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Abstract

Recent advances in facial landmark detection achieve

success by learning discriminative features from rich de-

formation of face shapes and poses. Besides the variance

of faces themselves, the intrinsic variance of image styles,

e.g., grayscale vs. color images, light vs. dark, intense vs.

dull, and so on, has constantly been overlooked. This is-

sue becomes inevitable as increasing web images are col-

lected from various sources for training neural networks.

In this work, we propose a style-aggregated approach to

deal with the large intrinsic variance of image styles for

facial landmark detection. Our method transforms origi-

nal face images to style-aggregated images by a genera-

tive adversarial module. The proposed scheme uses the

style-aggregated image to maintain face images that are

more robust to environmental changes. Then the origi-

nal face images accompanying with style-aggregated ones

play a duet to train a landmark detector which is com-

plementary to each other. In this way, for each face, our

method takes two images as input, i.e., one in its origi-

nal style and the other in the aggregated style. In experi-

ments, we observe that the large variance of image styles

would degenerate the performance of facial landmark de-

tectors. Moreover, we show the robustness of our method

to the large variance of image styles by comparing to a

variant of our approach, in which the generative adver-

sarial module is removed, and no style-aggregated images

are used. Our approach is demonstrated to perform well

when compared with state-of-the-art algorithms on bench-

mark datasets AFLW and 300-W. Code is publicly available

on GitHub: https://github.com/D-X-Y/SAN

1. Introduction

Facial landmark detection aims to detect the location of

predefined facial landmarks, such as the corners of the eyes,

eyebrows, the tip of the nose. It has drawn much attention
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Figure 1. A face image in three different styles and the locations

of the facial landmarks predicted by a facial landmark detector on

them. The image styles, e.g., grayscale vs. color images, light vs.

dark, intense vs. dull, can be quite distinct owing to various collec-

tion sources. The contents of the above three images are identical.

The only difference is the image style. We apply a well-trained fa-

cial landmark detector to localize the facial landmarks. The zoom-

in parts show the deviation among the predicted locations of the

same facial landmarks on different styled images.

recently as it is a prerequisite in many computer vision ap-

plications. For example, facial landmark detection can be

applied to a large variety of tasks, including face recog-

nition [74, 30], head pose estimation [58], facial reenact-

ment [53] and 3D face reconstruction [28], to name a few.

Recent advances in facial landmark detection mainly fo-

cus on learning discriminative features from abundant de-

formation of face shapes and poses, different expressions,

partial occlusions, and others [58, 73, 59, 20]. A very typ-

ical framework is to construct features to depict the facial

appearance and shape information by the convolutional neu-

ral networks (ConvNets) or hand-crafted features, and then

learn a model, i.e., a regressor, to map the features to the

landmark locations [64, 10, 7, 42, 72, 67, 40]. Most of them

apply a cascade strategy to concatenate prediction modules

and update the predicted locations of landmarks progres-

sively [67, 10, 73].
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However, the issue from image style variation has been

overlooked by recent studies on facial landmark detec-

tion. In real-world applications, face images collected in

the wild usually are additionally under unconstrained varia-

tions [46, 73]. Large intrinsic variance of image styles, e.g.,

grayscale vs. color images, light vs. dark, intense vs. dull,

is introduced when face images are collected under different

environments and camera settings. The variation in image

style causes the variation in prediction results. For exam-

ple, Figure 1 shows three different styles of a face image

and the facial landmark predictions on them when apply-

ing a well-trained detector. The contents of the three im-

ages are the same, but the visual styles are quite distinct,

including original, grayscale and light. We can observe

that the location predictions of a same facial landmark on

them can be different. The zoom-in parts show the detailed

deviation among the predicted locations of the same facial

landmark on different styled images. This intrinsic vari-

ance of image styles would distort the prediction of the fa-

cial landmark detector and further degenerate the accuracy,

which will be empirically demonstrated later. This problem

commonly exists in the face in-the-wild landmark detection

datasets [23, 46] (see Figure 2), and becomes inevitable for

such face images captured under uncontrolled conditions.

Motivated by the issue of large variance of different im-

age styles, we propose a Style-Aggregated Network (SAN)

for facial landmark detection, which is insensitive to the

large variance of image styles. The key idea of SAN is to

first generate a pool of style-aggregated face images by the

generative adversarial network (GAN) [16]. Then SAN ex-

ploits the complementary information from both the origi-

nal images and the style-aggregated ones. The original im-

ages contain undistorted appearance contents of faces but

may vary in image styles. The style-aggregated images

contain stationary environments around faces, but may lack

certain shape information due to the less fidelity caused by

GAN. Therefore, our SAN takes both the original and style-

aggregated faces together as complementary input, and ap-

plies a cascade strategy to generate the heatmap predictions

which can be robust to the large variance of image styles.

To summarize, our contributions include:

1. To the best of our knowledge, we are the first to ex-

plicitly handle the problem caused by the variation of

image styles in facial landmark detection problems,

which has been overlooked in recent studies. We fur-

ther empirically verify the performance degeneration

caused by the large variance of image styles.

2. To facilitate style analysis, we release two new facial

landmark detection datasets, 300W-Styles (≈ 12000

images) and AFLW-Styles (≈ 80000 images), by

transferring the 300-W [46] and AFLW [23] into dif-

ferent styles.

Figure 2. Face samples from 300-W dataset. Different faces

have different styles, whereas the style information may not be

approachable in most facial landmark detection datasets.

3. We design a ConvNets architecture, i.e., Style-

Aggregated Network (SAN), which exploits the mu-

tual benefits of genuine appearance contents of faces

and stationary environments around faces by simul-

taneously taking both original face images and style-

unified ones.

4. In empirical studies, we verify the observation that the

large variance of image styles would degenerate the

performance of facial landmark detectors. Moreover,

we show the insensitivity of SAN to the large variance

of image styles and the state-of-the-art performance of

SAN on benchmark datasets.

2. Related Work

2.1. Facial Landmark Detection

Increasing researchers focus on facial landmark detec-

tion [46]. The goal of facial landmark detection is to de-

tect key-points in human faces, e.g., the tip of the nose,

eyebrows, the eye corner and the mouth. Facial landmark

detection is a prerequisite for a variety of computer vision

applications. For example, Zhu et al. [74] take facial land-

mark detection results as input of 3D Morphable model.

Wu et al. [58] propose a unified framework to deal with

facial landmark detection, head pose estimation, and facial

deformation analysis simultaneously, which couples each

other. Thies et al. [53] use facial landmark detection con-

fidences of keypoints in feature alignment for facial reen-

actment. Therefore, it is important to predict precise and

accurate locations of the facial landmark.

A common approach to facial landmark detection prob-

lem is to learn a regression model [31, 64, 75, 5, 73, 7, 63].

Many of them leverage deep CNN to learn facial features

and regressors in an end-to-end fashion [51, 31, 73] with a

cascade architecture to progressively update the landmark

estimation [73, 51, 10]. Yu et al. [66] propose a deep

deformation network to incorporates geometric constraints

within the CNN framework. Zhu et al. [73] leverage cas-

caded regressors to handle extreme head poses and rich

shape deformation. Zhu et al. [72] utilize a coarse search

over a shape space with diverse shapes to overcome the poor
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Figure 3. Overview of the SAN architecture. Our network consists of two components. The first is the style-aggregated face generation

module, which transforms the input image into different styles and then combines them into a style-aggregated face. The second is the facial

landmark prediction module. This module takes both the original image and the style-aggregated one as input to obtain two complementary

features and then fuses the two features to generate heat-map predictions in a cascaded manner. “FC” means fully-convolution.

initialization problem. Lv et al. [31] present a deep regres-

sion architecture with two-stage reinitialization to explicitly

deal with the initialization problem.

Another category of facial landmark detection methods

takes the advantages of end-to-end training from deep CNN

model to learn robust heatmap for facial landmark detec-

tion [27, 57, 6, 4]. Wei et al. [27] and Newell et al. [34] take

the location with the highest response on the heatmap as the

coordinate of the corresponding landmarks. Li et al. [27]

enhance the facial landmark detection by multi-task learn-

ing. Bulat et al. [6] propose a robust network structure uti-

lizing the state-of-the-art residual architectures.

These existing facial landmark detection algorithms usu-

ally focus on the facial shape information, e.g., the extreme

head pose [20] or rich facial deformation [73]. However,

few of them engage in a consideration of the intrinsic vari-

ance of image styles, e.g., grayscale vs. color images, light

vs. dark and intense vs. dull. We also empirically demon-

strate the performance fall caused by such intrinsic variance

of image styles. This issue has been overlooked by recent

studies but becomes inevitable as increasing web images are

collected from various sources. Therefore, it is necessary to

investigate the approach to dealing with the style variance,

which is the focus of this paper.

Some researchers extend the landmark detection in the

image to video settings [22, 13, 40] or 3D settings [6, 47].

In contrast, we focuses on image-based landmark detection.

2.2. Generative Adversarial Networks

We leverage the generator of trained GAN to generate

faces into different styles to combat the large variance of

face image styles.

GANs are first proposed in [16] to estimate genera-

tive models via an adversarial process. Following that,

many researchers devoted great efforts to improve this re-

search topic regarding theory [2, 8, 25, 35, 54] and applica-

tions [36, 41, 50, 71]. Some of them contribute to face ap-

plications, such as makeup-invariant face verification [26]

and face aging [1]. In this work, we leverage a recently pro-

posed technique, CycleGAN [71], to integrate a face gener-

ation model in our detection network. There are two differ-

ent main focuses between this work and the previous works.

First, we aim to group images into specific styles in an un-

supervised manner, while they usually assume a stationary

style in a dataset. Second, sophisticated face generation

methods are not our target.

3. Methodology

How to design a neural network that is insensitive to

the style variations for facial landmark detection? As il-

lustrated in Figure 3, we design a network by combine two

sub-modules to solve this problem: (1) The face generation

module learns a neutral style of face images to combat the

effect of style variations, i.e., transform faces with different

styles into an aggregated style. (2) The landmark prediction
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Figure 4. The pipeline to train the style-aggregated face genera-

tion module in an unsupervised way. We first utilize PS to transfer

the original dataset into C = 3 different styles. These transferred

datasets accompanying with the original dataset are then used to

fine-tune the ResNet-152 with C + 1 classes. The fine-tuned fea-

tures from the global average pooling layer can be considered as

the style-discriminative features. We then leverage these features

to cluster all images in the original dataset into k clusters, which

can potentially contain the information of hidden styles. Lastly,

we use these clustered data to train style transformation models

via CycleGAN, and combine the trained models to obtain the final

style-aggregated faces.

module leverages the complementary information from the

neutral face and the original face to jointly predict the final

coordinate for each landmark.

3.1. Style­Aggregated Face Generation Module

This module is motivated by the recent advances on

image-to-image translation [19, 71] and style-transfer [14,

15, 56]. They can transform face images into a different

style, whereas they require the style of images are already

known in the training procedure as well as testing. How-

ever, face images in facial landmark detection datasets are

usually collected from multiple sources. These images can

have various styles, but we have no labels of these styles.

Therefore, current facial landmark datasets do not align

with the settings of image-to-image translation, and can

thus not directly apply their techniques to our problem.

We design an unsupervised approach to learn a face gen-

eration model to first transfer faces into different styles

and then combine them into an aggregated style. We first

transfer the original dataset into three different styles by

Adobe Photoshop (PS) 1. These three transferred datasets

accompanying with the original dataset are regarded as four

classes to fine-tune the classification model [48, 17, 52, 11,

1Three styles: Light, Gray and Sketch. See details in Sec 4.5.

65, 62, 18]. The fine-tuned feature of the average-pooling

layer thus has the style-discriminative characteristic, be-

cause the style information is learned in the training pro-

cedure by machine-generated style supervision.

To learn the stylized face generation model, we need

to obtain the style information. For most face in-the-wild

datasets, we can identify that faces have different styles.

Figure 2 illustrates some examples of faces in various styles

from 300-W [46]. However, it is hard to label such datasets

with different styles due to two reasons: (1) Some style def-

initions are ambiguity, e.g., a face with light style can also

be classified as the color. (2) It requires substantial labors

to label the style information. Therefore, we leverage the

learned style-discriminative feature to automatically cluster

the whole dataset into k hidden styles by k-means.

Lastly, we regard the face images in different clusters as

different hidden styles, and we then train face generation

models to transfer styles via CycleGAN. CycleGAN is ca-

pable of preserving the structure of the input image because

its cycle consistency loss guarantees the reconstructed im-

ages will match closely to the input images. The overall

pipeline is illustrated in Figure 4. The final output is several

face generation models that can transfer face images into

different styles, and average the transferred faces into the

style-aggregated ones.

3.2. Facial Landmark Prediction Module

The facial landmark prediction module leverages the

mutual benefit of both the original images and the style-

aggregated ones to overcome negative effects caused by

style variations. This module is illustrated in Figure 3,

where the green stream indicates the style-aggregated face

and the blue stream represents the faces in the original

styles. The blue stream contains undistorted appearance

contents of faces but may vary in image styles. The green

stream contains stationary environments around faces, but

may lack certain shape information due to the less fidelity

caused by GAN. By leveraging their complementary infor-

mation, we can generate more robust predictions. The ar-

chitecture is inspired by CPM [57]. We use the first four

convolutional blocks from VGG-16 [49] followed by two

additional convolution layers as feature extraction part. The

feature extraction part takes the face image Io ∈ Rh×w in

the original styles and the one Is ∈ Rh×w from the style-

aggregated stream as input, where w and h represent the

width and the height of image. In this part, each of the first

three convolution blocks is followed by one pooling layer.

It thus outputs the features F ∈ RC×h′×w′

with eight times

down-sample size compared to the input image I, where

(h′, w′) = (h/8, w/8) and C is the channel of the last con-

volutional layer. The output features from the original and

the style-aggregated faces are represented as Fo and Fs, re-

spectively. Three subsequent stages are used to produce 2D
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belief maps [57]. Each stage is a fully-convolution struc-

ture. Its output tensor H ∈ R(K+1)×h′×w′

has the same

spatial size of the input tensor, where K indicates the num-

ber of landmarks. The first stage takes Fo and Fs as inputs

and generate the belief maps for each of them, Ho and Hs.

The second stage g2 takes the concatenation of Fo, Fs, Ho

and Hs as inputs, and output the belief map for stage-2:

g2(Fo,Fs,Ho,Hs) = H2. (1)

The last stage is similar to the second one, which can be

formulated as follows:

g3(Fo,Fs,H2) = H3. (2)

Following [34, 57], we minimize the following loss func-

tions for each face image during the training procedure:

Loss =
∑

i∈{o,s,2,3}

||Hi −H
∗
i ||

2
F , (3)

where H
∗ represents the ideal belief map.

To generate the final landmark coordinates, we first up-

sample the belief map H3 to the original image size using

bicubic interpolation. We then use the argmax function on

each belief map to obtain the coordinate of each landmark.

4. Experiments

4.1. Datasets

300-W [46]. This dataset annotates five face datasets

with 68 landmarks, LFPW [3], AFW [75], HELEN [24],

XM2VTS, IBUG. Following the common settings in [72,

31], we regard all the training samples from LFPW, HELEN

and the full set of AFW as the training set, in which there is

3148 training images. 554 testing images from LFPW and

HELEN form the common testing subset; 135 images from

IBUG are regarded as the challenging testing subset. Both

of these two subsets form the full testing set.

AFLW [23]. This dataset contains 21997 real-world im-

ages with 25993 faces in total. They provide at most 21

landmark coordinates for each face but excluding invisible

landmark. Faces in AFLW usually have different pose, ex-

pression, occlusion or illumination, therefore causes diffi-

culties to train a robust detector. Following the same set-

ting as in [31, 73], we do not use the landmarks of two

ears. There are two types of AFLW splits, AFLW-Full and

AFLW-Frontal following [73]. AFLW-Full contains 20000

training samples and 4386 testing samples. AFLW-Front

uses the same training samples as in AFLW-Full, but only

use the 1165 samples with the frontal face as the testing set.

4.2. Experiment Settings

Training. We use PyTorch [39] for all experiments. To

train the style-discriminative feature, we regard the origi-

nal dataset and the PS-generated three datasets as four dif-

ferent classes. We then use them to fine-tune ResNet-152

Method Common Challenging Full Set

SDM [64] 5.57 15.40 7.52

ESR [7] 5.28 17.00 7.58

LBF [43] 4.95 11.98 6.32

CFSS [72] 4.73 9.98 5.76

MDM [55] 4.83 10.14 5.88

TCDCN [68] 4.80 8.60 5.54

Two-StageOD [31] 4.36 7.56 4.99

Two-StageGT [31] 4.36 7.42 4.96

RDR [61] 5.03 8.95 5.80

Pose-Invariant[20] 5.43 9.88 6.30

SANOD 3.41 7.55 4.24

SANGT 3.34 6.60 3.98

Table 1. Normalized mean errors (NME) on 300-W dataset.

ImageNet pre-trained model, and we train the model with

the learning rate of 0.01 for two epochs in total. We use

k-means to cluster the whole dataset into k = 3 groups,

and regard the group with the maximum element and the

group with the minimum as two different style sets by de-

fault. These two different groups are then used to train our

style-unified face generation module via Cycle-GAN [71].

We follow the similar training settings as in [71], whereas

we train our model with the batch size of 32 on two GPUs,

and also set the identity loss in [71] as 0.1. To train the

facial landmark prediction module, the first four convo-

lutional blocks are initialized by VGG-16 ImageNet pre-

trained model, and other layers are initialized using a Gaus-

sian distribution with the variance of 0.01. Lastly, we train

the facial landmark prediction model with the batch size

of 8 and weight decay of 0.0005 on two GPUs. We start

the learning rate at 0.00005 and reduce the learning rate at

30th/35th/40th/45th epochs by 0.5, and we then stop train-

ing at 50th epoch. The face bounding box is expanded by

the ratio of 0.2. We use the random crop for pre-processing

during training as data argumentation.

Evaluation. Normalized Mean Error (NME) is usually

applied to evaluate the performance for facial landmark pre-

dictions [31, 43, 73]. For 300-W dataset, we use the inte-

rocular distance to normalize mean error following the same

setting as in [46, 31, 7, 43]. For AFLW dataset, we use the

face size to normalize mean error [31]. We also use Cumu-

lative Error Distribution (CED) curve to compare the algo-

rithms provided in [45]. Area Under the Curve (AUC) @

0.08 error is also employed for evaluation [6, 55].

4.3. Comparison with State­of­the­art Methods

Results on 300-W. Table 1 shows the performance of

different facial landmark detection algorithms on the 300-

W. We compare our approach with recently proposed state-

of-the-art algorithms [31, 61, 20]. We compare our ap-

proaches based on two types of face bounding boxes: (1)

ground truth bounding box, denoted as GT; (2) official de-

tector, denoted as OD. SAN achieves very competitive re-
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Methods SDM [64] ERT [21] LBF [43] CFSS [72] CCL [73] Two-Stage [31] SAN

AFLW-Full 4.05 4.35 4.25 3.92 2.72 2.17 1.91

AFLW-Front 2.94 2.75 2.74 2.68 2.17 - 1.85

Table 2. Comparisons of normalized mean (NME) errors on AFLW dataset.
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Figure 5. CED curves for 300-W common and challenging testing

sets. The blue line shows the performance of SAN. The green and

red lines indicate SAN with only the style-aggregated face and

with only the original face being the input, respectively.

sults compared with others by using the same face bounding

box (OD). We improve the performance of NME on 300-W

common set by relative 21.8% compared to the state-of-the-

art method. It can further enhance our approach by apply-

ing a better initialization (GT). This implies that SAN has

potential to be more robust by incorporating the face align-

ment [31] or landmark refinement [73, 55] methods.

Results on AFLW. We use the training/testing splits and

the bounding box provided from [73, 72]. Table 2 shows the

performance comparison on AFLW. Our SAN also achieves

the very competitive NME results, which are better than the

previous state-of-the-art by more than 11% on AFLW-Full.

On the AFLW-Front testing set, our result is also better than

state-of-the-art by more than 14%. We find that more clus-

ters and more generation models in style-aggregated face

generation module will obtain a similar result as k = 3, we

thus use the setting of k = 3 by default.

SAN achieves new state-of-the-art results on two bench-

mark datasets, e.g., 300-W and AFLW. It takes two comple-

mentary images to generate predictions which are insensi-

tive to style variations. The idea of using the two-stream in-

put for facial landmark detection can be complementary to

other algorithms [20, 31, 61, 73]. They usually do not con-

sider the effect of image style, while the style-aggregated

face in the two-steam input can handle this problem.

4.4. Ablation Studies

In this section, we first verify the significance of each

component in our proposed SAN. Figure 5 shows the com-

parison regarding CED curves for our SAN and two variants

of SAN on the 300-W common and testing sets. As we can

observe, the performance will significantly be deteriorated

if we remove the original face image or the generated style-

aggregated face image. This observation demonstrates that

mean face from cluster-1

face images from cluster-1 face images from cluster-2

mean face from cluster-2

face images from cluster-3

mean face from cluster-3

Figure 6. Qualitative results of the clustered face images from

300-W by using the style-discriminative features. The face images

in each cluster have some different hidden styles. For example, the

first cluster has many grayscale faces; the second cluster shows the

dark illumination; the last cluster shows the light illumination. We

generate the mean face for each cluster. These mean face images

show the very similar face, while they have quite different envi-

ronments.

taking two complementary face images as the input benefits

the facial landmark prediction results.

Figure 6 shows the results of k-means clustering on 300-

W dataset. 300-W dataset is the face in-the-wild dataset,

where face images have large style variations but this style

information is not approachable. Our style-discriminative

feature is capable of distinguishing images with different

hidden styles. We can find that most of the face images in

one cluster share a similar style. The mean face images gen-

erated from three clusters contain different styles. If we di-

rectly use ImageNet pre-trained features for k-means clus-

tering, we can not guarantee to group faces into different

hidden styles. In experiments, we find that ImageNet pre-

trained features tend to group face images by the gender or

other information.

4.5. Discussions of Benchmark Datasets

Facial landmark detection datasets with constrained face

images [33] usually have the similar environment for each

image. There are only small style changes in these datasets,

and they may also not be applicable for real-world appli-

cations due to the small face variance. We thus do not

discuss these datasets in this paper. The face in-the-wild

datasets [46, 23] contain face images with large intrinsic

variance. However, this intrinsic variance information is

not available from the official datasets, but can also affect

the predictions of the detector. Therefore, we propose two
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Figure 7. Our PS-generated datasets based on 300-W and AFLW

with the original and three synthetic styles, i.e., sketch, light and

gray. These datasets have different styles and can be used to facil-

itate style analysis.

new datasets, 300W-Style and AFLW-Style, to facilitate the

style analysis for facial landmark detection problem.

As shown in Figure 7, 300W-Style consists of four differ-

ent styles, original, sketch, light and gray. The original part

is the original 300-W datasets, and the other three synthetic

styles are generated using PS. Each image in 300W-Style

is corresponding to one image in the 300-W dataset, and

we thus directly use the annotation provided from 300-W

for our 300W-Style. AFLW-Style is similar as 300W-Style,

which transfer the AFLW dataset into three different styles.

For training and testing split, we follow the common set-

tings of the original datasets [46, 23].

Can PS-generated images be realistic? Internet users

usually use PS (or similar software) to change image styles

and/or edit image content; thus PS-generated images are

indeed realistic in many real-world applications. In addi-

P
P
P
P
P
P
P

Test

Train
Original Light Gray Sketch

SAN w/o GAN

Original 3.37 3.56 3.77 3.92

Light 3.61 3.41 4.01 4.13

Gray 3.47 3.79 3.43 3.60

Sketch 3.71 3.97 3.66 3.40

SAN

Original
3.34 3.44 3.46 3.54

(↑ 0.8%) (↑ 3.3%) (↑ 8.2%) (↑ 9.7%)

Light
3.48 3.39 3.56 3.68

(↑ 3.6%) (↑ 0.5%) (↑ 11.2%) (↑ 10.9%)

Gray
3.45 3.56 3.38 3.52

(↑ 0.6%) (↑ 6.1%) (↑ 1.4%) (↑ 2.2%)

Sketch
3.53 3.62 3.55 3.35

(↑ 4.9%) (↑ 8.8%) (↑ 3.0%) (↑ 1.4%)

Table 3. Comparisons of NME on the 300W-Style common test-

ing set. We use different styles for training and testing.

P
P
P
P

P
P
P

Test

Train
Original Light Gray Sketch

SAN w/o GAN

Original 6.88 7.82 7.84 7.74

Light 7.31 7.16 8.91 8.67

Gray 7.08 8.59 6.77 6.98

Sketch 7.59 8.68 7.17 6.83

SAN

Original
6.60 7.00 6.73 6.97

(↑ 4.1%) (↑ 10.5%) (↑ 14.2%) (↑ 9.9%)

Light
7.15 7.08 7.26 7.15

(↑ 2.2%) (↑ 1.1%) (↑ 18.5%) (↑ 17.5%)

Gray
6.91 7.18 6.69 6.97

(↑ 2.4%) (↑ 16.4%) (↑ 1.1%) (↑ 0.2%)

Sketch
7.08 7.64 6.95 6.77

(↑ 6.7%) (↑ 12.0%) (↑ 3.1%) (↑ 0.8%)

Table 4. Comparisons of NME on the 300W-Style challenging

testing set. We use different styles for training and testing.

P
P
P
P
P
P
P

Test

Train
Original Light Gray Sketch

SAN w/o GAN

Original 4.06 4.39 4.57 4.67

Light 4.33 4.14 4.97 5.02

Gray 4.19 4.73 4.08 4.26

Sketch 4.47 4.89 4.35 4.07

SAN

Original
3.98 4.14 4.10 4.21

(↑ 1.9%) (↑ 5.7%) (↑ 10.2%) (↑ 9.9%)

Light
4.20 4.12 4.29 4.36

(↑ 3.0%) (↑ 0.4%) (↑ 13.7%) (↑ 13.1%)

Gray
4.13 4.27 4.03 4.20

(↑ 1.4%) (↑ 9.7%) (↑ 1.2%) (↑ 1.4%)

Sketch
4.23 4.41 4.21 4.02

(↑ 5.4%) (↑ 6.7%) (↑ 3.2%) (↑ 1.2%)

Table 5. Comparisons of NME on the 300W-Style full testing set.

We use different styles for training and testing.

tion, we have chosen three representative filters to generate

images of different styles. These filters have been widely

used by users to edit their photos and upload to the Internet.

Therefore, the proposed datasets are realistic.

Effect of SAN for style variances. These two proposed

datasets can be used to analyze the effect of face image

styles for facial landmark detection. We consider the sit-

uation that testing set has a different style with the training

set. For example, we train the detector on the light-style

300-W training set and evaluate the well-trained detector

on 300-W testing sets with different styles. Table 3, Ta-

ble 4 and Table 5 show the evaluation results of 16 training

and testing style combinations, i.e., four different training

styles multiply four different testing styles. Our SAN algo-

rithm is specifically designed to deal with style variances for

face landmark detection. When style variance between the
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Figure 8. Representative results on 300-W. The red points in the first line indicate the ground-truth landmarks. The blue points in the

second line and the green points in the third line indicate the landmark predictions from the base detector and SAN, respectively.

training and testing sets is large (e.g., light and gray), our

approach usually obtains a significant improvement. How-

ever, if style variance between the training and testing sets

is not that large (e.g., gray and sketch), the improvement of

SAN is less significant. On average, SAN obtains 7% rela-

tive improvement on the full testing set of the 300W-Style

dataset when the training style is different from the test-

ing style. Moreover, our SAN achieves consistent improve-

ments over all the 16 different train-test style combinations.

This demonstrates the effectiveness of our method.

Self-Evaluation: We compare two variants of our SAN:

(1) train SAN without GAN using the training set of AFLW-

Style and the testing set of AFLW. This can be considered

as data argumentation, because the amount of training data

that we use is four times larger than the original one. In this

case, our SAN can achieve 79.82 AUC@0.08 on AFLW-

Full by only using the original AFLW training set, while

the data argumentation one achieves a worse performance,

78.99 AUC@0.08, than SAN. SAN is better than the data

argumentation way, which uses our PS-generated images as

additional training data. (2) replace the style-aggregated

stream of SAN by a Photo-generated face image. If we

train the detector on the original style 300-W training set

and test it on the gray style 300-W challenging test set, our

SAN can achieve 6.91 NME. However, replacing the style-

aggregated stream by light style images can only achieve

7.30 NME, which is worse than ours. SAN can always

achieve better results than the replaced variant, except for

replacing the style-aggregated stream by the testing style.

SAN can automatically learn the hidden styles in the dataset

and generate the style-aggregated face images. This auto-

matic way is better than providing images with a fixed style.

Error Analysis: The faces in uncontrolled conditions

have large variations regarding the image style. Detectors

will usually fail when image style changes a lot, whereas

our SAN is insensitive to this style change. Figure 8 shows

the qualitative results of our SAN and the base detector on

300-W. The first line shows the ground truth landmarks.

The second and third lines show the predictions from SAN

without GAN and SAN, respectively. In the first column,

the base detector fails for the predictions on the face con-

tour, while the predictions from SAN still preserves the

overall structure. In the fourth column, some perdition from

the base detector drifts to the right, while SAN not.

5. Conclusion & Future Work

The large intrinsic variance of image styles, which comes

from their uncontrolled collection sources, has been over-

looked by recent studies in facial landmark detection. To

deal with this issue, we propose a style-aggregated net-

work (SAN). SAN takes two complementary images for

each face, one in the original style and the other in the ag-

gregated style that is generated by GAN. Empirical studies

verify that style variations degenerate the performance of

landmark detection, and SAN is robust to the large variance

of image styles. Additionally, SAN achieves state-of-the-art

performance on 300-W and AFLW datasets.

The first step of SAN is to generate the style-aggregated

images. This step can be decoupled from our landmark

detector, and potentially used to improve other landmark

detectors [7, 43, 72, 68, 37]. Moreover, the intrinsic vari-

ance of image styles also exists in other computer vision

tasks, such as object detection [12, 44, 38, 9, 29] and per-

son re-identification [60, 69, 70, 32]. Therefore, the style-

aggregation method can also be used to solve the problem of

the style variance in other applications. In our future work,

we will explore how to generalize the style-aggregation

method for other computer vision tasks.
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