

What do we want?

What is a 'good' track surface?

Minimise Risk of Injury

3

Maximise Performance

4

Maintain Consistency

5

What are we doing now?

Current practices and metrics for track surface assessment

Track Minimum Standards Specification

- 1.2.2 (12-24hrs Pre-Race):
 - 4x sand profiles
 - 12x penetrometer readings
 - 200+ points surveyed for water content
 - Inclinometer grades checked
- 1.2.3 (2hrs Pre-Race):
 - Same as 1.2.2 but without grade check
- 1.2.4 (Mid-Race):
 - Same as 1.2.3 but with reduced 50 point water content survey
- 1.2.5 (Pre-Trial):
 - Same as 1.2.3

Does it work?

11

Who Knows?

- Lack of evidence to support current track profile specifications
- Lack of evidence to support current penetrometer specifications
- Lack of evidence to support current water content specifications
- Surface grades currently under investigation
- Inconsistent measurement practices
- Inconsistent measurement equipment

A New Method

13

Invert the Approach

Invert the Approach

Objectives

- Minimise risk of injuryMaximise performance
- Maintain consistency

15

One Metric to Rule Them All

- Informative:
 - Depth of print -> Hardness
 - Shape of print -> Profile
 - Angle of print -> Grade
 - Print integrity -> Water Content
- Available
- Direct association to both track AND greyhound
- Confirmed by experience

How does it work?

How do we measure paw prints on the track without using Plaster of Paris?

17

18

LIDAR (Light Detection and Ranging)

19

Challenges

- Hardware
 - Scale of print
 - Scale of track
 - · Collection speed
 - Sensor automation
- Data
 - Correlation of prints with track variables
 - Correlation of prints with injuries
 - Impact of greyhound variability

Proposed Configuration

21

Operating Principle

- As the tractor moves forward the LIDAR will make several 2D scans per second
- These scans are then reconstructed as a 3D point cloud
- Print reconstructions are collated into datasets for AI training and visual analysis
- Final result is provided to track maintenance staff in real-time as a table of track properties and recommended corrective actions

Property	Observed Value	Target Value	Remedial Action	Justification
Water Content	20%	15%	Postpone Irrigation	Collapsed print integrity
Hardness	70	30	Immediate Harrow	Peak print depth too shallow
Grade	7%	10%	Increase grade angle by 3% between locations x and y.	Unstable depth distribution

In Support of a Data-Driven Approach

- In 2019 our most accurate instrument shouldn't be "tap your foot a few times"
- Injury analyses can only be effective if track conditions are equalised across the state(s)
- Evidence based specifications lead to industry standardisation
- Reduce the experiential knowledge required
- Increase the accuracy (if we can be accurate then why aren't we?)

Looking Forward

- Automation of repeatable maintenance tasks (e.g. irrigation)
- Interconnection of field sensors for total and complete track condition monitoring know the condition of any track at any time
- Greater understanding of greyhound gait dynamics and a sharpened focus on injury mechanisms
- International standardisation of track maintenance procedures
- Introduction of GPR for substrate analysis

25

Q & A

