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Diagnosis Code Assignment Using
Sparsity-based Disease Correlation Embedding

Sen Wang, Xiaojun Chang, Xue Li, Guodong Long, Lina Yao, Quan Z. Sheng

Abstract—With the latest developments in database technologies, it becomes easier to store the medical records of hospital patients
from their first day of admission than was previously possible. In Intensive Care Units (ICU) in the modern medical information system
can record patient events in relational databases every second. Knowledge mining from these huge volumes of medical data is
beneficial to both caregivers and patients. Given a set of electronic patient records, a system that effectively assigns the disease labels
can facilitate medical database management and also benefit other researchers, e.g. pathologists. In this paper, we have proposed a
framework to achieve that goal. Medical chart and note data of a patient are used to extract distinctive features. To encode patient
features, we apply a Bag-of-Words encoding method for both chart and note data. We also propose a model that takes into account
both global information and local correlations between diseases. Correlated diseases are characterized by a graph structure that is
embedded in our sparsity-based framework. Our algorithm captures the disease relevance when labeling disease codes rather than
making individual decision with respect to a specific disease. At the same time, the global optimal values are guaranteed by our
proposed convex objective function. Extensive experiments have been conducted on a real-world large-scale ICU database. The
evaluation results demonstrate that our method improves multi-label classification results by successfully incorporating disease
correlations.

Index Terms—ICD code labeling, multi-label learning, sparsity-based regularization, disease correlation embedding
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1 INTRODUCTION

Modern medical information systems, such as the
Philips’ CareVue system, records all patient data and stores
them in relational databases for data management and
related research activities. Clinicians and physicians often
want to retrieve similar medical archives for a patient in
ICU, with the aim of making better decisions. The simplest
way is to input a group of disease codes that are diagnosed
from the patient, into a system that can provide similar
cases according to the codes. The most well-known and
widely used disease code system is the International Statis-
tical Classification of Diseases and Related Health Problems
(commonly abbreviated as ICD) proposed and periodically
revised by the World Health Organization (WHO). The
latest version is ICD-10, which is applied with local clin-
ical modifications in most of regions, e.g. ICD-10-AM for
Australia. The goal of ICD is to provide a unique hierar-
chical classification system that is designed to map health
conditions to different categories. In the United States, the
ninth version of the International Classification of Disease
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(ICD9) has been pervasively applied in various areas where
disease classification is required. For example, each patient
in ICU will be associated with a list of ICD9 codes in the
medical records purposes such as disease tracking, pathol-
ogy, or medical record data management. By investigating
the returned historical data, caregivers are expected to offer
better treatments to the patient. Thus, complete and accurate
disease labeling is very important.

The assignment of ICD codes to patients in ICU is tra-
ditionally done by caregivers in a hospital (e.g. physicians,
nurses, and radiologists. This assignment may occur during
or after admission to ICU. In the former case, ICD codes
are separately labeled by multiple caregivers throughout a
patient’s stay in ICU as a result of different work shiftse
duration of a patient’s stay is usually much longer than the
employment time shift of the medical staff in a hospital
thus, different caregivers are prone to make judgments
according to the latest conditions. It is more desirable to
assign a disease label to the patient by taking the entire
patient record into account. when assignment is conducted
after admission to ICU, the ICD codes are allocated by a
professional who examines and reviews all the records of
a patient. However, it is still impossible for an expert to
remember the correlations of diseases when labeling a list
of disease codes, which sometimes leads to missing code
or inaccurate code categorization. In fact, some diseases
are highly correlated. Correlations between diseases can
improve the multi-label classification results. For instance,
Hypertensive disease (ICD9 401-405) correlates highly with
Other forms of heart disease (ICD9 420-429) and Other metabolic
and immunity disorders (ICD9 270-279). When considering the
occurrence of the latter two disease labels in relation to the
patient’s condition, the possibility that a positive decision
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will be made will be much increased if Hypertensive disease
is found in the patient’s record. Therefore, it is desirable
to produce a system that can overcome the problems men-
tioned above.

The focus in this work is to assign disease labels to pa-
tients’ medical records. Rather than predicting the mortality
risk of an ICU patient, as in some previous works [1], [2], our
work can be regarded as a multi-label prediction problem.
In other words, mortality risk prediction is a binary classifi-
cation problem in which the label indicates the probability
of survival. Class labels in a multi-label problem, on the
other hand, are not exclusive, which means the patient,
according to the medical records, is labeled as belonging to
multiple disease classes. The multi-label classification prob-
lem has always been an open but challenging problem in
the machine learning and data mining communities. Some
researchers [3], [4], [5], [6] extract features from patients
and use supervised learning models to recognize disease
labels without any consideration of disease correlations. In
our model, we pay great attention to both the medical chart
and note data of patients. Medical chart data is also termed
structured data because their structure is normally fixed. In
the ICU, some well-known health condition measurement
scores (i.e. SAPS II) are manually determined by staff in the
ICU, according to the patient’s health condition. In contrast,
medical chart data are raw recordings extracted from the
monitoring devices attached to a patient. The chart data
therefore reflect the physiological conditions of a patient
at a lower level. Note data has no structure because it is
derived from textual information. Therefore, it is commonly
termed free-text note data. The advantages of these types of
data are that they are descriptive and informative since they
are summarized or determined by professionals. However,
medical note data are very difficult to handle by most of the
existing machine learning algorithms because none of the
structures in the notes can be directly recognized as patterns.
Medical notes are quite noisy, and their quality is often
corrupted by misspellings or abbreviations. In addition, the
contents of medical notes are not always consistent with
the metrics. For example, different caregivers take notes in
different metrics when recording a parameter. Some prefer
to use English units while others use the American system
(e.g. patient’s temperature in Celsius vs. Fahrenheit). Thus,
compared to structured data, it is difficult to extract accurate
and consistent features from notes. It is consequently diffi-
cult for medical notes to be utilized by machine learning
algorithms.

To address the aforementioned problems, we propose
a framework that will assign disease labels automatically
while simultaneously considering correlations between dis-
eases. We first extract medical data from two different views,
structured and unstructured. Structured data can describe
patients’ raw health conditions from medical devices at
a lower level, while unstructured data consist of more
semantic information at a higher level which has proven
to be helpful for characterizing features of patients for
some prediction tasks [1]. We use a BoW model to convert
features of different lengths into a unique representation
for each patient. In this way, similarity comparison can be
conducted by supervised learning algorithms. To step fur-
ther, we propose an algorithm to classify disease labels with

the help of the underlying correlations between diseases.
Our work incorporates a graph structure which is derived
from huge numbers of medical records to improve multi-
label prediction results. The demonstration of the proposed
framework is shown in Fig. 1. The main contributions of this
work can be summarized as follows:

• We extract raw features from patients’ chart data
to characterize their conditions at a low level. A
latent variable model, i.e. LDA, is used in this work
to extract topic distributions in medical notes as
descriptive features. BoW is proposed to encode both
chart and note data for unique representation.

• We propose an algorithm to assign disease codes
with joint consideration of disease correlations. This
is achieved by incorporating a graph structure that
reflects the correlations between diseases into a
sparsity-based objective function. We propose the
use of `2,1-norm to exploit the correlations. Due to
the convexity of the objective function, the global
optima are guaranteed.

• Extensive experiments have been conducted on a
real-world ICU patient database. A large number
of patient records are applied on this database in
the evaluation. The experimental reports have shown
that our proposed method is more effective for per-
forming multi-label classification than the compared
approaches. Effectiveness and efficiency evaluations
have also been conducted.

The rest of this paper is organized as follows: Related
work will be reviewed in Section 2. We will elaborate our
method in detail in Section 3, followed by evaluation reports
in Section 4. We conclude the paper in Section 5.

2 RELATED WORK

2.1 Medical Feature Encoding
Most of the existing research works aim to mine interesting
patterns from medical records that are most frequently
stored in text and images. Due to the huge success of the
Bag-of-Words model in Natural Language Processing (NLP)
and computer vision, BoW and its variants have been perva-
sively utilized to encode features in medical applications to
accomplish various tasks such as classification and retrieval.
In [7], a method is proposed to convert the entire clinical
text data into UMLS codes using NLP techniques. The
experiments show that the encoding method is comparable
to or better than human experts. Ruch et al. [8] evaluate the
effects of corrupted medical records, i.e. misspelled words
and abbreviations, on an information retrieval system that
uses a classical BoW encoding method. To classify physi-
ological data with different lengths, modified multivariate
BoW models are used to encode patterns in [9]. In addition,
the 1-Nearest Neighbour (1NN) classifier predicts acute
hypotensive episodes. Recently, Wang et al. [10] propose
a Nonnegative Matrix Factorization based framework to
discover temporal patterns over large amounts of medical
text data. Similar to the BoW representation, each patient in
that work is represented by a fixed-length vector encoding
the temporal patterns. The evaluation is conducted on a real-
world dataset that consists of 21K diabetes patients. Types
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Fig. 1. Workflow demonstration of the proposed framework. The green box on the left contains the data pre-processing, Latent Dirichlet Allocation
(LDA) topic modeling and feature extractions. The blue central box mainly encodes the features using a Bag-of-Words model on both extracted
chart and note features. The purple box on the right shows the main contribution of this work. A multi-label classification algorithm is proposed to
assign patients’ disease codes by correctly incorporating a structural graph that reflects disease correlations into the sparsity-based framework.

of diabetes diagnosis coded by ICD9 are treated as ground-
truth.

2.2 Multi-label Learning in Medical Applications
Multi-label classification has been well studied recent years
[11], [12], [13], [14], [15], [16], [17], [18], [19] in the ma-
chine learning and data mining communities. Due to the
omnipresence of multi-label prediction tasks in the medical
domain, multi-label classification has attracted more and
more research attention to this domain in the past few
years. Perotte et al. [20] propose to use a hierarchy-based
SVM model on MIMIC II dataset to conduct automated
diagnosis code classification. Zufferey et al. [21] compare
different multi-label classification algorithms for chronic
disease classification and point out the hierarchy-based
SVM model has achieved superior performance than other
methods when accuracy is important. In [22], Ferrao et al.
use Natural Language Processing (NLP) to deal with struc-
tured electronic health record, and apply Support Vector
Machines (SVM) to separately learn each disease code for
each patient. Pakhomov et al. [23] propose an automated
coding system for diagnosis coding assignment powered
by example-based rules and naive Bayes classifier. Lita et
al. [4] assign diagnostic codes to patients using a Gaussian
process-based method. Even though the proposed method
is conducted over a large-scale medical database of 96,557
patients, the method does not consider the underlying
relationships between diseases. Many theoretical studies
on multi-label classification have already pointed out that
effectively exploiting correlations between labels can benefit
the multi-label classification performance. In light of this,

Kong et al. [24] apply heterogeneous information networks
on a bioinformatic dataset to for two different multi-label
classification tasks (i.e. gene-disease association prediction
and drug-target binding prediction) by exploiting correla-
tions between different types of entities.

Prior-based knowledge incorporation by a regularization
term is an effective way to exploit correlations between
classes. In a scenario of medical code classification, Yan et al.
[25] introduce a multi-label large margin classifier that au-
tomatically uncovers the inter-code structural information.
Prior knowledge on disease relationships is also incorpo-
rated into their framework. In the reported results, under-
lying disease relationships are discovered and are beneficial
to the multi-label classification results. All the evaluations
are conducted over a quite small and clean dataset that
consists of only 978 samples of patient visits. This approach
is feasible for small dataset but is questionable in a real-
world dataset. The most recent research on computational
phenotyping in [26] tackles a small multi-label classification
problem on a real-world ICU dataset by applying two novel
modifications to a standard DCNN. Che et al. investigate
two types of prior-based regularization methods. In the
first method, they use the hierarchical structure of ICD9
code classification at two levels, and embed the hierarchical
structure in an adjacency graph into the framework; The
second method is to utilize the prior information extracted
from labels of training data. Che et al. explore the la-
bel co-occurrence information with a co-occurrence matrix,
and embed the matrix into their deep neural network to
improve the prediction performance. Similar to the prior-
based regularization methods, we also embed an affinity
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graph derived from data labels in the framework to ex-
ploit correlations between disease codes. However, we do
not directly apply the label correlation matrix, also called
label co-occurrence matrix in [26], to improve the perfor-
mance of multi-label classification. Instead, we further learn
and utilize the structural information among classes by a
sparsity-based model, which has been largely ignored by
most of the existing works on diagnosis code assignment.
As pointed out in [27], sparsity-based regularizers such as
`1-norm and combination of `1-norm and `2-norm have
virtues on structure exploitation, which can extract useful
information from high-dimensional data. Moreover, many
existing works [28], [29], [30], [31], [32] beyond medical
domain have shown sparsity-based `2,1-norm on regular-
ization plays an important role when exploiting correlated
structures in different applications. To this end, we model
the correlations between diseases using the affinity graph,
and incorporate the topological constraints of the graph
using a novel graph structured sparsity-based model, which
can capture the hidden class structures in the graph.

3 METHODS

In this section, we will first introduce the details of the
database and data pre-processing methods used in this
paper. Feature extractions from both chart and note data
will be elaborated, followed by a description of the encoding
method that is investigated in this paper. An algorithm that
is able to incorporate correlations between diseases is sub-
sequently proposed to solve the aforementioned problems.

3.1 Database and Data Pre-processing

Multiparameter Intelligent Monitoring in Intensive Care
II (MIMIC II) [33] is a real-world medical database that
is publicly available. Thanks to the efforts of academia,
industry and clinical medicine, the database has successfully
collected 32,535 ICU patients over seven years (from 2001 to
2007) at Boston’s Beth Israel Deaconess Medical Center. To
the best of our knowledge, MIMIC II is the largest ICU pub-
lished database with comprehensive types of patient data in
the world. Before releasing the database to the public, data
scientists completely removed all protected health informa-
tion (PHI) to protect the privacy of patients. A variety of
data sources have been recorded in this database: 1) patient
data recorded from bedside monitors, e.g. waveforms and
trends; 2) data from clinical information systems; 3) data
from hospital electronic archives; 4) mortality information.
In this paper, we have used two parts of the database: chart
event data and medical note data. Since chart data comes
from device recordings made by caregivers, it reflects the
health conditions of patients at a low level, whereas medical
note data comes from medical doctors, registered nurses,
and other professionals, and contains high-level semantic
information summarized by experts. [1] has proven that
extracting features based on topic modeling from note data
is able to predict the mortality risk of patients.

Because only adult patient data are considered in this
work, patients younger than 18 are excluded in the first
step. We need both charts and notes as the raw data of a
patient, so all those patients whose chart and note data are

TABLE 1
Summarization of MIMIC II database.

Size Total #per patient Dim.
Charts 17 Gb 196,156,501 8390.29 500
Notes 618 Mb 599,128 25.63 500

Training Data 11,689 23,379 N.A. 500
Testing Data 11,790 500

either empty and nearly empty or corrupted for unknown
reasons, are ruled out. Patients without ICD9 records are
also removed since their ground-truth information is uncer-
tain. After patient filtering in three rounds, we obtain 23,379
adult patients out of 32,535. To train and test our algorithm,
we randomly split the dataset into two parts, training data
and testing data. Table 1 shows the data specifications. Note
that the numbers in the fourth column (#per patient) are
based on the total number of patients (11, 689 + 11, 690 =
23, 379). For example, the number of charts per patient is
calculated by 196, 156, 501/23, 379 ≈ 8390.29.

The ICD9 codes for each patient are stored in a list
in the patient’s medical record. We utilize ICD9 codes as
ground-truth to train and test our models in experiments.
According to its hierarchical structure, there are 19 cate-
gories at the upper level for the most general classification
and 129 categories at the lower level for more specific
classifications. Fig. 2 represents the hierarchical structure of
ICD9, of which we use two levels, i.e. high level and low level.
For example, all codes ranging from 460 to 519 are classified
as diseases of the respiratory system, which is a general class
label. There are six subclasses in this general class group:
acute respiratory infections (460-466), other diseases of the upper
respiratory tract (470-478), pneumonia and influenza (480-488),
chronic obstructive pulmonary disease and allied conditions (490-
496), pneumoconioses and other lung diseases due to external
agents (500-508), and other diseases of respiratory system (510-
519). Since they are hierarchically organized in two levels,
we use them as label information in different two schemes.
We name two different classification schemes c0 and c1.
c0 is for the general groups of disease while c1 is the
specific version. We exclude one class and its corresponding
subclasses that are designed for neonates (certain conditions
originating in the perinatal period (760-779)) in c0 and c1. We
use the top δ classes that can be observed in the medical
records of ICU patients. We set δ = {5, 10, 15} for c0 and
δ = {5, 10, 15, 20, 25} in c1. The reason for not including all
classes is that the majority rarely occur in the ICU database.

3.2 Feature Extractions and Encodings
Different parameters will be recorded by medical staff at
different time points for each patient, as mentioned above.
There are 4,832 parameters in total that can be recorded in
the chart, including textual and numerous properties. Only
a small set of parameters will be simultaneously recorded at
a certain time. 2,158 textual parameters are excluded since
it is difficult for most of them to reflect the health condi-
tions of patients even if they are digitalized. The remaining
2,674 numerous parameters are extracted as attributes of
the structured data for patients. They can be viewed as the
low-level descriptors of the health conditions. Similar to the
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Fig. 2. The hierarchical structure of ICD9. There are two levels, high
level and low level, to describe the disease codes. High level includes
more generic disease classification groups (19 groups) while low level
codes are more specific (129 groups). Note that we do not use the group
of certain conditions originating in the perinatal period (760-779) and its
related sub-codes because only adult patients are considered.

ICD9 code, only a small number of these parameters are
frequently recorded by caregivers in ICU. Thus, we rank the
frequencies of parameter occurrences and select the top 500
most often recorded parameters to form the structured data
for patients. In this way, chart feature extraction of the i-th
patient will produce a feature matrix Ci. Each row, ci is a
500-dimensional vector, i = 1, . . . , ni. ni is the number of
unique time points throughout the entire ICU stay of the
i-th patient. cpq stores the q-th parameter at the p-th time
point. Note that Ci is often sparse.

Besides the low-level numerous parameters, there are
huge volumes of clinical notes for ICU patients in the
MIMIC II database. Generally, they are of four types: ra-
diology reports, nursing/other notes, medical doctor notes, and
discharge summary reports. We use a similar pipeline in [1] to
construct note features by using Latent Dirichlet Allocation
(LDA) [34]. However, discharge notes are not excluded from
our work, which is different to [1]. The reason for this is that
explicit mortality outcome does not exert much influence
on the ICD9 code classification. According to the pipeline
settings, stop words are removed at the beginning of note
data pre-processing, followed by a TF-IDF learning that
picks out the 500 most informative words from the notes
of each patient. The overall dictionary is built upon the
amalgamation of the informative words of all patients. The
number of topics is set as 50, resulting in a 50-dimensional
vector for each patient for each note. Given a note feature
matrix Ni for the i-th patient, its entry npq is the proportion
of topic q in the p-th note. Another difference from [1] is that
we do not use weights for each topic because the mortality
information is not taken into account in our scenario.

Once feature extractions have been done, two feature

matrices for the i-th patient are obtained, Ci and Ni rep-
resenting chart and note features respectively, since two ar-
bitrary patients have different numbers of chart records and
medical notes. To make a similarity comparison between
two patients, e.g. Ci and Cj , a unique representation is
achieved by encoding the feature matrices into two vectors
of the same length. For simplicity and good performance,
the BoW model and its variants, e.g. spatial-temporal pyra-
mid BoW, are pervasively applied to represent text, image
and video data in the tasks of retrieval or classification. BoW
is a histogram-based statistical method that first requires a
dictionary to be created using a clustering algorithm, often
KMeans Clustering. The number of centers, also known as
the size of the dictionary, are usually set by experiment. The
BoW model will first compute a number of distance pairs
between each feature and each center. Each feature will be
assigned the label of the nearest center. The occurrences of
centers will then be counted to form a vector as a unique
representation. The size of the vector is the size of the dic-
tionary. A descriptive representation is required to encode
the numerous features in MIMIC II. In light of this, we apply
BoW as a representation model to encode the features in this
work. We have tested different sizes of dictionary, including
50, 100, 200, 300, 500, 1000, 2000, and 5000. We find 500 is a
trade-off between effectiveness and efficiency for both chart
and note features and fix the dimensions of both chart and
note data representations at 500 (shown in Tab. 1).

3.3 Proposed Algorithm

The notations used in this paper are first summarized to give
a better understanding of the proposed algorithm. Matrices
and vectors are written as boldface uppercase letters and
boldface lowercase letters, respectively. We use the nota-
tional convention that defines each data as d + 1 dimen-
sional, i.e. the intercept term x0 = 1. Therefore, a training
dataset is denoted as x = [x1, . . . ,xn] ∈ R(d+1)×n, where
n is the number of training samples. Correspondingly the
class indicator matrix is represented as Y = [y1, . . . ,yn]T ∈
Rn×c. c is the number of classes. yi ∈ {0, 1}c is a c
dimensional vector. If xi belongs to the j-th class, yij is
1, otherwise yij = 0, i ∈ {1, . . . , n} and j ∈ {1, . . . , c}. A
structural incorporating framework can be represented as:

min
W

L(XTW ,Y ) + γΩ(W ), (1)

where L(·) is a loss function. Ω(·) is a regularization term
while γ ≥ 0 is the regularization parameter. W ∈ R(d+1)×c

is a coefficient matrix and its i-th row and j-th column are
denoted as wi and wj , respectively. To capture intrinsic
relationships between features and labels, a sparsity-based
norm is usually applied to the regularization term, Ω(W ).
Thus, if we can properly incorporate a graph structure
that reflects the correlations between diseases, the multi-
label classification performance can be improved. With this
motivation, we need our objective function to have two
properties: First, the loss function L(·) should be suitable
for multi-label learning and be easy to implement in a large-
scale scenario; Second, the sparsity-based norm on Ω(W )
should be convex because of the computational issues and
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global optima. To satisfy these requirements, we design our
objective function as follow:

min
wi

1

n

c∑
i=1

n∑
j=1

log(1 + exp(−yijwT
i xj))

+γ
c∑
i=1

c∑
j=1

aij‖[wi,wj ]‖2,1,
(2)

The `2,1-norm of the matrix W is defined as ‖W ‖2,1 =∑d
i=1 ‖wi‖2. In Eq. (2), we use logistic loss because of its

simplicity and suitability for binary classification. Various
loss functions have been applied to multi-label learning
problems in other works, e.g. least squared loss; however,
discussion on the choice of loss function is beyond the
scope of this paper. aij is the entry of an affinity matrix
A ∈ Rc×c which reflects the relationships between two
arbitrary classes (diseases). In the label space, we use cosine
similarity to represent the relationships between two arbi-
trary classes. Recall that the class indicator matrix is defined
as Y ∈ Rn×c. To define the cosine similarity between
two classes, we denote zi ∈ Rn as the i-th column of Y .
Y = [z1, . . . ,zc]. Note that zi indicates the distribution of
the i-th class over the training data. Thus, the entry of the
affine matrix is defined as follows:

aij = cos(zi, zj) =
< zi, zj >

|zi| · |zj |
, (3)

where i, j ∈ {1, . . . , c}. In the regularization term, aij can
be regarded as a weight. According to Eq. (3), the more
correlated the ith and the j-th diseases are, the higher the
value of aij will be. In Eq. (2), a higher aij will lead to more
punishment to [wi,wj ] with the `2,1 norm. Optimization
will make wi and wj become more similar in columns
and sparse in rows. To fully employ this constraint, the
second term in Eq. (2) goes over the entire affinity matrix
of the disease correlation. In this way, disease correlation
is incorporated into the framework to improve the multi-
label classification. Similar ideas have been explored in [35],
[36]. Ma et al. characterize different degree of relevance
between concepts and events by minimizing ‖[wi,wj ]‖2,p.
They did not consider utilizing relational graph to improve
subsequent performance.

3.4 Optimization

In this section, we give an iterative approach to optimize
the objective function. First, we write the objective function
shown in Eq. (2) as follows:

min
wi

1

n

c∑
i=1

n∑
j=1

log(1 + exp(−yijwT
i xj))

+γ
c∑
i=1

c∑
j=1

aijTr([wi,wj ]
TDij [wi,wj ]),

(4)

where Dij is a diagonal matrix with the d-th diagonal
element as 1

2‖[wi,wj ]d]‖2 . Tr(·) is the trace operation of a

matrix. The second term in Eq. (4) can be simplified as
follows:

c∑
i=1

c∑
j=1

aijTr([wi,wj ]
TDij [wi,wj ])

=
c∑
i=1

c∑
j=1

(aijw
T
i D

ijwi + aijw
T
j D

ijwj)

=
c∑
i=1

wT
i (

c∑
j=1

aijD
ij)wi +

c∑
j=1

wT
j (

c∑
i=1

aijD
ij)wj

=
c∑
i=1

wT
i (

c∑
j=1

aijD
ij)wi +

c∑
j=1

wT
j (

c∑
i=1

aijD
ji)wj

Because of aij = aji and Dij = Dji, we rewrite the above
equation as:

c∑
i=1

c∑
j=1

aijTr([wi,wj ]
TDij [wi,wj ])

=
c∑
i=1

wT
i (2

c∑
j=1

aijD
ij)wi

(5)

By denoting Qi = 2
∑c
j=1 aijD

ij , the problem in Eq. (4)
will arrive at:

min
wi

1

n

c∑
i=1

n∑
j=1

log(1 + exp(−yijwT
i xj)) + γ

c∑
i=1

wT
i Q

iwi

(6)
From the above equation, we observe that the problem

in Eq. (6) is unrelated between different wi. Hence, we
decouple it to solve the following problem for each wi:

min
wi

1

n

n∑
j=1

log(1 + exp(−yijwT
i xj)) + γwT

i Q
iwi (7)

We denote L(wi) = 1
n

n∑
j=1

log(1 + exp(−yijwT
i xj)) and

Ω(wi) = wT
i Q

iwi. By using gradient descent, we can
update wi as follows:

w
(t+1)
i = w

(t)
i + η

{
∇wi

L(wi) + γ∇wi
Ω(wi)

}
(8)

η > 0 is the learning rate. t is the step index. Because both
L(wi) and Ω(wi) are differentiable with respect to wi, we
summarize the detailed algorithm to optimize the proposed
objective function in Algorithm 1.

Because the logistic loss function and `2,1-norm are all
convex, the objective function in Eq. (2) converges to the
global optima by Algorithm 1. The related proof can be
found in Appendix, available in the supplemental material.

4 EXPERIMENTS

In this section, descriptions of all the compared methods
will first be given, followed by an introduction to the
experiment settings. The experimental results will then be
reported and analyzed.
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Algorithm 1: Algorithm to solve the problem in Eq. (2)

Data: Data X ∈ R(d+1)×n, Parameter γ, k, and label
correlation matrix A ∈ Rc×c

Result: W ∈ R(d+1)×c

1 Randomly initialize W ;
2 repeat
3 For each i and j, calculate the diagonal matrix Dij ,

where the d-th diagonal element is 1
2‖[wi,wj ]d‖2 ;

4 For each i, calculate the diagonal matrix Qi by
Qi = 2

∑
j aijD

ij ;
5 For each i, update wi in Eq. (8) using Gradient

Descent;
6 until Convergence;

4.1 Experiment Settings

In the experiments, we compare our proposed algorithm
with the following approaches:

• Binary Relevance SVM (BR-SVM): Binary Rele-
vance (BR) is a transformation approach, which
divides the multi-label classification problem into
many binary classification problems. For the task of
diagnosis code assignment, BR-SVM has achieved
the best performance in terms of accuracy measured
by Hamming loss in [21].

• Hierarchy-based SVM (H-SVM): The hierarchy-
based SVM considers the class hierarchical structures
in learning processes and achieves comparable per-
formance in terms of Hamming loss in [20], [21]. The
hierarchy of ICD9 codes is available from the NCBO
BioPortal [37].

• Label specIfic FeaTures (LIFT) [38]: In the multi-
label learning framework, LIFT will perform clus-
tering on features with respect to each class, after
which training and testing will be conducted by
querying the clustering results. Using this method,
label-specific features belonging to a certain class will
be exploited.

• Multi-Label kNN (MLkNN) [13]: ML-kNN is used
to learn multi-label k-nearest neighbor classifiers. We
tune values of k in the range of {8, 9, 10, 11, 12}
according to [13] and report the best result in the
experiment.

• RankSVM [39]: This algorithm is designed to handle
multi-label classification problems by using a large
margin ranking system. This system has a number of
common features with traditional SVMs.

• SubFeature Uncovering with Sparsity (SFUS) [40]:
This method considers both selecting the most dis-
tinctive features in the original feature space and
exploiting shared structural information in a sub-
space. It has been applied in a multi-label learning
application that automatically annotates multi-labels
to web images.

Since noise may exist in disease correlations, we set a
filter parameter k that controls the sparsity of the affinity
matrix A. If aij < k, aij = 0. All medical data are randomly
and evenly split into two parts for training and testing

procedures. In the training phase, 5-fold cross validation
and grid search scheme are applied to select the best pa-
rameters on training data. In our proposed algorithm, there
are two parameters, k and γ. k is a filter parameter that
controls the sparsity of the affinity matrix A, while γ is
the regularization parameter. In the experiment, k is tuned
in {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, while γ
is tuned in {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}.
The learning rate, η, in Eq. (8) is set at 0.001 in all
experiments. After the parameter selection, we fit the
model with the best parameters on the testing dataset,
and report the corresponding results. The parameters of
the compared methods are tuned in the same range of
{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}, e.g. regu-
larization parameter for the SVM-based methods. Because of
the hierarchical structures of ICD9 codes mentioned before,
we name c0 as the most general classification label and c1 as
the more specific label. For c0, there are 19 disease categories
while there are 129 categorizations for c1. Since only adult
records are considered, we exclude the disease group that
is designed for neonates at all levels, i.e. certain conditions
originating in the perinatal period (769-779). As a result, the
full class setting at c0 level includes 18 classes. For c1 level,
we only consider top δ disease codes because some diseases
are rarely diagnosed in ICU. We set δ = {5, 10, 15, 18} in
c0 and δ = {5, 10, 15, 20, 25} in c1. The evaluations are thus
conducted in different label settings; for example, the label
setting c0δ5 means the c0 with δ = 5 is in use.

Since there are two types of features that are extracted
from chart and note data respectively, we concatenate the
chart and note features to form the third fused features. All
the algorithms are evaluated using the three type of features,
i.e. chart features, note features, and their concatenated fea-
tures. Note that there have so far been many feature fusion
strategies, including: early fusion, late fusion and multi-
stage fusion. In this paper, we only consider early fusion,
in which two types of features, chart and note features,
are concatenated. It is worth considering the underlying
correlations between two features since the high-level note
data are summarized and inferred from low-level chart data.
However, this is not the focus of this paper and can be
considered for future work.

To evaluate the performance, we have adopted two cri-
teria that are widely used in multi-label learning: Hamming
loss and Ranking loss. The former criterion is an example-
based metric that evaluates the errors from either the pre-
dictions of wrong labels or from missing predictions. From
the definition, we can see that error-free performance will
have zero Hamming loss, which means there is no difference
between the predicted labels and the ground truth. In other
words, the smaller the value of the Hamming loss is, the better
the performance will be. Ranking loss takes into account the
average fraction of label pairs that are mis-ordered for the
object. Similarly, a smaller Ranking loss indicates a better
performance result. More details of these two criteria can
be found in [41]. We repeat the experiments five times and
report the average results with standard deviations under
eight different label settings for each hierarchy.
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(a). Chart data with class setting: c0,δ=10
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(b). Note data with class setting: c0,δ=10
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(c). Fused data with class setting: c0,δ=10
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(d). Chart data with class setting: c1,δ=10
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(e). Note data with class setting: c1,δ=10
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(f). Fused data with class setting: c1,δ=10
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Fig. 3. Performance variations with the different combinations of γs and ks. Top 10 classes (δ = 10) are used in different class settings, c0 and c1.

4.2 Evaluation Results

Since there are two parameters, i.e. k and γ, in our frame-
work, we conduct an experiment to investigate perfor-
mance variations with respect to different parameter com-
binations. Performance variations with different combina-
tions of ks and γs are drawn in Fig. 3. Due to page
limitations, we only select the top 10 classes (δ = 10)
in each ICD9 hierarchy (c0 or c1) for two features and
their fusion version. We only consider Hamming loss as
the metric in this experiment. k varies in a range of
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.5} while γ ∈
{10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104}. Note that the
smaller the Hamming loss value (the shorter bar in Fig. 3), the
better performance. From all the sub-figures (a) - (f) in Fig.
3, we can observe that highest and lowest values of γ (e.g.
10−4, 10−3, 103, 104) are detrimental to the performance.
Medium values of γ, such as 10−1, 1, 101 usually yield
good performance results. On the contrary, there is not an
obvious pattern for the filter parameterk. However, the best
performance result (the shortest bar) is usually identified
when γ = 1 and k = 0.25. We have observed similar trends
and results for the other class settings. As a result, we fix
γ = 1 and k = 0.25 as the best parameter combination in
the rest of experiments. To consider the effectiveness of our
algorithm, we compare all the algorithms detailed above
and report the results of the different types of features in
Tab. 2, 3, and 4. Note that the parameters are fixed (γ = 1
and k = 0.25). Average results with standard deviations
are represented in the tables. From the tables, we make the
following observations: Irrespective of the type of features
used, our proposed algorithm performs better than all oth-
ers in terms of Hamming loss and Ranking loss in most of the
different class settings. In each classification hierarchy (c0
and c1), it is interesting to find that both criteria mostly
decrease for all algorithms with the increase of number

of classes (e.g. δ varies from 5 to 18 in c0). For example,
the Hamming loss of the proposed method is 0.311 when
δ = 5 in c0. However, the value decreases to 0.249 and
0.218 when δ = 15 and δ = 18, respectively. Exceptions
can be observed for note and fused features (δ = 10 in c0)
measured by Ranking loss. In most cases, note features have
better results than chart features. This may because the note
data contain descriptive and predictive information from
medical experts. On the other hand, our method achieves
better performance by using fused features than by using
each of them separately. For instance, the biggest margin
is observed at Ranking loss when δ = 10 in chart or note
features have higher values (i.e. 0.2690 for the chart data
and 0.2665 for the note data, respectively). However, the
improvement achieved by feature fusion in all settings is
sometimes limited, which is the result of the simple early
fusion strategy (the concatenation of two features). From
the results in Tab. 2, 3, and 4, we can observe that our
algorithm performs much better than BR-SVM, which does
not consider the correlation between diseases. Compared to
the other methods, which take correlation into account, it is
worth noting that our proposed algorithm still yield better
performance results in the most cases. To validate the effec-
tiveness of the disease correlation embedding via a graph
structure, we fix k as 0.25 and add γ = 0 as in the previously
tested range. When γ = 0, there is no contribution from
disease correlation mining in the objective function in Eq.
(2). The entire work is then equivalent to a standard logistic
regression model for a multi-label classification problem. In
Fig. 4, the classification performance of all the methods is
drawn in each sub-figure to give a better understanding of
how and when our method achieves superior performance
than its counterparts. Note that none of the other compared
algorithms change their performance with the variation of
γ. They are shown as horizontal dashed lines in the figures.
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TABLE 2
Performance comparison between our algorithm and all compared methods using medical chart data under different label settings. Hamming loss

and ranking loss are used as metric. The parameters k and γ are fixed at 0.25 and 1, respectively.

Criteria Settings BR-SVM H-SVM LIFT MLkNN RankSVM SFUS Ours

Hamming
loss ↓

c0

δ5 .369±.002 .330±.003 .336±.002 .339±.003 .345±.002 .329±.002 .311±.001
δ10 .333±.002 .311±.003 .317±.002 .317±.002 .328±.003 .302±.002 .289±.011
δ15 .275±.002 .262±.002 .269±.002 .269±.002 .284±.001 .260±.002 .249±.001
δ18 .237±.003 .229±.003 .232±.001 .224±.001 .246±.004 .229±.004 .218±.001

c1

δ5 .392±.003 .376±.002 .375±.005 .378±.002 .434±.008 .405±.003 .367±.002
δ10 .318±.001 .312±.002 .313±.003 .313±.001 .332±.004 .337±.003 .302±.001
δ15 .276±.002 .269±.002 .271±.001 .271±.001 .288±.001 .302±.003 .264±.001
δ20 .241±.001 .238±.002 .237±.002 .237±.001 .252±.001 .266±.002 .222±.001
δ25 .209±.003 .202±.001 .210±.002 .209±.001 .221±.001 .239±.001 .195±.002

Ranking
loss ↓

c0

δ5 .266±.001 .244±.002 .245±.001 .257±.001 .282±.002 .301±.013 .236±.001
δ10 .252±.001 .232±.001 .236±.001 .240±.001 .264±.004 .273±.002 .221±.001
δ15 .230±.002 .218±.002 .227±.001 .229±.001 .253±.002 .243±.001 .204±.002
δ18 .214±.001 .202±.003 .210±.001 .214±.003 .237±.003 .225±.001 .184±.001

c1

δ5 .343±.001 .314±.005 .315±.003 .320±.002 .349±.001 .400±.002 .310±.003
δ10 .303±.002 .277±.001 .269±.002 .272±.001 .330±.003 .325±.006 .269±.001
δ15 .287±.001 .256±.001 .262±.002 .265±.002 .309±.004 .293±.001 .265±.003
δ20 .275±.003 .248±.001 .246±.001 .249±.001 .294±.002 .279±.002 .249±.003
δ25 .244±.001 .233±.002 .230±.001 .232±.001 .272±.002 .262±.001 .224±.003

TABLE 3
Performance comparison between our algorithm and all compared methods using medical note data under different label settings. Hamming loss

and ranking loss are used as metric. The parameters k and γ are fixed at 0.25 and 1, respectively.

Criteria Settings BR-SVM H-SVM LIFT MLkNN RankSVM SFUS Ours

Hamming
loss ↓

c0

δ5 .339±.003 .312±.001 .305±.004 .315±.002 .317±.007 .303±.002 .295±.001
δ10 .308±.001 .289±.002 .293±.001 .294±.002 .305±.002 .280±.002 .281±.002
δ15 .267±.001 .250±.001 .251±.003 .253±.002 .264±.002 .243±.002 .247±.001
δ18 .229±.002 .207±.002 .214±.002 .208±.003 .226±.003 .212±.001 .195±.002

c1

δ5 .371±.002 .343±.002 .343±.001 .363±.002 .408±.004 .403±.001 .325±.001
δ10 .304±.003 .290±.002 .288±.001 .297±.001 .314±.001 .316±.002 .285±.001
δ15 .264±.002 .256±.001 .254±.001 .260±.001 .277±.001 .284±.001 .253±.001
δ20 .236±.004 .234±.001 .224±.001 .228±.001 .245±.002 .249±.001 .223±.001
δ25 .210±.007 .190±.002 .197±.001 .201±.001 .222±.001 .220±.001 .197±.001

Ranking
loss ↓

c0

δ5 .227±.001 .221±.002 .205±.003 .205±.002 .219±.001 .256±.003 .219±.002
δ10 .238±.001 .212±.003 .218±.002 .216±.001 .237±.002 .220±.003 .221±.002
δ15 .219±.002 .206±.003 .198±.001 .197±.001 .221±.002 .212±.001 .189±.001
δ18 .197±.002 .190±.001 .181±.003 .182±.001 .205±.001 .194±.002 .169±.002

c1

δ5 .324±.002 .309±.002 .302±.003 .302±.002 .313±.002 .406±.007 .291±.004
δ10 .276±.003 .249±.003 .251±.002 .250±.001 .278±.004 .260±.001 .267±.002
δ15 .265±.001 .240±.002 .244±.001 .243±.001 .284±.006 .248±.002 .231±.004
δ20 .246±.001 .225±.003 .227±.001 .227±.001 .265±.002 .250±.001 .216±.003
δ25 .223±.003 .203±.002 .207±.001 .206±.001 .239±.002 .233±.001 .200±.004

In all the sub-figures, our proposed method has a higher
Hamming loss when γ = 0. With the changes to γ, the
value is minimized at a certain γ (usually γ = 1). However,
dramatic increases are observed when much bigger γs are
engaged. This experiment validates that a proper fraction of
disease correlation embedding is indeed beneficial to multi-
label learning. With this graph structure, our framework
stands out against all other algorithms in most cases.

Lastly, we conduct empirical experiments to demon-
strate the convergence of our proposed algorithm. We first
test the number of iterations of our algorithm and report the
results in Fig. 5. Due to page limitations, we only select the
top 10 classes (δ = 10) in each ICD9 hierarchy (c0 or c1) for

two features and their fusion version. From the experiments,
we see that the objective function value converges within
a few steps(approximately 12 iterations in most cases). To
test the efficiency of the proposed algorithm, we fix two
parameters (k = 0.25 and γ = 1) under the full class setting
(c0δ18). We increase the number of patient data from 1,000
to 10,000 and record the corresponding running time of the
algorithm. In each run, the max iteration number is set to 20.
We repeat the test 10 times and report the averaged result
in Fig. 6. To empirically demonstrate that our algorithm
converges to a global optima, we design an experiment
which tests different initializations of W in Algorithm 1. We
initialize W in different seven ways: setting all the diagonal
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TABLE 4
Performance comparison between our algorithm and all compared methods using fused medical data (chart and note) under different label

settings. Hamming loss and ranking loss are used as metric. The parameters k and γ are fixed at 0.25 and 1, respectively.

Criteria Settings BR-SVM H-SVM LIFT MLkNN RankSVM SFUS Ours

Hamming
loss ↓

c0

δ5 .329±.002 .292±.001 .311±.004 .328±.002 .349±.004 .301±.002 .282±.001
δ10 .303±.002 .270±.002 .298±.002 .306±.002 .295±.003 .275±.002 .261±.001
δ15 .257±.002 .234±.001 .256±.002 .262±.002 .261±.001 .238±.002 .231±.001
δ18 .213±.003 .203±.001 .219±.002 .217±.001 .223±.003 .207±.004 .200±.003

c1

δ5 .362±.003 .332±.001 .344±.003 .369±.004 .424±.007 .388±.002 .318±.001
δ10 .300±.002 .297±.002 .290±.002 .305±.003 .337±.009 .307±.003 .278±.001
δ15 .259±.001 .251±.003 .254±.001 .265±.002 .269±.002 .278±.002 .247±.002
δ20 .235±.002 .230±.001 .225±.001 .232±.002 .239±.001 .244±.001 .219±.002
δ25 .202±.002 .198±.002 .199±.002 .205±.002 .211±.001 .216±.001 .194±.001

Ranking
loss ↓

c0

δ5 .226±.002 .203±.001 .199±.002 .200±.002 .226±.001 .265±.006 .214±.002
δ10 .238±.001 .209±.002 .211±.001 .210±.001 .246±.003 .223±.005 .215±.001
δ15 .219±.001 .182±.002 .194±.001 .193±.001 .230±.002 .217±.002 .188±.002
δ18 .202±.003 .171±.002 .177±.001 .178±.002 .214±.003 .199±.002 .168±.001

c1

δ5 .315±.002 .268±.002 .288±.002 .288±.002 .311±.002 .354±.006 .274±.002
δ10 .273±.002 .242±.002 .240±.002 .238±.002 .285±.006 .328±.019 .228±.001
δ15 .264±.003 .231±.001 .232±.002 .231±.002 .281±.005 .268±.005 .223±.003
δ20 .248±.003 .217±.002 .218±.001 .217±.001 .263±.002 .258±.003 .201±.003
δ25 .227±.002 .193±.001 .199±.001 .198±.001 .243±.002 .240±.004 .189±.003
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Fig. 4. Performance variations with respect to different γs. We test chart, note and fused data under all class setting. Due to the page limit, we only
show the results under class setting c0δ10 and c1δ10. k is fixed at 0.25. Performance results of all compared methods are also drawn in each figure.

elements of W to 0.5, 1, 2 (0 for other elements), and setting
all the elements of W to 0.5, 1, 2, and random values. All the
class settings are tested. From Tab. 5, we can see the objective
function values of different seven initialization ways are the
same for each class setting. It can be seen that our algorithm
always converges to the global optimum regardless of the
different initializations.

5 CONCLUSIONS

The aim of this paper has been to learn ICU patient diagno-
sis labels and automatically conduct annotation according
to the patient data. We extracted medical chart and note
data from a publicly available large-scale Intensive Care
Unit database, i.e. MIMIC II. The Bag-of-words model was
applied to encode both chart and note features. With the
goal of achieving acceptable multi-label classification perfor-
mance, we proposed an algorithm based on sparsity regular-
ization to exploit and utilize disease correlations via a graph
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(a) Chart features (δ = 10 in c0)
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(b) Note features (δ = 10 in c0)
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(c) Fused features (δ = 10 in c0)
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(d) Chart features (δ = 10 in c1)
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(e) Note features (δ = 10 in c1)

1 2 3 4 5 6 7 8 9 10 11 12

6400

6600

6800

7000

7200

7400

7600

Number of Iterations (N)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
es

(f) Fused features (δ = 10 in c1)

Fig. 5. The convergence curves of the objective function values in (2) using algorithm 1 on MIMIC II. We test chart, note and fused data under all
class setting. Due to the page limit, we only show the results under class setting c0δ10 and c1δ10. k is fixed at 0.25.
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Fig. 6. Averaged runtime records with the increase in the number of
patient data. X-axis is the number of data, while Y-axis denotes the
corresponding runtime of our algorithm in second.

structure. The entire framework is convex and leads to a
guaranteed global optima. Our algorithm improves multi-
label classification performance by capturing the disease
correlations. Extensive experiments demonstrate that the
proposed method, with the help of successful disease cor-
relation embedding, learns the diagnostic codes of patients
more effectively than all other compared approaches.
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