
Photon-pair generation in a quadratically
nonlinear parity-time symmetric coupler
DIANA A. ANTONOSYAN,1 ALEXANDER S. SOLNTSEV,1,2 AND ANDREY A. SUKHORUKOV1,*
1Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 
2School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
*Corresponding author: Andrey.Sukhorukov@anu.edu.au

Integrated nonlinear waveguide structures enable generation of quantum entangled photons. We describe theoreti-
cally the effects of spatially inhomogeneous loss on the creation of photon pairs through spontaneous parametric 
down-conversion in quadratically nonlinear directional couplers, where photons experience effective parity-time 
(PT) symmetric potential due to the presence of optical loss in one of the waveguides. We show that for losses 
below the PT-breaking threshold, the quantum photon states can be flexibly tuned similarly to conservative cou-
plers, whereas for stronger losses, the correlations between two waveguide modes are suppressed. We also formulate 
a quantum-classical correspondence with sum-frequency generation for fast evaluation of device 
performance. These results can be applied for the design of quantum plasmonic circuits. 

OCIS codes: (190.4410) Nonlinear optics, parametric processes; (190.4390) Nonlinear optics, integrated optics; (080.6755) 
Systems with special symmetry.

1. INTRODUCTION

The development of a new generation of devices for efficient
generation of entangled photons is underpinning a range of
quantum technologies, including computations, communica-
tions, and simulations [1,2]. Integrated sources of photon pairs
in nonlinear waveguide circuits enable the increase of complex-
ity and enhancement of stability compared to bulk optical im-
plementations (see reviews [3,4] and references therein).

A powerful approach for the control of light propagation in
waveguide-based circuits stems from the concept of parity-time
(PT) symmetry in optical systems [5,6], which can be imple-
mented with coupled waveguides incorporating symmetrically
arranged regions of gain and loss. One of the most interesting
effects is the emergence of a phase transition behavior arising
from a spontaneous breakdown of PT symmetry, which offers
many novel possibilities for shaping optical beams. A broad
range of effects qualitatively different from those usually ob-
served in conservative systems has been identified, including
power oscillations, nonmonotonous dependence of the trans-
mission on absorption, unidirectional invisibility, conical dif-
fraction, unusual switching regimes, and formation of spatial
and temporal solitons in nonlinear structures (see recent re-
views [7,8]).

Based on the success of PT symmetry in classical photonics,

photon pairs [4]. Loss is always present in realistic photonic
structures, and it has recently been shown that it can enable
new possibilities for shaping quantum entangled states in plas-
monic circuits [9]. Using the inevitable loss for control of non-
linear photon state generation via PT-symmetry breaking can
be a very promising solution. We note that quantum effects have
been extensively studied in PT structures with gain and loss,
where amplification can lead to both the photon generation
and noise [10–13]. In this paper, we explore photon-pair gen-
eration in a quadratically nonlinear directional coupler, a struc-
ture that has been extensively studied in the non-PT regime with
weak homogeneous losses [14]. We consider a regime when
material gain is absent, and PT symmetry is introduced purely
through loss in one of the waveguides [5,15], which avoids the
quantum noise amplification, in contrast to previous studies
[10–13]. We show that use of losses and PT-symmetry breaking
opens new opportunities for the control of spatially entangled
quantum states of the generated photon pairs.

2. METHODS AND RESULTS

We study the generation of photon pairs through spontaneous
parametric down-conversion (SPDC) in a quadratically nonlin-
ear coupler, as schematically shown in Fig. 1(a). Then, we con-
sider the effect of loss introduced only in the second waveguide,
while keeping the first waveguide lossless. Such coupler con-
figuration with no gain realizes PT-symmetric structure up to

this approach is also likely to be useful for quantum photonic 
chips, in particular for the generation of spatially entangled
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a gauge transformation, which can demonstrate all of the key
features, including symmetry breaking [5,15]. The effect of
linear losses on SPDC was previously considered in various
contexts [16–18]. We follow the approach of Ref. [19] and for-
mulate Schrödinger-type equations for the photon-pair ampli-
tudes Φns ;ni in the coupler as

∂Φns ;ni �z�
∂z

� −i�βs � βi�Φns ;ni � δns ;niAns �z�
− iCsΦ3−ns ;ni − iCiΦns ;3−ni

− �δns ;2γs � δni ;2γi�Φns ;ni ; (1)

where subscripts “s” and “i” refer to the signal and idler photons,
z is the propagation distance along the waveguides, ns;i � 1; 2 are
the waveguide numbers, Cs;i are the coupling constants between
the neighboring waveguides, βs;i are the propagation constants,
δns ;ni is the Kronecker delta function, γs;i are the loss coefficients
in the second waveguide as we assume there are no losses in the
first one, and An are the classical pump amplitudes at frequency
ωp multiplied by the effective quadratic nonlinearity. We note
that absorption of generated photons results in the appearance
of single-photon state that can be calculated using the framework
of Ref. [19]. Nevertheless, in the regime of a weak pump when
four-photon generation probability is small, the two-photon state
remains pure even in the presence of loss [18].

In the regime of photon-pair generation, the classical pump
remains essentially undepleted, and its evolution is governed by
linear coupled-mode equations:

∂Anp�z�
∂z

� −iβpAn − iCpA3−np − δnp;2γpA2; (2)

where Cp is the waveguide mode-coupling coefficient, βp is the
propagation constant, and γp is the loss coefficient in the sec-
ond waveguide.

We derive the analytical solutions of Eqs. (1) and (2) through
a Green’s function [18,20], which we define as a solution
of linear coupled-mode equations: ∂G�z; n; n 0;C; γ�∕∂z �
−iCG�z; n; 3 − n 0;C; γ� − δn 0 ;2γG�z; n; n 0;C; γ� and G�z � 0;
n; n 0;C; γ� � δn;n 0 . Then, the pump evolution is found as
An 0

p
�z� � P

2
np�1 Anp�0�G�z; np; n 0

p;Cp; γp�e−iβpz . We substi-
tute this expression in Eq. (2) and find the biphoton wave
function,

Φns ;ni �z� � e−i�βs�βi�z
Z

z

0

dξ
X2

np;n 0
p�1

Anp�0�

G�ξ; np; n 0
p;Cp; γp�G�z − ξ; n 0

p; ns;Cs; γs�
G�z − ξ; n 0

p; ni;Ci; γi�eiΔβξ; (3)

where Δβ � βs � βi − βp is the phase mismatch. The form of
this solution agrees with the general result for arbitrary photonic
structures obtained in Ref. [18].

In the following, we analyze in detail the regime of near-
degenerate signal and idler photon frequencies, when accord-
ingly γi � γs � γ and Cs � Ci � C and the antidiagonal
elements of the wave function are equal, Φ1;2 � Φ2;1. In
the linear propagation regime, both signal and idler photons
exhibit PT-symmetry breaking threshold at γPT � 2C , accord-
ing to the properties of a linear coupler [5,6]. Compared to
signal and idler, the fundamental pump mode is much stronger
localized in a waveguide, resulting in very weak coupling [14].
Additionally, while tailored signal and idler losses can be intro-
duced by depositing metal on top of dielectric waveguides,
this will not affect the pump mode. Therefore, we consider
Cp � 0 and γp � 0 in numerical simulations.

Below the critical gain/loss value (γ < γPT), the photons can
periodically tunnel between the coupled waveguides, exhibiting
the loss at the effective averaged rate of γ∕2. As the losses are
increased beyond the PT-symmetry breaking point (γ > γPT),
the coupling between the waveguides is suppressed. Then, the
mode in the second (lossy) waveguide decays much faster, while
the effective loss in the first waveguide is decreased [5].

We now analyze the effect of PT-symmetry breaking on the
generation of quantum photon-pair states. For this purpose, we
study the signal and idler photon correlations between different
waveguides, which are proportional to the squared modulus of
the corresponding wave-function elements and can be mea-
sured by detecting coincident clicks with single-photon detec-
tors, as schematically illustrated in Fig. 1. Characteristic
evolution of correlations along the waveguides is shown in
Fig. 2. The top row [Figs. 2(a)–2(c)] corresponds to losses
below the PT-breaking threshold. We see that the correlations
sensitively depend on the phase mismatch (Δβ), enabling flex-
ible engineering of the two-photon entanglement. In particular,
for zero mismatch an N00N-like state with pronounced
quantum entanglement is formed, where both signal and idler
photons are in superposition of being in the first or second wave-
guide, but they never appear in different waveguides. In analogy
to a conservative nonlinear coupler [14], the maximum correla-
tions between the first and second waveguides are anticipated
around phase matching with signal and idler supermodes
of the same symmetry, which condition is found using linear
supermode dispersion [5] asΔβ � �2�C2 − �γ∕2�2�1∕2, provid-
ing the values of ≃� 1.94 in Figs. 2(a)–2(c). In sharp contrast,
the two-photon state is fundamentally altered when losses exceed
the PT-symmetry breaking threshold [see Figs. 2(d)–2(f)]. We
observe that the photons are generated by the pump in the first
waveguide without loss; however, the photon coupling to the
second waveguide is suppressed.

Next, we explore the effect of varying loss in the second
waveguide for a fixed propagation distance and present the

Fig. 1. (a) Scheme of generation of photon pairs through the spon-
taneous parametric down-conversion in a nonlinear PT-symmetric
coupler with linear absorption in the second waveguide.
(b) Graphical representation of biphoton correlation function jΦns ;ni j2.



normalized photon correlations in Fig. 3. When the pump is in
the first waveguide without losses [Figs. 3(a)–3(c)], the photon-
pair correlations in the first waveguide (jΦ1;1j2) dominate when
losses in the second waveguide approach and exceed the PT-
breaking threshold indicated by the dashed line. For the pump
in the second waveguide [Figs. 3(d)–3(f )], the photon pairs can
be present in both the first and second waveguides even above
the PT-breaking threshold; however, for higher losses, they
become dominantly localized in the second waveguide only.
We also compare the degree of two-photon entanglement char-
acterized by Schmidt number Q [19]. For the phase mismatch
corresponding to stronger correlations between two waveguides,
Δβ � 1.5, and different losses γ � 0, 1, 2, 3, we find that for

the pump coupled to the first waveguide, entanglement reduces
with higher loss as Q � 1.2506, 1.0154, 1.0024, 1.0005,
whereas when the pump is coupled to the second waveguide,
the degree of entanglement reaches an intermediate maximum,
Q � 1.2506, 1.2593, 1.3392, 1.2539. Therefore, while the
suppression of coupling between the waveguides above the
PT-breaking threshold is clearly reflected in photon correlations,
the quantitative features of the photon state do nontrivially
depend on the input pump configuration and the nonlinear
phase mismatch.

The experimental characterization of quantum states re-
quires accumulation of statistics over multiple photon pairs
measured with single-photon detectors, which can be time con-
suming. This motivated the development of approaches for fast
classical characterization of nonlinear devices, which then en-
able one to predict their performance in the regime of quantum
photon-pair generation [21,22], including arbitrary multiwave-
guide circuits as validated with high experimental fidelity [23].
In the following, we formulate this correspondence for PT non-
linear coupler, considering classical sum-frequency generation
(SFG) by the input lasers with the same frequencies as for
the signal and idler photons, which are generated in the quan-
tum regime [see Fig. 4(a)]. Then, the SFG is governed by
coupled-mode equations,

∂uns
∂z

� −iβsuns − iCsu3−ns − δns ;2γsu2 � wns v
	
ns ; (4)

∂vni
∂z

� −iβivni − iCiv3−ni − δni ;2γiv2 � wniu
	
ni ; (5)

∂wnp

∂z
� −iβpwnp − iCpw3−np − δnp;2γpw2 � unpvnp ; (6)

where u; v; w are the complex mode amplitudes at the wave-
lengths corresponding to the signal, idler, and pump wavelengths.

We first consider the regime of relatively weak input ampli-
tudes, when jwj ≪ juj; jvj. Accordingly, we employ the unde-
pleted approximation and neglect the last nonlinear terms in
Eqs. (4) and (5). Then, these equations become linear, and their
solutions can be expressed through a Green’s function as un 0

s
�z��P

2
ns�1uns �0�G�z;ns;n 0

s ;Cs;γs�e−iβs z and vn 0
i
�z� � P

2
ni�1 vni �0�

G�z; ni; n 0
i ;Ci; γi�e−iβi z . We then find solution of Eq. (6) as

wnp�z� � e−iβpz
R
z
0 dξ

P
2
ns ;ni ;n 0

p�1 uns �0�vni �0�G�ξ; ns; n 0
p;Cs; γs�

(a) (b) (c)

(d) (e) (f)

Fig. 3. Normalized photon correlations, jΦns ;ni j2∕
P

n 0
s ;n 0

i
jΦn 0

s ;n 0
i
j2,

versus the phase mismatch and loss in the second waveguide at the
fixed propagation distance z � 10. The pump is input to the (a)–
(c) first [A1�z � 0� � 1, A2�z � 0� � 0] or (d)–(f ) second wave-
guide [A1�z � 0� � 0, A2�z � 0� � 1]. Dashed lines indicate the
linear PT-breaking threshold at γPT � 2C . Other parameters corre-
spond to Fig. 2.

Fig. 4. (a) Scheme of SFG in passive PT-symmetric nonlinear cou-
pler with linear absorption in one waveguide. (b) Mismatch F between
the SPDC and SFG depending on the input power P for
juns �z � 0�j2 � jvni �z � 0�j2 � P∕2, plotted on a logarithmic scale.
The propagation distance is z � 10, signal and idler losses are equal
γs � γi � 0.5, there is no loss in the pump mode γp � 0, and the
coupling coefficients are Cs � Ci � 1, Cp � 0.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Evolution of spatial signal and idler photon correlations
between the two waveguide modes along the propagation direction
(z) depending on the phase mismatch (Δβ) for different losses in the
second waveguide γs � γi � γ. (a)–(c) γ � 0.5 below the PT-sym-
metry breaking threshold. (d)–(f) γ � 3 corresponding to PT-broken
regime. For all plots, the coupling coefficients are Cs � Ci � 1,
Cp � 0, and pump is coupled to the first waveguide, A1�z�0��1,
A2�z � 0� � 0, and γp � 0.



G�ξ; ni; n 0
p;Ci; γi�G�z − ξ; n 0

p; np;Cp; γp�e−iΔβξ. By performing
a change of variable ξ → z − ξ and using a Green’s function
symmetry G�z; n 0; n;C; γ� ≡ G�z; n; n 0;C; γ�, we observe the
quantum-classical correspondence wnp�z� ≡ Φns ;ni �z� when the
pumped and detected waveguides are matched in the quantum
and classical regimes as Anp�0� � uns �0�vni �0�, A3−np�0� � 0,
u3−ns �0� � 0, and v3−ni �0� � 0.

While the quantum-classical correspondence is exact in the
limit of very weak SFG efficiency, we perform numerical
simulations of full Eqs. (4)–(6) and determine the mismatch
of the correspondence with SPDC for varying input powers
(P � juns j2 � jvni j2) in the SFG process, defined as
F � P

ns ;ni ;np jwnp∕�uns �0�vni �0�� − Φns ;ni∕Anp�0�j2. The simu-
lation results for the degenerate case uns � vni shown in
Fig. 4(b) demonstrate that using SFG to predict SPDC in a
PT coupler works well until the SFG pump power reaches
the values at which it becomes noticeably depleted.

3. CONCLUSION

In summary, we predict a possibility to perform flexible control
of the quantum state of photon pairs generated in nonlinear
coupled waveguides even in the presence of loss, because pho-
ton correlations between different waveguides can develop
efficiently when operating below the PT-breaking threshold.
However, correlations between waveguides get suppressed
above the threshold loss value. Furthermore, we formulate a
quantum-classical correspondence with SFG for fast evaluation
of device performance. These results can facilitate the develop-
ment of integrated photon sources based on nonlinear plas-
monic structures.
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