super-operator. It seems that the three-level decomposition presented in

this paper is useful for analysis of these more sophisticated reachability of

quantum Markov chains.

• Extend the decomposition techniques developed in this paper to quantum

Markov decision processes, which were introduced in [30] for quantum

machine learning and in [31] for modeling concurrent quantum programs.
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